291 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    Index,
 | 
						|
    MultiIndex,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
def test_equals(idx):
 | 
						|
    assert idx.equals(idx)
 | 
						|
    assert idx.equals(idx.copy())
 | 
						|
    assert idx.equals(idx.astype(object))
 | 
						|
    assert idx.equals(idx.to_flat_index())
 | 
						|
    assert idx.equals(idx.to_flat_index().astype("category"))
 | 
						|
 | 
						|
    assert not idx.equals(list(idx))
 | 
						|
    assert not idx.equals(np.array(idx))
 | 
						|
 | 
						|
    same_values = Index(idx, dtype=object)
 | 
						|
    assert idx.equals(same_values)
 | 
						|
    assert same_values.equals(idx)
 | 
						|
 | 
						|
    if idx.nlevels == 1:
 | 
						|
        # do not test MultiIndex
 | 
						|
        assert not idx.equals(Series(idx))
 | 
						|
 | 
						|
 | 
						|
def test_equals_op(idx):
 | 
						|
    # GH9947, GH10637
 | 
						|
    index_a = idx
 | 
						|
 | 
						|
    n = len(index_a)
 | 
						|
    index_b = index_a[0:-1]
 | 
						|
    index_c = index_a[0:-1].append(index_a[-2:-1])
 | 
						|
    index_d = index_a[0:1]
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        index_a == index_b
 | 
						|
    expected1 = np.array([True] * n)
 | 
						|
    expected2 = np.array([True] * (n - 1) + [False])
 | 
						|
    tm.assert_numpy_array_equal(index_a == index_a, expected1)
 | 
						|
    tm.assert_numpy_array_equal(index_a == index_c, expected2)
 | 
						|
 | 
						|
    # test comparisons with numpy arrays
 | 
						|
    array_a = np.array(index_a)
 | 
						|
    array_b = np.array(index_a[0:-1])
 | 
						|
    array_c = np.array(index_a[0:-1].append(index_a[-2:-1]))
 | 
						|
    array_d = np.array(index_a[0:1])
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        index_a == array_b
 | 
						|
    tm.assert_numpy_array_equal(index_a == array_a, expected1)
 | 
						|
    tm.assert_numpy_array_equal(index_a == array_c, expected2)
 | 
						|
 | 
						|
    # test comparisons with Series
 | 
						|
    series_a = Series(array_a)
 | 
						|
    series_b = Series(array_b)
 | 
						|
    series_c = Series(array_c)
 | 
						|
    series_d = Series(array_d)
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        index_a == series_b
 | 
						|
 | 
						|
    tm.assert_numpy_array_equal(index_a == series_a, expected1)
 | 
						|
    tm.assert_numpy_array_equal(index_a == series_c, expected2)
 | 
						|
 | 
						|
    # cases where length is 1 for one of them
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        index_a == index_d
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        index_a == series_d
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        index_a == array_d
 | 
						|
    msg = "Can only compare identically-labeled Series objects"
 | 
						|
    with pytest.raises(ValueError, match=msg):
 | 
						|
        series_a == series_d
 | 
						|
    with pytest.raises(ValueError, match="Lengths must match"):
 | 
						|
        series_a == array_d
 | 
						|
 | 
						|
    # comparing with a scalar should broadcast; note that we are excluding
 | 
						|
    # MultiIndex because in this case each item in the index is a tuple of
 | 
						|
    # length 2, and therefore is considered an array of length 2 in the
 | 
						|
    # comparison instead of a scalar
 | 
						|
    if not isinstance(index_a, MultiIndex):
 | 
						|
        expected3 = np.array([False] * (len(index_a) - 2) + [True, False])
 | 
						|
        # assuming the 2nd to last item is unique in the data
 | 
						|
        item = index_a[-2]
 | 
						|
        tm.assert_numpy_array_equal(index_a == item, expected3)
 | 
						|
        tm.assert_series_equal(series_a == item, Series(expected3))
 | 
						|
 | 
						|
 | 
						|
def test_compare_tuple():
 | 
						|
