542 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# ---------------------------------------------------------------------
 | 
						|
# JSON normalization routines
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
from collections import (
 | 
						|
    abc,
 | 
						|
    defaultdict,
 | 
						|
)
 | 
						|
import copy
 | 
						|
from typing import (
 | 
						|
    Any,
 | 
						|
    DefaultDict,
 | 
						|
    Iterable,
 | 
						|
)
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from pandas._libs.writers import convert_json_to_lines
 | 
						|
from pandas._typing import Scalar
 | 
						|
from pandas.util._decorators import deprecate
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import DataFrame
 | 
						|
 | 
						|
 | 
						|
def convert_to_line_delimits(s: str) -> str:
 | 
						|
    """
 | 
						|
    Helper function that converts JSON lists to line delimited JSON.
 | 
						|
    """
 | 
						|
    # Determine we have a JSON list to turn to lines otherwise just return the
 | 
						|
    # json object, only lists can
 | 
						|
    if not s[0] == "[" and s[-1] == "]":
 | 
						|
        return s
 | 
						|
    s = s[1:-1]
 | 
						|
 | 
						|
    return convert_json_to_lines(s)
 | 
						|
 | 
						|
 | 
						|
def nested_to_record(
 | 
						|
    ds,
 | 
						|
    prefix: str = "",
 | 
						|
    sep: str = ".",
 | 
						|
    level: int = 0,
 | 
						|
    max_level: int | None = None,
 | 
						|
):
 | 
						|
    """
 | 
						|
    A simplified json_normalize
 | 
						|
 | 
						|
    Converts a nested dict into a flat dict ("record"), unlike json_normalize,
 | 
						|
    it does not attempt to extract a subset of the data.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    ds : dict or list of dicts
 | 
						|
    prefix: the prefix, optional, default: ""
 | 
						|
    sep : str, default '.'
 | 
						|
        Nested records will generate names separated by sep,
 | 
						|
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
 | 
						|
    level: int, optional, default: 0
 | 
						|
        The number of levels in the json string.
 | 
						|
 | 
						|
    max_level: int, optional, default: None
 | 
						|
        The max depth to normalize.
 | 
						|
 | 
						|
        .. versionadded:: 0.25.0
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    d - dict or list of dicts, matching `ds`
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> nested_to_record(
 | 
						|
    ...     dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2))
 | 
						|
    ... )
 | 
						|
    {\
 | 
						|
'flat1': 1, \
 | 
						|
'dict1.c': 1, \
 | 
						|
'dict1.d': 2, \
 | 
						|
'nested.e.c': 1, \
 | 
						|
'nested.e.d': 2, \
 | 
						|
'nested.d': 2\
 | 
						|
}
 | 
						|
    """
 | 
						|
    singleton = False
 | 
						|
    if isinstance(ds, dict):
 | 
						|
        ds = [ds]
 | 
						|
        singleton = True
 | 
						|
    new_ds = []
 | 
						|
    for d in ds:
 | 
						|
        new_d = copy.deepcopy(d)
 | 
						|
        for k, v in d.items():
 | 
						|
            # each key gets renamed with prefix
 | 
						|
            if not isinstance(k, str):
 | 
						|
                k = str(k)
 | 
						|
            if level == 0:
 | 
						|
                newkey = k
 | 
						|
            else:
 | 
						|
                newkey = prefix + sep + k
 | 
						|
 | 
						|
            # flatten if type is dict and
 | 
						|
            # current dict level  < maximum level provided and
 | 
						|
            # only dicts gets recurse-flattened
 | 
						|
            # only at level>1 do we rename the rest of the keys
 | 
						|
            if not isinstance(v, dict) or (
 | 
						|
                max_level is not None and level >= max_level
 | 
						|
            ):
 | 
						|
                if level != 0:  # so we skip copying for top level, common case
 | 
						|
                    v = new_d.pop(k)
 | 
						|
                    new_d[newkey] = v
 | 
						|
                continue
 | 
						|
            else:
 | 
						|
                v = new_d.pop(k)
 | 
						|
                new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level))
 | 
						|
        new_ds.append(new_d)
 | 
						|
 | 
						|
    if singleton:
 | 
						|
        return new_ds[0]
 | 
						|
    return new_ds
 | 
						|
 | 
						|
 | 
						|
def _normalise_json(
 | 
						|
    data: Any,
 | 
						|
    key_string: str,
 | 
						|
    normalized_dict: dict[str, Any],
 | 
						|
    separator: str,
 | 
						|
) -> dict[str, Any]:
 | 
						|
    """
 | 
						|
    Main recursive function
 | 
						|
    Designed for the most basic use case of pd.json_normalize(data)
 | 
						|
    intended as a performance improvement, see #15621
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    data : Any
 | 
						|
        Type dependent on types contained within nested Json
 | 
						|
    key_string : str
 | 
						|
        New key (with separator(s) in) for data
 | 
						|
    normalized_dict : dict
 | 
						|
        The new normalized/flattened Json dict
 | 
						|
    separator : str, default '.'
