488 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			488 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import datetime
 | 
						|
import operator
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    Series,
 | 
						|
    bdate_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core import ops
 | 
						|
 | 
						|
 | 
						|
class TestSeriesLogicalOps:
 | 
						|
    @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor])
 | 
						|
    def test_bool_operators_with_nas(self, bool_op):
 | 
						|
        # boolean &, |, ^ should work with object arrays and propagate NAs
 | 
						|
        ser = Series(bdate_range("1/1/2000", periods=10), dtype=object)
 | 
						|
        ser[::2] = np.nan
 | 
						|
 | 
						|
        mask = ser.isna()
 | 
						|
        filled = ser.fillna(ser[0])
 | 
						|
 | 
						|
        result = bool_op(ser < ser[9], ser > ser[3])
 | 
						|
 | 
						|
        expected = bool_op(filled < filled[9], filled > filled[3])
 | 
						|
        expected[mask] = False
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_logical_operators_bool_dtype_with_empty(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
        index = list("bca")
 | 
						|
 | 
						|
        s_tft = Series([True, False, True], index=index)
 | 
						|
        s_fff = Series([False, False, False], index=index)
 | 
						|
        s_empty = Series([], dtype=object)
 | 
						|
 | 
						|
        res = s_tft & s_empty
 | 
						|
        expected = s_fff
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        res = s_tft | s_empty
 | 
						|
        expected = s_tft
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_int_dtype(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
 | 
						|
        s_0123 = Series(range(4), dtype="int64")
 | 
						|
        s_3333 = Series([3] * 4)
 | 
						|
        s_4444 = Series([4] * 4)
 | 
						|
 | 
						|
        res = s_0123 & s_3333
 | 
						|
        expected = Series(range(4), dtype="int64")
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        res = s_0123 | s_4444
 | 
						|
        expected = Series(range(4, 8), dtype="int64")
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        s_1111 = Series([1] * 4, dtype="int8")
 | 
						|
        res = s_0123 & s_1111
 | 
						|
        expected = Series([0, 1, 0, 1], dtype="int64")
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        res = s_0123.astype(np.int16) | s_1111.astype(np.int32)
 | 
						|
        expected = Series([1, 1, 3, 3], dtype="int32")
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_int_scalar(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
        s_0123 = Series(range(4), dtype="int64")
 | 
						|
 | 
						|
        res = s_0123 & 0
 | 
						|
        expected = Series([0] * 4)
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        res = s_0123 & 1
 | 
						|
        expected = Series([0, 1, 0, 1])
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_float(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
        s_0123 = Series(range(4), dtype="int64")
 | 
						|
 | 
						|
        msg = "Cannot perform.+with a dtyped.+array and scalar of type"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s_0123 & np.NaN
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s_0123 & 3.14
 | 
						|
        msg = "unsupported operand type.+for &:"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s_0123 & [0.1, 4, 3.14, 2]
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s_0123 & np.array([0.1, 4, 3.14, 2])
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s_0123 & Series([0.1, 4, -3.14, 2])
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_str(self):
 | 
						|
        s_1111 = Series([1] * 4, dtype="int8")
 | 
						|
        msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s_1111 & "a"
 | 
						|
        with pytest.raises(TypeError, match="unsupported operand.+for &"):
 | 
						|
            s_1111 & ["a", "b", "c", "d"]
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_bool(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
        s_0123 = Series(range(4), dtype="int64")
 | 
						|
 | 
						|
        expected = Series([False] * 4)
 | 
						|
 | 
						|
        result = s_0123 & False
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = s_0123 & [False]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = s_0123 & (False,)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = s_0123 ^ False
 | 
						|
        expected = Series([False, True, True, True])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_object(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
        s_0123 = Series(range(4), dtype="int64")
 | 
						|
 | 
						|
        result = s_0123 & Series([False, np.NaN, False, False])
 | 
						|
        expected = Series([False] * 4)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        s_abNd = Series(["a", "b", np.NaN, "d"])