    # GH#21517
 | 
						|
    mi = MultiIndex.from_product([[1, 2]] * 2)
 | 
						|
 | 
						|
    all_false = np.array([False, False, False, False])
 | 
						|
 | 
						|
    result = mi == mi[0]
 | 
						|
    expected = np.array([True, False, False, False])
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    result = mi != mi[0]
 | 
						|
    tm.assert_numpy_array_equal(result, ~expected)
 | 
						|
 | 
						|
    result = mi < mi[0]
 | 
						|
    tm.assert_numpy_array_equal(result, all_false)
 | 
						|
 | 
						|
    result = mi <= mi[0]
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    result = mi > mi[0]
 | 
						|
    tm.assert_numpy_array_equal(result, ~expected)
 | 
						|
 | 
						|
    result = mi >= mi[0]
 | 
						|
    tm.assert_numpy_array_equal(result, ~all_false)
 | 
						|
 | 
						|
 | 
						|
def test_compare_tuple_strs():
 | 
						|
    # GH#34180
 | 
						|
 | 
						|
    mi = MultiIndex.from_tuples([("a", "b"), ("b", "c"), ("c", "a")])
 | 
						|
 | 
						|
    result = mi == ("c", "a")
 | 
						|
    expected = np.array([False, False, True])
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    result = mi == ("c",)
 | 
						|
    expected = np.array([False, False, False])
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_equals_multi(idx):
 | 
						|
    assert idx.equals(idx)
 | 
						|
    assert not idx.equals(idx.values)
 | 
						|
    assert idx.equals(Index(idx.values))
 | 
						|
 | 
						|
    assert idx.equal_levels(idx)
 | 
						|
    assert not idx.equals(idx[:-1])
 | 
						|
    assert not idx.equals(idx[-1])
 | 
						|
 | 
						|
    # different number of levels
 | 
						|
    index = MultiIndex(
 | 
						|
        levels=[Index(list(range(4))), Index(list(range(4))), Index(list(range(4)))],
 | 
						|
        codes=[
 | 
						|
            np.array([0, 0, 1, 2, 2, 2, 3, 3]),
 | 
						|
            np.array([0, 1, 0, 0, 0, 1, 0, 1]),
 | 
						|
            np.array([1, 0, 1, 1, 0, 0, 1, 0]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
 | 
						|
    index2 = MultiIndex(levels=index.levels[:-1], codes=index.codes[:-1])
 | 
						|
    assert not index.equals(index2)
 | 
						|
    assert not index.equal_levels(index2)
 | 
						|
 | 
						|
    # levels are different
 | 
						|
    major_axis = Index(list(range(4)))
 | 
						|
    minor_axis = Index(list(range(2)))
 | 
						|
 | 
						|
    major_codes = np.array([0, 0, 1, 2, 2, 3])
 | 
						|
    minor_codes = np.array([0, 1, 0, 0, 1, 0])
 | 
						|
 | 
						|
    index = MultiIndex(
 | 
						|
        levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
 | 
						|
    )
 | 
						|
    assert not idx.equals(index)
 | 
						|
    assert not idx.equal_levels(index)
 | 
						|
 | 
						|
    # some of the labels are different
 | 
						|
    major_axis = Index(["foo", "bar", "baz", "qux"])
 | 
						|
    minor_axis = Index(["one", "two"])
 | 
						|
 | 
						|
    major_codes = np.array([0, 0, 2, 2, 3, 3])
 | 
						|
    minor_codes = np.array([0, 1, 0, 1, 0, 1])
 | 
						|
 | 
						|
    index = MultiIndex(
 | 
						|
        levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
 | 
						|
    )
 | 
						|
    assert not idx.equals(index)
 | 
						|
 | 
						|
 | 
						|
def test_identical(idx):
 | 
						|
    mi = idx.copy()
 | 
						|
    mi2 = idx.copy()
 | 
						|
    assert mi.identical(mi2)
 | 
						|
 | 
						|
    mi = mi.set_names(["new1", "new2"])
 | 
						|
    assert mi.equals(mi2)
 | 
						|
    assert not mi.identical(mi2)
 | 
						|
 | 
						|
    mi2 = mi2.set_names(["new1", "new2"])
 | 
						|
    assert mi.identical(mi2)
 | 
						|
 | 
						|
    with tm.assert_produces_warning(FutureWarning):
 | 
						|
        # subclass-specific keywords to pd.Index
 | 
						|
        mi3 = Index(mi.tolist(), names=mi.names)
 | 