 | 
						|
        Nested records will generate names separated by sep,
 | 
						|
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
 | 
						|
    """
 | 
						|
    if isinstance(data, dict):
 | 
						|
        for key, value in data.items():
 | 
						|
            new_key = f"{key_string}{separator}{key}"
 | 
						|
            _normalise_json(
 | 
						|
                data=value,
 | 
						|
                # to avoid adding the separator to the start of every key
 | 
						|
                # GH#43831 avoid adding key if key_string blank
 | 
						|
                key_string=new_key
 | 
						|
                if new_key[: len(separator)] != separator
 | 
						|
                else new_key[len(separator) :],
 | 
						|
                normalized_dict=normalized_dict,
 | 
						|
                separator=separator,
 | 
						|
            )
 | 
						|
    else:
 | 
						|
        normalized_dict[key_string] = data
 | 
						|
    return normalized_dict
 | 
						|
 | 
						|
 | 
						|
def _normalise_json_ordered(data: dict[str, Any], separator: str) -> dict[str, Any]:
 | 
						|
    """
 | 
						|
    Order the top level keys and then recursively go to depth
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    data : dict or list of dicts
 | 
						|
    separator : str, default '.'
 | 
						|
        Nested records will generate names separated by sep,
 | 
						|
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    dict or list of dicts, matching `normalised_json_object`
 | 
						|
    """
 | 
						|
    top_dict_ = {k: v for k, v in data.items() if not isinstance(v, dict)}
 | 
						|
    nested_dict_ = _normalise_json(
 | 
						|
        data={k: v for k, v in data.items() if isinstance(v, dict)},
 | 
						|
        key_string="",
 | 
						|
        normalized_dict={},
 | 
						|
        separator=separator,
 | 
						|
    )
 | 
						|
    return {**top_dict_, **nested_dict_}
 | 
						|
 | 
						|
 | 
						|
def _simple_json_normalize(
 | 
						|
    ds: dict | list[dict],
 | 
						|
    sep: str = ".",
 | 
						|
) -> dict | list[dict] | Any:
 | 
						|
    """
 | 
						|
    A optimized basic json_normalize
 | 
						|
 | 
						|
    Converts a nested dict into a flat dict ("record"), unlike
 | 
						|
    json_normalize and nested_to_record it doesn't do anything clever.
 | 
						|
    But for the most basic use cases it enhances performance.
 | 
						|
    E.g. pd.json_normalize(data)
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    ds : dict or list of dicts
 | 
						|
    sep : str, default '.'