 | 
						|
        with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"):
 | 
						|
            s_0123 & s_abNd
 | 
						|
 | 
						|
    def test_logical_operators_bool_dtype_with_int(self):
 | 
						|
        index = list("bca")
 | 
						|
 | 
						|
        s_tft = Series([True, False, True], index=index)
 | 
						|
        s_fff = Series([False, False, False], index=index)
 | 
						|
 | 
						|
        res = s_tft & 0
 | 
						|
        expected = s_fff
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        res = s_tft & 1
 | 
						|
        expected = s_tft
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
    def test_logical_ops_bool_dtype_with_ndarray(self):
 | 
						|
        # make sure we operate on ndarray the same as Series
 | 
						|
        left = Series([True, True, True, False, True])
 | 
						|
        right = [True, False, None, True, np.nan]
 | 
						|
 | 
						|
        expected = Series([True, False, False, False, False])
 | 
						|
        result = left & right
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left & np.array(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left & Index(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left & Series(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([True, True, True, True, True])
 | 
						|
        result = left | right
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left | np.array(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left | Index(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left | Series(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([False, True, True, True, True])
 | 
						|
        result = left ^ right
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left ^ np.array(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left ^ Index(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = left ^ Series(right)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self):
 | 
						|
        # GH#9016: support bitwise op for integer types
 | 
						|
 | 
						|
        # with non-matching indexes, logical operators will cast to object
 | 
						|
        #  before operating
 | 
						|
        index = list("bca")
 | 
						|
 | 
						|
        s_tft = Series([True, False, True], index=index)
 | 
						|
        s_tft = Series([True, False, True], index=index)
 | 
						|
        s_tff = Series([True, False, False], index=index)
 | 
						|
 | 
						|
        s_0123 = Series(range(4), dtype="int64")
 | 
						|
 | 
						|
        # s_0123 will be all false now because of reindexing like s_tft
 | 
						|
        expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"])
 | 
						|
        result = s_tft & s_0123
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"])
 | 
						|
        result = s_0123 & s_tft
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        s_a0b1c0 = Series([1], list("b"))
 | 
						|
 | 
						|
        res = s_tft & s_a0b1c0
 | 
						|
        expected = s_tff.reindex(list("abc"))
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
        res = s_tft | s_a0b1c0
 | 
						|
        expected = s_tft.reindex(list("abc"))
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
    def test_scalar_na_logical_ops_corners(self):
 | 
						|
        s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10])
 | 
						|
 | 
						|
        msg = "Cannot perform.+with a dtyped.+array and scalar of type"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s & datetime(2005, 1, 1)
 | 
						|
 | 
						|
        s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)])
 | 
						|
        s[::2] = np.nan
 | 
						|
 | 
						|
        expected = Series(True, index=s.index)
 | 
						|
        expected[::2] = False
 | 
						|
        result = s & list(s)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_scalar_na_logical_ops_corners_aligns(self):
 | 
						|
        s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)])
 | 
						|
        s[::2] = np.nan
 | 
						|
        d = DataFrame({"A": s})
 | 
						|
 | 
						|
        expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9)))
 | 
						|
 | 
						|
        result = s & d
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = d & s
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor])
 | 
						|
    def test_logical_ops_with_index(self, op):
 | 
						|
        # GH#22092, GH#19792
 | 
						|
        ser = Series([True, True, False, False])
 | 
						|
        idx1 = Index([True, False, True, False])
 | 
						|
        idx2 = Index([1, 0, 1, 0])
 | 
						|
 | 
						|
        expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))])
 | 
						|
 | 
						|
        result = op(ser, idx1)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool)
 | 
						|
 | 
						|
        result = op(ser, idx2)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.filterwarnings("ignore:passing object-dtype arraylike:FutureWarning")