						|
 | 
						|
    msg = r"Unexpected keyword arguments {'names'}"
 | 
						|
    with pytest.raises(TypeError, match=msg):
 | 
						|
        with tm.assert_produces_warning(FutureWarning):
 | 
						|
            # subclass-specific keywords to pd.Index
 | 
						|
            Index(mi.tolist(), names=mi.names, tupleize_cols=False)
 | 
						|
 | 
						|
    mi4 = Index(mi.tolist(), tupleize_cols=False)
 | 
						|
    assert mi.identical(mi3)
 | 
						|
    assert not mi.identical(mi4)
 | 
						|
    assert mi.equals(mi4)
 | 
						|
 | 
						|
 | 
						|
def test_equals_operator(idx):
 | 
						|
    # GH9785
 | 
						|
    assert (idx == idx).all()
 | 
						|
 | 
						|
 | 
						|
def test_equals_missing_values():
 | 
						|
    # make sure take is not using -1
 | 
						|
    i = MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp("20130101"))])
 | 
						|
    result = i[0:1].equals(i[0])
 | 
						|
    assert not result
 | 
						|
    result = i[1:2].equals(i[1])
 | 
						|
    assert not result
 | 
						|
 | 
						|
 | 
						|
def test_equals_missing_values_differently_sorted():
 | 
						|
    # GH#38439
 | 
						|
    mi1 = MultiIndex.from_tuples([(81.0, np.nan), (np.nan, np.nan)])
 | 
						|
    mi2 = MultiIndex.from_tuples([(np.nan, np.nan), (81.0, np.nan)])
 | 
						|
    assert not mi1.equals(mi2)
 | 
						|
 | 
						|
    mi2 = MultiIndex.from_tuples([(81.0, np.nan), (np.nan, np.nan)])
 | 
						|
    assert mi1.equals(mi2)
 | 
						|
 | 
						|
 | 
						|
def test_is_():
 | 
						|
    mi = MultiIndex.from_tuples(zip(range(10), range(10)))
 | 
						|
    assert mi.is_(mi)
 | 
						|
    assert mi.is_(mi.view())
 | 
						|
    assert mi.is_(mi.view().view().view().view())
 | 
						|
    mi2 = mi.view()
 | 
						|
    # names are metadata, they don't change id
 | 
						|
    mi2.names = ["A", "B"]
 | 
						|
    assert mi2.is_(mi)
 | 
						|
    assert mi.is_(mi2)
 | 
						|
 | 
						|
    assert not mi.is_(mi.set_names(["C", "D"]))
 | 
						|
    mi2 = mi.view()
 | 
						|
    mi2.set_names(["E", "F"], inplace=True)
 | 
						|
    assert mi.is_(mi2)
 | 
						|
    # levels are inherent properties, they change identity
 | 
						|
    mi3 = mi2.set_levels([list(range(10)), list(range(10))])
 | 
						|
    assert not mi3.is_(mi2)
 | 
						|
    # shouldn't change
 | 
						|
    assert mi2.is_(mi)
 | 
						|
    mi4 = mi3.view()
 | 
						|
 | 
						|
    # GH 17464 - Remove duplicate MultiIndex levels
 | 
						|
    with tm.assert_produces_warning(FutureWarning):
 | 
						|
        mi4.set_levels([list(range(10)), list(range(10))], inplace=True)
 | 
						|
    assert not mi4.is_(mi3)
 | 
						|
    mi5 = mi.view()
 | 
						|
    with tm.assert_produces_warning(FutureWarning):
 | 
						|
        mi5.set_levels(mi5.levels, inplace=True)
 | 
						|
    assert not mi5.is_(mi)
 | 
						|
 | 
						|
 | 
						|
def test_is_all_dates(idx):
 | 
						|
    assert not idx._is_all_dates
 | 
						|
 | 
						|
 | 
						|
def test_is_numeric(idx):
 | 
						|
    # MultiIndex is never numeric
 | 
						|
    assert not idx.is_numeric()
 | 
						|
 | 
						|
 | 
						|
def test_multiindex_compare():
 | 
						|
    # GH 21149
 | 
						|
    # Ensure comparison operations for MultiIndex with nlevels == 1
 | 
						|
    # behave consistently with those for MultiIndex with nlevels > 1
 | 
						|
 | 
						|
    midx = MultiIndex.from_product([[0, 1]])
 | 
						|
 | 
						|
    # Equality self-test: MultiIndex object vs self
 | 
						|
    expected = Series([True, True])
 | 
						|
    result = Series(midx == midx)
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # Greater than comparison: MultiIndex object vs self
 | 
						|
    expected = Series([False, False])
 | 
						|
    result = Series(midx > midx)
 | 
						|
    tm.assert_series_equal(result, expected)
 |