 | 
						|
        Nested records will generate names separated by sep,
 | 
						|
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    frame : DataFrame
 | 
						|
    d - dict or list of dicts, matching `normalised_json_object`
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> _simple_json_normalize(
 | 
						|
    ...     {
 | 
						|
    ...         "flat1": 1,
 | 
						|
    ...         "dict1": {"c": 1, "d": 2},
 | 
						|
    ...         "nested": {"e": {"c": 1, "d": 2}, "d": 2},
 | 
						|
    ...     }
 | 
						|
    ... )
 | 
						|
    {\
 | 
						|
'flat1': 1, \
 | 
						|
'dict1.c': 1, \
 | 
						|
'dict1.d': 2, \
 | 
						|
'nested.e.c': 1, \
 | 
						|
'nested.e.d': 2, \
 | 
						|
'nested.d': 2\
 | 
						|
}
 | 
						|
 | 
						|
    """
 | 
						|
    normalised_json_object = {}
 | 
						|
    # expect a dictionary, as most jsons are. However, lists are perfectly valid
 | 
						|
    if isinstance(ds, dict):
 | 
						|
        normalised_json_object = _normalise_json_ordered(data=ds, separator=sep)
 | 
						|
    elif isinstance(ds, list):
 | 
						|
        normalised_json_list = [_simple_json_normalize(row, sep=sep) for row in ds]
 | 
						|
        return normalised_json_list
 | 
						|
    return normalised_json_object
 | 
						|
 | 
						|
 | 
						|
def _json_normalize(
 | 
						|
    data: dict | list[dict],
 | 
						|
    record_path: str | list | None = None,
 | 
						|
    meta: str | list[str | list[str]] | None = None,
 | 
						|
    meta_prefix: str | None = None,
 | 
						|
    record_prefix: str | None = None,
 | 
						|
    errors: str = "raise",
 | 
						|
    sep: str = ".",
 | 
						|
    max_level: int | None = None,
 | 
						|
) -> DataFrame:
 | 
						|
    """
 | 
						|
    Normalize semi-structured JSON data into a flat table.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    data : dict or list of dicts
 | 
						|
        Unserialized JSON objects.
 | 
						|
    record_path : str or list of str, default None
 | 
						|
        Path in each object to list of records. If not passed, data will be
 | 
						|
        assumed to be an array of records.
 | 
						|
    meta : list of paths (str or list of str), default None
 | 
						|
        Fields to use as metadata for each record in resulting table.
 | 
						|
    meta_prefix : str, default None
 | 
						|
        If True, prefix records with dotted (?) path, e.g. foo.bar.field if
 | 
						|
        meta is ['foo', 'bar'].
 | 
						|
    record_prefix : str, default None
 | 
						|
        If True, prefix records with dotted (?) path, e.g. foo.bar.field if
 | 
						|
        path to records is ['foo', 'bar'].
 | 
						|
    errors : {'raise', 'ignore'}, default 'raise'
 | 
						|
        Configures error handling.
 | 
						|
 | 
						|
        * 'ignore' : will ignore KeyError if keys listed in meta are not
 | 
						|
          always present.
 | 
						|
        * 'raise' : will raise KeyError if keys listed in meta are not
 | 
						|
          always present.
 | 
						|
    sep : str, default '.'
 | 
						|
        Nested records will generate names separated by sep.
 | 
						|
        e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
 | 
						|
    max_level : int, default None
 | 
						|
        Max number of levels(depth of dict) to normalize.
 | 
						|
        if None, normalizes all levels.