 | 
						|
    def test_reversed_xor_with_index_returns_index(self):
 | 
						|
        # GH#22092, GH#19792
 | 
						|
        ser = Series([True, True, False, False])
 | 
						|
        idx1 = Index([True, False, True, False])
 | 
						|
        idx2 = Index([1, 0, 1, 0])
 | 
						|
 | 
						|
        msg = "operating as a set operation"
 | 
						|
 | 
						|
        expected = Index.symmetric_difference(idx1, ser)
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            result = idx1 ^ ser
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        expected = Index.symmetric_difference(idx2, ser)
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            result = idx2 ^ ser
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "op",
 | 
						|
        [
 | 
						|
            pytest.param(
 | 
						|
                ops.rand_,
 | 
						|
                marks=pytest.mark.xfail(
 | 
						|
                    reason="GH#22092 Index __and__ returns Index intersection",
 | 
						|
                    raises=AssertionError,
 | 
						|
                ),
 | 
						|
            ),
 | 
						|
            pytest.param(
 | 
						|
                ops.ror_,
 | 
						|
                marks=pytest.mark.xfail(
 | 
						|
                    reason="GH#22092 Index __or__ returns Index union",
 | 
						|
                    raises=AssertionError,
 | 
						|
                ),
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_reversed_logical_op_with_index_returns_series(self, op):
 | 
						|
        # GH#22092, GH#19792
 | 
						|
        ser = Series([True, True, False, False])
 | 
						|
        idx1 = Index([True, False, True, False])
 | 
						|
        idx2 = Index([1, 0, 1, 0])
 | 
						|
 | 
						|
        msg = "operating as a set operation"
 | 
						|
 | 
						|
        expected = Series(op(idx1.values, ser.values))
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            result = op(ser, idx1)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series(op(idx2.values, ser.values))
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            result = op(ser, idx2)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "op, expected",
 | 
						|
        [
 | 
						|
            (ops.rand_, Index([False, True])),
 | 
						|
            (ops.ror_, Index([False, True])),
 | 
						|
            (ops.rxor, Index([])),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_reverse_ops_with_index(self, op, expected):
 | 
						|
        # https://github.com/pandas-dev/pandas/pull/23628
 | 
						|
        # multi-set Index ops are buggy, so let's avoid duplicates...
 | 
						|
        ser = Series([True, False])
 | 
						|
        idx = Index([False, True])
 | 
						|
 | 
						|
        msg = "operating as a set operation"
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            # behaving as set ops is deprecated, will become logical ops
 | 
						|
            result = op(ser, idx)
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_logical_ops_label_based(self):
 | 
						|
        # GH#4947
 | 
						|
        # logical ops should be label based
 | 
						|
 | 
						|
        a = Series([True, False, True], list("bca"))
 | 
						|
        b = Series([False, True, False], list("abc"))
 | 
						|
 | 
						|
        expected = Series([False, True, False], list("abc"))
 | 
						|
        result = a & b
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([True, True, False], list("abc"))
 | 
						|
        result = a | b
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([True, False, False], list("abc"))
 | 
						|
        result = a ^ b
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # rhs is bigger
 | 
						|
        a = Series([True, False, True], list("bca"))
 | 
						|
        b = Series([False, True, False, True], list("abcd"))
 | 
						|
 | 
						|
        expected = Series([False, True, False, False], list("abcd"))
 | 
						|
        result = a & b
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([True, True, False, False], list("abcd"))
 | 
						|
        result = a | b
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # filling
 | 
						|
 | 
						|
        # vs empty
 | 
						|
        empty = Series([], dtype=object)
 | 
						|
 | 
						|
        result = a & empty.copy()
 | 
						|
        expected = Series([False, False, False], list("bca"))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = a | empty.copy()
 | 
						|
        expected = Series([True, False, True], list("bca"))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # vs non-matching
 | 
						|
        result = a & Series([1], ["z"])
 | 
						|
        expected = Series([False, False, False, False], list("abcz"))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = a | Series([1], ["z"])
 | 
						|
