246 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo"
 | 
						|
but are implicitly also testing nsmallest_foo.
 | 
						|
"""
 | 
						|
from itertools import product
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import Series
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
main_dtypes = [
 | 
						|
    "datetime",
 | 
						|
    "datetimetz",
 | 
						|
    "timedelta",
 | 
						|
    "int8",
 | 
						|
    "int16",
 | 
						|
    "int32",
 | 
						|
    "int64",
 | 
						|
    "float32",
 | 
						|
    "float64",
 | 
						|
    "uint8",
 | 
						|
    "uint16",
 | 
						|
    "uint32",
 | 
						|
    "uint64",
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def s_main_dtypes():
 | 
						|
    """
 | 
						|
    A DataFrame with many dtypes
 | 
						|
 | 
						|
    * datetime
 | 
						|
    * datetimetz
 | 
						|
    * timedelta
 | 
						|
    * [u]int{8,16,32,64}
 | 
						|
    * float{32,64}
 | 
						|
 | 
						|
    The columns are the name of the dtype.
 | 
						|
    """
 | 
						|
    df = pd.DataFrame(
 | 
						|
        {
 | 
						|
            "datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]),
 | 
						|
            "datetimetz": pd.to_datetime(
 | 
						|
                ["2003", "2002", "2001", "2002", "2005"]
 | 
						|
            ).tz_localize("US/Eastern"),
 | 
						|
            "timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]),
 | 
						|
        }
 | 
						|
    )
 | 
						|
 | 
						|
    for dtype in [
 | 
						|
        "int8",
 | 
						|
        "int16",
 | 
						|
        "int32",
 | 
						|
        "int64",
 | 
						|
        "float32",
 | 
						|
        "float64",
 | 
						|
        "uint8",
 | 
						|
        "uint16",
 | 
						|
        "uint32",
 | 
						|
        "uint64",
 | 
						|
    ]:
 | 
						|
        df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype)
 | 
						|
 | 
						|
    return df
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(params=main_dtypes)
 | 
						|
def s_main_dtypes_split(request, s_main_dtypes):
 | 
						|
    """Each series in s_main_dtypes."""
 | 
						|
    return s_main_dtypes[request.param]
 | 
						|
 | 
						|
 | 
						|
def assert_check_nselect_boundary(vals, dtype, method):
 | 
						|
    # helper function for 'test_boundary_{dtype}' tests
 | 
						|
    ser = Series(vals, dtype=dtype)
 | 
						|
    result = getattr(ser, method)(3)
 | 
						|
    expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1]
 | 
						|
    expected = ser.loc[expected_idxr]
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
class TestSeriesNLargestNSmallest:
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "r",
 | 
						|
        [
 | 
						|
            Series([3.0, 2, 1, 2, "5"], dtype="object"),
 | 
						|
            Series([3.0, 2, 1, 2, 5], dtype="object"),
 | 
						|
            # not supported on some archs
 | 
						|
            # Series([3., 2, 1, 2, 5], dtype='complex256'),
 | 
						|
            Series([3.0, 2, 1, 2, 5], dtype="complex128"),
 | 
						|
            Series(list("abcde")),
 | 
						|
            Series(list("abcde"), dtype="category"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_nlargest_error(self, r):
 | 
						|
        dt = r.dtype
 | 
						|
        msg = f"Cannot use method 'n(largest|smallest)' with dtype {dt}"
 | 
						|
        args = 2, len(r), 0, -1
 | 
						|
        methods = r.nlargest, r.nsmallest
 | 
						|
        for method, arg in product(methods, args):
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                method(arg)
 | 
						|
 | 
						|
    def test_nsmallest_nlargest(self, s_main_dtypes_split):
 | 
						|
        # float, int, datetime64 (use i8), timedelts64 (same),
 | 
						|
        # object that are numbers, object that are strings
 | 
						|
        ser = s_main_dtypes_split
 | 
						|
 | 
						|
        tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]])
 | 
						|
        tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]])
 | 
						|
 | 
						|
        empty = ser.iloc[0:0]
 | 
						|
        tm.assert_series_equal(ser.nsmallest(0), empty)
 | 
						|
        tm.assert_series_equal(ser.nsmallest(-1), empty)
 | 
						|
        tm.assert_series_equal(ser.nlargest(0), empty)
 | 
						|
        tm.assert_series_equal(ser.nlargest(-1), empty)
 | 
						|
 | 
						|
        tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values())
 | 
						|
        tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values())
 | 
						|
        tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]])
 | 
						|
        tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]])
 | 
						|
 | 
						|
    def test_nlargest_misc(self):
 | 
						|
 | 
						|
        ser = Series([3.0, np.nan, 1, 2, 5])
 | 
						|
        result = ser.nlargest()
 | 
						|
        expected = ser.iloc[[4, 0, 3, 2, 1]]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        result = ser.nsmallest()
 | 
						|