 | 
						|
 | 
						|
        .. versionadded:: 0.25.0
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    frame : DataFrame
 | 
						|
    Normalize semi-structured JSON data into a flat table.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> data = [
 | 
						|
    ...     {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
 | 
						|
    ...     {"name": {"given": "Mark", "family": "Regner"}},
 | 
						|
    ...     {"id": 2, "name": "Faye Raker"},
 | 
						|
    ... ]
 | 
						|
    >>> pd.json_normalize(data)
 | 
						|
        id name.first name.last name.given name.family        name
 | 
						|
    0  1.0     Coleen      Volk        NaN         NaN         NaN
 | 
						|
    1  NaN        NaN       NaN       Mark      Regner         NaN
 | 
						|
    2  2.0        NaN       NaN        NaN         NaN  Faye Raker
 | 
						|
 | 
						|
    >>> data = [
 | 
						|
    ...     {
 | 
						|
    ...         "id": 1,
 | 
						|
    ...         "name": "Cole Volk",
 | 
						|
    ...         "fitness": {"height": 130, "weight": 60},
 | 
						|
    ...     },
 | 
						|
    ...     {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
 | 
						|
    ...     {
 | 
						|
    ...         "id": 2,
 | 
						|
    ...         "name": "Faye Raker",
 | 
						|
    ...         "fitness": {"height": 130, "weight": 60},
 | 
						|
    ...     },
 | 
						|
    ... ]
 | 
						|
    >>> pd.json_normalize(data, max_level=0)
 | 
						|
        id        name                        fitness
 | 
						|
    0  1.0   Cole Volk  {'height': 130, 'weight': 60}
 | 
						|
    1  NaN    Mark Reg  {'height': 130, 'weight': 60}
 | 
						|
    2  2.0  Faye Raker  {'height': 130, 'weight': 60}
 | 
						|
 | 
						|
    Normalizes nested data up to level 1.
 | 
						|
 | 
						|
    >>> data = [
 | 
						|
    ...     {
 | 
						|
    ...         "id": 1,
 | 
						|
    ...         "name": "Cole Volk",
 | 
						|
    ...         "fitness": {"height": 130, "weight": 60},
 | 
						|
    ...     },
 | 
						|
    ...     {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
 | 
						|
    ...     {
 | 
						|
    ...         "id": 2,
 | 
						|
    ...         "name": "Faye Raker",
 | 
						|
    ...         "fitness": {"height": 130, "weight": 60},
 | 
						|
    ...     },
 | 
						|
    ... ]
 | 
						|
    >>> pd.json_normalize(data, max_level=1)
 | 
						|
        id        name  fitness.height  fitness.weight
 | 
						|
    0  1.0   Cole Volk             130              60
 | 
						|
    1  NaN    Mark Reg             130              60
 | 
						|
    2  2.0  Faye Raker             130              60
 | 
						|
 | 
						|
    >>> data = [
 | 
						|
    ...     {
 | 
						|
    ...         "state": "Florida",
 | 
						|
    ...         "shortname": "FL",
 | 
						|
    ...         "info": {"governor": "Rick Scott"},
 | 
						|
    ...         "counties": [
 | 
						|
    ...             {"name": "Dade", "population": 12345},
 | 
						|
    ...             {"name": "Broward", "population": 40000},
 | 
						|
    ...             {"name": "Palm Beach", "population": 60000},
 | 
						|
    ...         ],
 | 
						|
    ...     },
 | 
						|
    ...     {
 | 
						|
    ...         "state": "Ohio",
 | 
						|
    ...         "shortname": "OH",
 | 
						|
    ...         "info": {"governor": "John Kasich"},
 | 
						|
    ...         "counties": [
 | 
						|
    ...             {"name": "Summit", "population": 1234},
 | 
						|
    ...             {"name": "Cuyahoga", "population": 1337},
 | 
						|
    ...         ],
 | 
						|
    ...     },
 | 
						|
    ... ]
 | 
						|
    >>> result = pd.json_normalize(
 | 
						|
    ...     data, "counties", ["state", "shortname", ["info", "governor"]]
 | 
						|
    ... )
 | 
						|
    >>> result
 | 
						|
             name  population    state shortname info.governor
 | 
						|
    0        Dade       12345   Florida    FL    Rick Scott
 | 
						|
    1     Broward       40000   Florida    FL    Rick Scott
 | 
						|
    2  Palm Beach       60000   Florida    FL    Rick Scott
 | 
						|
    3      Summit        1234   Ohio       OH    John Kasich
 | 
						|
    4    Cuyahoga        1337   Ohio       OH    John Kasich
 | 
						|
 | 
						|
    >>> data = {"A": [1, 2]}
 | 
						|
    >>> pd.json_normalize(data, "A", record_prefix="Prefix.")
