199 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			199 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import datetime
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    DatetimeIndex,
 | 
						|
    Series,
 | 
						|
    date_range,
 | 
						|
    period_range,
 | 
						|
    to_datetime,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
from pandas.tseries import offsets
 | 
						|
 | 
						|
 | 
						|
class TestAsFreq:
 | 
						|
    def test_asfreq2(self, frame_or_series):
 | 
						|
        ts = frame_or_series(
 | 
						|
            [0.0, 1.0, 2.0],
 | 
						|
            index=DatetimeIndex(
 | 
						|
                [
 | 
						|
                    datetime(2009, 10, 30),
 | 
						|
                    datetime(2009, 11, 30),
 | 
						|
                    datetime(2009, 12, 31),
 | 
						|
                ],
 | 
						|
                freq="BM",
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        daily_ts = ts.asfreq("B")
 | 
						|
        monthly_ts = daily_ts.asfreq("BM")
 | 
						|
        tm.assert_equal(monthly_ts, ts)
 | 
						|
 | 
						|
        daily_ts = ts.asfreq("B", method="pad")
 | 
						|
        monthly_ts = daily_ts.asfreq("BM")
 | 
						|
        tm.assert_equal(monthly_ts, ts)
 | 
						|
 | 
						|
        daily_ts = ts.asfreq(offsets.BDay())
 | 
						|
        monthly_ts = daily_ts.asfreq(offsets.BMonthEnd())
 | 
						|
        tm.assert_equal(monthly_ts, ts)
 | 
						|
 | 
						|
        result = ts[:0].asfreq("M")
 | 
						|
        assert len(result) == 0
 | 
						|
        assert result is not ts
 | 
						|
 | 
						|
        if frame_or_series is Series:
 | 
						|
            daily_ts = ts.asfreq("D", fill_value=-1)
 | 
						|
            result = daily_ts.value_counts().sort_index()
 | 
						|
            expected = Series([60, 1, 1, 1], index=[-1.0, 2.0, 1.0, 0.0]).sort_index()
 | 
						|
            tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_asfreq_datetimeindex_empty(self, frame_or_series):
 | 
						|
        # GH#14320
 | 
						|
        index = DatetimeIndex(["2016-09-29 11:00"])
 | 
						|
        expected = frame_or_series(index=index, dtype=object).asfreq("H")
 | 
						|
        result = frame_or_series([3], index=index.copy()).asfreq("H")
 | 
						|
        tm.assert_index_equal(expected.index, result.index)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
 | 
						|
    def test_tz_aware_asfreq_smoke(self, tz, frame_or_series):
 | 
						|
        dr = date_range("2011-12-01", "2012-07-20", freq="D", tz=tz)
 | 
						|
 | 
						|
        obj = frame_or_series(np.random.randn(len(dr)), index=dr)
 | 
						|
 | 
						|
        # it works!
 | 
						|
        obj.asfreq("T")
 | 
						|
 | 
						|
    def test_asfreq_normalize(self, frame_or_series):
 | 
						|
        rng = date_range("1/1/2000 09:30", periods=20)
 | 
						|
        norm = date_range("1/1/2000", periods=20)
 | 
						|
 | 
						|
        vals = np.random.randn(20, 3)
 | 
						|
 | 
						|
        obj = DataFrame(vals, index=rng)
 | 
						|
        expected = DataFrame(vals, index=norm)
 | 
						|
        if frame_or_series is Series:
 | 
						|
            obj = obj[0]
 | 
						|
            expected = expected[0]
 | 
						|
 | 
						|
        result = obj.asfreq("D", normalize=True)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_asfreq_keep_index_name(self, frame_or_series):
 | 
						|
        # GH#9854
 | 
						|
        index_name = "bar"
 | 
						|
        index = date_range("20130101", periods=20, name=index_name)
 | 
						|
        obj = DataFrame(list(range(20)), columns=["foo"], index=index)
 | 
						|
        obj = tm.get_obj(obj, frame_or_series)
 | 
						|
 | 
						|
        assert index_name == obj.index.name
 | 
						|
        assert index_name == obj.asfreq("10D").index.name
 | 
						|
 | 
						|
    def test_asfreq_ts(self, frame_or_series):
 | 
						|
        index = period_range(freq="A", start="1/1/2001", end="12/31/2010")
 | 
						|
        obj = DataFrame(np.random.randn(len(index), 3), index=index)
 | 
						|
        obj = tm.get_obj(obj, frame_or_series)
 | 
						|
 | 
						|
        result = obj.asfreq("D", how="end")
 | 
						|
        exp_index = index.asfreq("D", how="end")
 | 
						|
        assert len(result) == len(obj)
 | 
						|
        tm.assert_index_equal(result.index, exp_index)
 | 
						|
 | 
						|
        result = obj.asfreq("D", how="start")
 | 
						|
        exp_index = index.asfreq("D", how="start")
 | 
						|
        assert len(result) == len(obj)
 | 
						|
        tm.assert_index_equal(result.index, exp_index)
 | 
						|
 | 
						|
    def test_asfreq_resample_set_correct_freq(self, frame_or_series):
 | 
						|
        # GH#5613
 | 
						|
        # we test if .asfreq() and .resample() set the correct value for .freq
 | 
						|
        dti = to_datetime(["2012-01-01", "2012-01-02", "2012-01-03"])
 | 
						|
        obj = DataFrame({"col": [1, 2, 3]}, index=dti)
 | 
						|
        obj = tm.get_obj(obj, frame_or_series)
 | 
						|
 | 
						|
        # testing the settings before calling .asfreq() and .resample()
 | 
						|
        assert obj.index.freq is None
 | 
						|
        assert obj.index.inferred_freq == "D"