        expected = ser.iloc[[2, 3, 0, 4, 1]]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        msg = 'keep must be either "first", "last"'
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            ser.nsmallest(keep="invalid")
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            ser.nlargest(keep="invalid")
 | 
						|
 | 
						|
        # GH#15297
 | 
						|
        ser = Series([1] * 5, index=[1, 2, 3, 4, 5])
 | 
						|
        expected_first = Series([1] * 3, index=[1, 2, 3])
 | 
						|
        expected_last = Series([1] * 3, index=[5, 4, 3])
 | 
						|
 | 
						|
        result = ser.nsmallest(3)
 | 
						|
        tm.assert_series_equal(result, expected_first)
 | 
						|
 | 
						|
        result = ser.nsmallest(3, keep="last")
 | 
						|
        tm.assert_series_equal(result, expected_last)
 | 
						|
 | 
						|
        result = ser.nlargest(3)
 | 
						|
        tm.assert_series_equal(result, expected_first)
 | 
						|
 | 
						|
        result = ser.nlargest(3, keep="last")
 | 
						|
        tm.assert_series_equal(result, expected_last)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("n", range(1, 5))
 | 
						|
    def test_nlargest_n(self, n):
 | 
						|
 | 
						|
        # GH 13412
 | 
						|
        ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1])
 | 
						|
        result = ser.nlargest(n)
 | 
						|
        expected = ser.sort_values(ascending=False).head(n)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = ser.nsmallest(n)
 | 
						|
        expected = ser.sort_values().head(n)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_nlargest_boundary_integer(self, nselect_method, any_int_numpy_dtype):
 | 
						|
        # GH#21426
 | 
						|
        dtype_info = np.iinfo(any_int_numpy_dtype)
 | 
						|
        min_val, max_val = dtype_info.min, dtype_info.max
 | 
						|
        vals = [min_val, min_val + 1, max_val - 1, max_val]
 | 
						|
        assert_check_nselect_boundary(vals, any_int_numpy_dtype, nselect_method)
 | 
						|
 | 
						|
    def test_nlargest_boundary_float(self, nselect_method, float_numpy_dtype):
 | 
						|
        # GH#21426
 | 
						|
        dtype_info = np.finfo(float_numpy_dtype)
 | 
						|
        min_val, max_val = dtype_info.min, dtype_info.max
 | 
						|
        min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_numpy_dtype)
 | 
						|
        vals = [min_val, min_2nd, max_2nd, max_val]
 | 
						|
        assert_check_nselect_boundary(vals, float_numpy_dtype, nselect_method)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
 | 
						|
    def test_nlargest_boundary_datetimelike(self, nselect_method, dtype):
 | 
						|
        # GH#21426
 | 
						|
        # use int64 bounds and +1 to min_val since true minimum is NaT
 | 
						|
        # (include min_val/NaT at end to maintain same expected_idxr)
 | 
						|
        dtype_info = np.iinfo("int64")
 | 
						|
        min_val, max_val = dtype_info.min, dtype_info.max
 | 
						|
        vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val]
 | 
						|
        assert_check_nselect_boundary(vals, dtype, nselect_method)
 | 
						|
 | 
						|
    def test_nlargest_duplicate_keep_all_ties(self):
 | 
						|
        # see GH#16818
 | 
						|
        ser = Series([10, 9, 8, 7, 7, 7, 7, 6])
 | 
						|
        result = ser.nlargest(4, keep="all")
 | 
						|
        expected = Series([10, 9, 8, 7, 7, 7, 7])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = ser.nsmallest(2, keep="all")
 | 
						|
        expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data,expected", [([True, False], [True]), ([True, False, True, True], [True])]
 | 
						|
    )
 | 
						|
    def test_nlargest_boolean(self, data, expected):
 | 
						|
        # GH#26154 : ensure True > False
 | 
						|
        ser = Series(data)
 | 
						|
        result = ser.nlargest(1)
 | 
						|
        expected = Series(expected)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_nlargest_nullable(self, any_numeric_ea_dtype):
 | 
						|
        # GH#42816
 | 
						|
        dtype = any_numeric_ea_dtype
 | 
						|
        arr = np.random.randn(10).astype(dtype.lower(), copy=False)
 | 
						|
 | 
						|
        ser = Series(arr.copy(), dtype=dtype)
 | 
						|
        ser[1] = pd.NA
 | 
						|
        result = ser.nlargest(5)
 | 
						|
 | 
						|
        expected = (
 | 
						|
            Series(np.delete(arr, 1), index=ser.index.delete(1))
 | 
						|
            .nlargest(5)
 | 
						|
            .astype(dtype)
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_nsmallest_nan_when_keep_is_all(self):
 | 
						|
        # GH#46589
 | 
						|
        s = Series([1, 2, 3, 3, 3, None])
 | 
						|
        result = s.nsmallest(3, keep="all")
 | 
						|
        expected = Series([1.0, 2.0, 3.0, 3.0, 3.0])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        s = Series([1, 2, None, None, None])
 | 
						|
        result = s.nsmallest(3, keep="all")
 | 
						|
        expected = Series([1, 2, None, None, None])
 | 
						|
        tm.assert_series_equal(result, expected)
 |