 | 
						|
        Prefix.0
 | 
						|
    0          1
 | 
						|
    1          2
 | 
						|
 | 
						|
    Returns normalized data with columns prefixed with the given string.
 | 
						|
    """
 | 
						|
 | 
						|
    def _pull_field(
 | 
						|
        js: dict[str, Any], spec: list | str, extract_record: bool = False
 | 
						|
    ) -> Scalar | Iterable:
 | 
						|
        """Internal function to pull field"""
 | 
						|
        result = js
 | 
						|
        try:
 | 
						|
            if isinstance(spec, list):
 | 
						|
                for field in spec:
 | 
						|
                    if result is None:
 | 
						|
                        raise KeyError(field)
 | 
						|
                    result = result[field]
 | 
						|
            else:
 | 
						|
                result = result[spec]
 | 
						|
        except KeyError as e:
 | 
						|
            if extract_record:
 | 
						|
                raise KeyError(
 | 
						|
                    f"Key {e} not found. If specifying a record_path, all elements of "
 | 
						|
                    f"data should have the path."
 | 
						|
                ) from e
 | 
						|
            elif errors == "ignore":
 | 
						|
                return np.nan
 | 
						|
            else:
 | 
						|
                raise KeyError(
 | 
						|
                    f"Key {e} not found. To replace missing values of {e} with "
 | 
						|
                    f"np.nan, pass in errors='ignore'"
 | 
						|
                ) from e
 | 
						|
 | 
						|
        return result
 | 
						|
 | 
						|
    def _pull_records(js: dict[str, Any], spec: list | str) -> list:
 | 
						|
        """
 | 
						|
        Internal function to pull field for records, and similar to
 | 
						|
        _pull_field, but require to return list. And will raise error
 | 
						|
        if has non iterable value.
 | 
						|
        """
 | 
						|
        result = _pull_field(js, spec, extract_record=True)
 | 
						|
 | 
						|
        # GH 31507 GH 30145, GH 26284 if result is not list, raise TypeError if not
 | 
						|
        # null, otherwise return an empty list
 | 
						|
        if not isinstance(result, list):
 | 
						|
            if pd.isnull(result):
 | 
						|
                result = []
 | 
						|
            else:
 | 
						|
                raise TypeError(
 | 
						|
                    f"{js} has non list value {result} for path {spec}. "
 | 
						|
                    "Must be list or null."
 | 
						|
                )
 | 
						|
        return result
 | 
						|
 | 
						|
    if isinstance(data, list) and not data:
 | 
						|
        return DataFrame()
 | 
						|
    elif isinstance(data, dict):
 | 
						|
        # A bit of a hackjob
 | 
						|
        data = [data]
 | 
						|
    elif isinstance(data, abc.Iterable) and not isinstance(data, str):
 | 
						|
        # GH35923 Fix pd.json_normalize to not skip the first element of a
 | 
						|
        # generator input
 | 
						|
        data = list(data)
 | 
						|
    else:
 | 
						|
        raise NotImplementedError
 | 
						|
 | 
						|
    # check to see if a simple recursive function is possible to
 | 
						|
    # improve performance (see #15621) but only for cases such
 | 
						|
    # as pd.Dataframe(data) or pd.Dataframe(data, sep)
 | 
						|
    if (
 | 
						|
        record_path is None
 | 
						|
        and meta is None
 | 
						|
        and meta_prefix is None
 | 
						|
        and record_prefix is None
 | 
						|
        and max_level is None
 | 
						|
    ):
 | 
						|
        return DataFrame(_simple_json_normalize(data, sep=sep))
 | 
						|
 | 
						|
    if record_path is None:
 | 
						|
        if any([isinstance(x, dict) for x in y.values()] for y in data):
 | 
						|