        expected = Series([True, True, False, False], list("abcz"))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # identity
 | 
						|
        # we would like s[s|e] == s to hold for any e, whether empty or not
 | 
						|
        for e in [
 | 
						|
            empty.copy(),
 | 
						|
            Series([1], ["z"]),
 | 
						|
            Series(np.nan, b.index),
 | 
						|
            Series(np.nan, a.index),
 | 
						|
        ]:
 | 
						|
            result = a[a | e]
 | 
						|
            tm.assert_series_equal(result, a[a])
 | 
						|
 | 
						|
        for e in [Series(["z"])]:
 | 
						|
            result = a[a | e]
 | 
						|
            tm.assert_series_equal(result, a[a])
 | 
						|
 | 
						|
        # vs scalars
 | 
						|
        index = list("bca")
 | 
						|
        t = Series([True, False, True])
 | 
						|
 | 
						|
        for v in [True, 1, 2]:
 | 
						|
            result = Series([True, False, True], index=index) | v
 | 
						|
            expected = Series([True, True, True], index=index)
 | 
						|
            tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        msg = "Cannot perform.+with a dtyped.+array and scalar of type"
 | 
						|
        for v in [np.nan, "foo"]:
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                t | v
 | 
						|
 | 
						|
        for v in [False, 0]:
 | 
						|
            result = Series([True, False, True], index=index) | v
 | 
						|
            expected = Series([True, False, True], index=index)
 | 
						|
            tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        for v in [True, 1]:
 | 
						|
            result = Series([True, False, True], index=index) & v
 | 
						|
            expected = Series([True, False, True], index=index)
 | 
						|
            tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        for v in [False, 0]:
 | 
						|
            result = Series([True, False, True], index=index) & v
 | 
						|
            expected = Series([False, False, False], index=index)
 | 
						|
            tm.assert_series_equal(result, expected)
 | 
						|
        msg = "Cannot perform.+with a dtyped.+array and scalar of type"
 | 
						|
        for v in [np.nan]:
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                t & v
 | 
						|
 | 
						|
    def test_logical_ops_df_compat(self):
 | 
						|
        # GH#1134
 | 
						|
        s1 = Series([True, False, True], index=list("ABC"), name="x")
 | 
						|
        s2 = Series([True, True, False], index=list("ABD"), name="x")
 | 
						|
 | 
						|
        exp = Series([True, False, False, False], index=list("ABCD"), name="x")
 | 
						|
        tm.assert_series_equal(s1 & s2, exp)
 | 
						|
        tm.assert_series_equal(s2 & s1, exp)
 | 
						|
 | 
						|
        # True | np.nan => True
 | 
						|
        exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x")
 | 
						|
        tm.assert_series_equal(s1 | s2, exp_or1)
 | 
						|
        # np.nan | True => np.nan, filled with False
 | 
						|
        exp_or = Series([True, True, False, False], index=list("ABCD"), name="x")
 | 
						|
        tm.assert_series_equal(s2 | s1, exp_or)
 | 
						|
 | 
						|
        # DataFrame doesn't fill nan with False
 | 
						|
        tm.assert_frame_equal(s1.to_frame() & s2.to_frame(), exp.to_frame())
 | 
						|
        tm.assert_frame_equal(s2.to_frame() & s1.to_frame(), exp.to_frame())
 | 
						|
 | 
						|
        exp = DataFrame({"x": [True, True, np.nan, np.nan]}, index=list("ABCD"))
 | 
						|
        tm.assert_frame_equal(s1.to_frame() | s2.to_frame(), exp_or1.to_frame())
 | 
						|
        tm.assert_frame_equal(s2.to_frame() | s1.to_frame(), exp_or.to_frame())
 | 
						|
 | 
						|
        # different length
 | 
						|
        s3 = Series([True, False, True], index=list("ABC"), name="x")
 | 
						|
        s4 = Series([True, True, True, True], index=list("ABCD"), name="x")
 | 
						|
 | 
						|
        exp = Series([True, False, True, False], index=list("ABCD"), name="x")
 | 
						|
        tm.assert_series_equal(s3 & s4, exp)
 | 
						|
        tm.assert_series_equal(s4 & s3, exp)
 | 
						|
 | 
						|
        # np.nan | True => np.nan, filled with False
 | 
						|
        exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x")
 | 
						|
        tm.assert_series_equal(s3 | s4, exp_or1)
 | 
						|
        # True | np.nan => True
 | 
						|
        exp_or = Series([True, True, True, True], index=list("ABCD"), name="x")
 | 
						|
        tm.assert_series_equal(s4 | s3, exp_or)
 | 
						|
 | 
						|
        tm.assert_frame_equal(s3.to_frame() & s4.to_frame(), exp.to_frame())
 | 
						|
        tm.assert_frame_equal(s4.to_frame() & s3.to_frame(), exp.to_frame())
 | 
						|
 | 
						|
        tm.assert_frame_equal(s3.to_frame() | s4.to_frame(), exp_or1.to_frame())
 | 
						|
        tm.assert_frame_equal(s4.to_frame() | s3.to_frame(), exp_or.to_frame())
 |