 | 
						|
 | 
						|
        # does .asfreq() set .freq correctly?
 | 
						|
        assert obj.asfreq("D").index.freq == "D"
 | 
						|
 | 
						|
        # does .resample() set .freq correctly?
 | 
						|
        assert obj.resample("D").asfreq().index.freq == "D"
 | 
						|
 | 
						|
    def test_asfreq_empty(self, datetime_frame):
 | 
						|
        # test does not blow up on length-0 DataFrame
 | 
						|
        zero_length = datetime_frame.reindex([])
 | 
						|
        result = zero_length.asfreq("BM")
 | 
						|
        assert result is not zero_length
 | 
						|
 | 
						|
    def test_asfreq(self, datetime_frame):
 | 
						|
        offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd())
 | 
						|
        rule_monthly = datetime_frame.asfreq("BM")
 | 
						|
 | 
						|
        tm.assert_frame_equal(offset_monthly, rule_monthly)
 | 
						|
 | 
						|
        filled = rule_monthly.asfreq("B", method="pad")  # noqa
 | 
						|
        # TODO: actually check that this worked.
 | 
						|
 | 
						|
        # don't forget!
 | 
						|
        filled_dep = rule_monthly.asfreq("B", method="pad")  # noqa
 | 
						|
 | 
						|
    def test_asfreq_datetimeindex(self):
 | 
						|
        df = DataFrame(
 | 
						|
            {"A": [1, 2, 3]},
 | 
						|
            index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
 | 
						|
        )
 | 
						|
        df = df.asfreq("B")
 | 
						|
        assert isinstance(df.index, DatetimeIndex)
 | 
						|
 | 
						|
        ts = df["A"].asfreq("B")
 | 
						|
        assert isinstance(ts.index, DatetimeIndex)
 | 
						|
 | 
						|
    def test_asfreq_fillvalue(self):
 | 
						|
        # test for fill value during upsampling, related to issue 3715
 | 
						|
 | 
						|
        # setup
 | 
						|
        rng = date_range("1/1/2016", periods=10, freq="2S")
 | 
						|
        ts = Series(np.arange(len(rng)), index=rng)
 | 
						|
        df = DataFrame({"one": ts})
 | 
						|
 | 
						|
        # insert pre-existing missing value
 | 
						|
        df.loc["2016-01-01 00:00:08", "one"] = None
 | 
						|
 | 
						|
        actual_df = df.asfreq(freq="1S", fill_value=9.0)
 | 
						|
        expected_df = df.asfreq(freq="1S").fillna(9.0)
 | 
						|
        expected_df.loc["2016-01-01 00:00:08", "one"] = None
 | 
						|
        tm.assert_frame_equal(expected_df, actual_df)
 | 
						|
 | 
						|
        expected_series = ts.asfreq(freq="1S").fillna(9.0)
 | 
						|
        actual_series = ts.asfreq(freq="1S", fill_value=9.0)
 | 
						|
        tm.assert_series_equal(expected_series, actual_series)
 | 
						|
 | 
						|
    def test_asfreq_with_date_object_index(self, frame_or_series):
 | 
						|
        rng = date_range("1/1/2000", periods=20)
 | 
						|
        ts = frame_or_series(np.random.randn(20), index=rng)
 | 
						|
 | 
						|
        ts2 = ts.copy()
 | 
						|
        ts2.index = [x.date() for x in ts2.index]
 | 
						|
 | 
						|
        result = ts2.asfreq("4H", method="ffill")
 | 
						|
        expected = ts.asfreq("4H", method="ffill")
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_asfreq_with_unsorted_index(self, frame_or_series):
 | 
						|
        # GH#39805
 | 
						|
        # Test that rows are not dropped when the datetime index is out of order
 | 
						|
        index = to_datetime(["2021-01-04", "2021-01-02", "2021-01-03", "2021-01-01"])
 | 
						|
        result = frame_or_series(range(4), index=index)
 | 
						|
 | 
						|
        expected = result.reindex(sorted(index))
 | 
						|
        expected.index = expected.index._with_freq("infer")
 | 
						|
 | 
						|
        result = result.asfreq("D")
 | 
						|
        tm.assert_equal(result, expected)
 |