            # naive normalization, this is idempotent for flat records
 | 
						|
            # and potentially will inflate the data considerably for
 | 
						|
            # deeply nested structures:
 | 
						|
            #  {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@}
 | 
						|
            #
 | 
						|
            # TODO: handle record value which are lists, at least error
 | 
						|
            #       reasonably
 | 
						|
            data = nested_to_record(data, sep=sep, max_level=max_level)
 | 
						|
        return DataFrame(data)
 | 
						|
    elif not isinstance(record_path, list):
 | 
						|
        record_path = [record_path]
 | 
						|
 | 
						|
    if meta is None:
 | 
						|
        meta = []
 | 
						|
    elif not isinstance(meta, list):
 | 
						|
        meta = [meta]
 | 
						|
 | 
						|
    _meta = [m if isinstance(m, list) else [m] for m in meta]
 | 
						|
 | 
						|
    # Disastrously inefficient for now
 | 
						|
    records: list = []
 | 
						|
    lengths = []
 | 
						|
 | 
						|
    meta_vals: DefaultDict = defaultdict(list)
 | 
						|
    meta_keys = [sep.join(val) for val in _meta]
 | 
						|
 | 
						|
    def _recursive_extract(data, path, seen_meta, level=0):
 | 
						|
        if isinstance(data, dict):
 | 
						|
            data = [data]
 | 
						|
        if len(path) > 1:
 | 
						|
            for obj in data:
 | 
						|
                for val, key in zip(_meta, meta_keys):
 | 
						|
                    if level + 1 == len(val):
 | 
						|
                        seen_meta[key] = _pull_field(obj, val[-1])
 | 
						|
 | 
						|
                _recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1)
 | 
						|
        else:
 | 
						|
            for obj in data:
 | 
						|
                recs = _pull_records(obj, path[0])
 | 
						|
                recs = [
 | 
						|
                    nested_to_record(r, sep=sep, max_level=max_level)
 | 
						|
                    if isinstance(r, dict)
 | 
						|
                    else r
 | 
						|
                    for r in recs
 | 
						|
                ]
 | 
						|
 | 
						|
                # For repeating the metadata later
 | 
						|
                lengths.append(len(recs))
 | 
						|
                for val, key in zip(_meta, meta_keys):
 | 
						|
                    if level + 1 > len(val):
 | 
						|
                        meta_val = seen_meta[key]
 | 
						|
                    else:
 | 
						|
                        meta_val = _pull_field(obj, val[level:])
 | 
						|
                    meta_vals[key].append(meta_val)
 | 
						|
                records.extend(recs)
 | 
						|
 | 
						|
    _recursive_extract(data, record_path, {}, level=0)
 | 
						|
 | 
						|
    result = DataFrame(records)
 | 
						|
 | 
						|
    if record_prefix is not None:
 | 
						|
        # Incompatible types in assignment (expression has type "Optional[DataFrame]",
 | 
						|
        # variable has type "DataFrame")
 | 
						|
        result = result.rename(  # type: ignore[assignment]
 | 
						|
            columns=lambda x: f"{record_prefix}{x}"
 | 
						|
        )
 | 
						|
 | 
						|
    # Data types, a problem
 | 
						|
    for k, v in meta_vals.items():
 | 
						|
        if meta_prefix is not None:
 | 
						|
            k = meta_prefix + k
 | 
						|
 | 
						|
        if k in result:
 | 
						|
            raise ValueError(
 | 
						|
                f"Conflicting metadata name {k}, need distinguishing prefix "
 | 
						|
            )
 | 
						|
        result[k] = np.array(v, dtype=object).repeat(lengths)
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
json_normalize = deprecate(
 | 
						|
    "pandas.io.json.json_normalize", _json_normalize, "1.0.0", "pandas.json_normalize"
 | 
						|
)
 |