128 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			128 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
 | 
						|
from pandas.core.dtypes.common import is_extension_array_dtype
 | 
						|
from pandas.core.dtypes.dtypes import ExtensionDtype
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.tests.extension.base.base import BaseExtensionTests
 | 
						|
 | 
						|
 | 
						|
class BaseInterfaceTests(BaseExtensionTests):
 | 
						|
    """Tests that the basic interface is satisfied."""
 | 
						|
 | 
						|
    # ------------------------------------------------------------------------
 | 
						|
    # Interface
 | 
						|
    # ------------------------------------------------------------------------
 | 
						|
 | 
						|
    def test_len(self, data):
 | 
						|
        assert len(data) == 100
 | 
						|
 | 
						|
    def test_size(self, data):
 | 
						|
        assert data.size == 100
 | 
						|
 | 
						|
    def test_ndim(self, data):
 | 
						|
        assert data.ndim == 1
 | 
						|
 | 
						|
    def test_can_hold_na_valid(self, data):
 | 
						|
        # GH-20761
 | 
						|
        assert data._can_hold_na is True
 | 
						|
 | 
						|
    def test_contains(self, data, data_missing):
 | 
						|
        # GH-37867
 | 
						|
        # Tests for membership checks. Membership checks for nan-likes is tricky and
 | 
						|
        # the settled on rule is: `nan_like in arr` is True if nan_like is
 | 
						|
        # arr.dtype.na_value and arr.isna().any() is True. Else the check returns False.
 | 
						|
 | 
						|
        na_value = data.dtype.na_value
 | 
						|
        # ensure data without missing values
 | 
						|
        data = data[~data.isna()]
 | 
						|
 | 
						|
        # first elements are non-missing
 | 
						|
        assert data[0] in data
 | 
						|
        assert data_missing[0] in data_missing
 | 
						|
 | 
						|
        # check the presence of na_value
 | 
						|
        assert na_value in data_missing
 | 
						|
        assert na_value not in data
 | 
						|
 | 
						|
        # the data can never contain other nan-likes than na_value
 | 
						|
        for na_value_obj in tm.NULL_OBJECTS:
 | 
						|
            if na_value_obj is na_value or type(na_value_obj) == type(na_value):
 | 
						|
                # type check for e.g. two instances of Decimal("NAN")
 | 
						|
                continue
 | 
						|
            assert na_value_obj not in data
 | 
						|
            assert na_value_obj not in data_missing
 | 
						|
 | 
						|
    def test_memory_usage(self, data):
 | 
						|
        s = pd.Series(data)
 | 
						|
        result = s.memory_usage(index=False)
 | 
						|
        assert result == s.nbytes
 | 
						|
 | 
						|
    def test_array_interface(self, data):
 | 
						|
        result = np.array(data)
 | 
						|
        assert result[0] == data[0]
 | 
						|
 | 
						|
        result = np.array(data, dtype=object)
 | 
						|
        expected = np.array(list(data), dtype=object)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    def test_is_extension_array_dtype(self, data):
 | 
						|
        assert is_extension_array_dtype(data)
 | 
						|
        assert is_extension_array_dtype(data.dtype)
 | 
						|
        assert is_extension_array_dtype(pd.Series(data))
 | 
						|
        assert isinstance(data.dtype, ExtensionDtype)
 | 
						|
 | 
						|
    def test_no_values_attribute(self, data):
 | 
						|
        # GH-20735: EA's with .values attribute give problems with internal
 | 
						|
        # code, disallowing this for now until solved
 | 
						|
        assert not hasattr(data, "values")
 | 
						|
        assert not hasattr(data, "_values")
 | 
						|
 | 
						|
    def test_is_numeric_honored(self, data):
 | 
						|
        result = pd.Series(data)
 | 
						|
        if hasattr(result._mgr, "blocks"):
 | 
						|
            assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
 | 
						|
 | 
						|
    def test_isna_extension_array(self, data_missing):
 | 
						|
        # If your `isna` returns an ExtensionArray, you must also implement
 | 
						|
        # _reduce. At the *very* least, you must implement any and all
 | 
						|
        na = data_missing.isna()
 | 
						|
        if is_extension_array_dtype(na):
 | 
						|
            assert na._reduce("any")
 | 
						|
            assert na.any()
 | 
						|
 | 
						|
            assert not na._reduce("all")
 | 
						|
            assert not na.all()
 | 
						|
 | 
						|
            assert na.dtype._is_boolean
 | 
						|
 | 
						|
    def test_copy(self, data):
 | 
						|
        # GH#27083 removing deep keyword from EA.copy
 | 
						|
        assert data[0] != data[1]
 | 
						|
        result = data.copy()
 | 
						|
 | 
						|
        data[1] = data[0]
 | 
						|
        assert result[1] != result[0]
 | 
						|
 | 
						|
    def test_view(self, data):
 | 
						|
        # view with no dtype should return a shallow copy, *not* the same
 | 
						|
        #  object
 | 
						|
        assert data[1] != data[0]
 | 
						|
 | 
						|
        result = data.view()
 | 
						|
        assert result is not data
 | 
						|
        assert type(result) == type(data)
 | 
						|
 | 
						|
        result[1] = result[0]
 | 
						|
        assert data[1] == data[0]
 | 
						|
 | 
						|
        # check specifically that the `dtype` kwarg is accepted
 | 
						|
        data.view(dtype=None)
 | 
						|
 | 
						|
    def test_tolist(self, data):
 | 
						|
        result = data.tolist()
 | 
						|
        expected = list(data)
 | 
						|
        assert isinstance(result, list)
 | 
						|
        assert result == expected
 |