303 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    Categorical,
 | 
						|
    DatetimeIndex,
 | 
						|
    Interval,
 | 
						|
    IntervalIndex,
 | 
						|
    NaT,
 | 
						|
    Series,
 | 
						|
    TimedeltaIndex,
 | 
						|
    Timestamp,
 | 
						|
    cut,
 | 
						|
    date_range,
 | 
						|
    isna,
 | 
						|
    qcut,
 | 
						|
    timedelta_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.api.types import CategoricalDtype as CDT
 | 
						|
 | 
						|
from pandas.tseries.offsets import (
 | 
						|
    Day,
 | 
						|
    Nano,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def test_qcut():
 | 
						|
    arr = np.random.randn(1000)
 | 
						|
 | 
						|
    # We store the bins as Index that have been
 | 
						|
    # rounded to comparisons are a bit tricky.
 | 
						|
    labels, _ = qcut(arr, 4, retbins=True)
 | 
						|
    ex_bins = np.quantile(arr, [0, 0.25, 0.5, 0.75, 1.0])
 | 
						|
 | 
						|
    result = labels.categories.left.values
 | 
						|
    assert np.allclose(result, ex_bins[:-1], atol=1e-2)
 | 
						|
 | 
						|
    result = labels.categories.right.values
 | 
						|
    assert np.allclose(result, ex_bins[1:], atol=1e-2)
 | 
						|
 | 
						|
    ex_levels = cut(arr, ex_bins, include_lowest=True)
 | 
						|
    tm.assert_categorical_equal(labels, ex_levels)
 | 
						|
 | 
						|
 | 
						|
def test_qcut_bounds():
 | 
						|
    arr = np.random.randn(1000)
 | 
						|
 | 
						|
    factor = qcut(arr, 10, labels=False)
 | 
						|
    assert len(np.unique(factor)) == 10
 | 
						|
 | 
						|
 | 
						|
def test_qcut_specify_quantiles():
 | 
						|
    arr = np.random.randn(100)
 | 
						|
    factor = qcut(arr, [0, 0.25, 0.5, 0.75, 1.0])
 | 
						|
 | 
						|
    expected = qcut(arr, 4)
 | 
						|
    tm.assert_categorical_equal(factor, expected)
 | 
						|
 | 
						|
 | 
						|
def test_qcut_all_bins_same():
 | 
						|
    with pytest.raises(ValueError, match="edges.*unique"):
 | 
						|
        qcut([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3)
 | 
						|
 | 
						|
 | 
						|
def test_qcut_include_lowest():
 | 
						|
    values = np.arange(10)
 | 
						|
    ii = qcut(values, 4)
 | 
						|
 | 
						|
    ex_levels = IntervalIndex(
 | 
						|
        [
 | 
						|
            Interval(-0.001, 2.25),
 | 
						|
            Interval(2.25, 4.5),
 | 
						|
            Interval(4.5, 6.75),
 | 
						|
            Interval(6.75, 9),
 | 
						|
        ]
 | 
						|
    )
 | 
						|
    tm.assert_index_equal(ii.categories, ex_levels)
 | 
						|
 | 
						|
 | 
						|
def test_qcut_nas():
 | 
						|
    arr = np.random.randn(100)
 | 
						|
    arr[:20] = np.nan
 | 
						|
 | 
						|
    result = qcut(arr, 4)
 | 
						|
    assert isna(result[:20]).all()
 | 
						|
 | 
						|
 | 
						|
def test_qcut_index():
 | 
						|
    result = qcut([0, 2], 2)
 | 
						|
    intervals = [Interval(-0.001, 1), Interval(1, 2)]
 | 
						|
 | 
						|
    expected = Categorical(intervals, ordered=True)
 | 
						|
    tm.assert_categorical_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_qcut_binning_issues(datapath):
 | 
						|
    # see gh-1978, gh-1979
 | 
						|
    cut_file = datapath(os.path.join("reshape", "data", "cut_data.csv"))
 | 
						|
    arr = np.loadtxt(cut_file)
 | 
						|
    result = qcut(arr, 20)
 | 
						|
 | 
						|
    starts = []
 | 
						|
    ends = []
 | 
						|
 | 
						|
    for lev in np.unique(result):
 | 
						|
        s = lev.left
 | 
						|
        e = lev.right
 | 
						|
        assert s != e
 | 
						|
 | 
						|
        starts.append(float(s))
 | 
						|
        ends.append(float(e))
 | 
						|
 | 
						|
    for (sp, sn), (ep, en) in zip(
 | 
						|
        zip(starts[:-1], starts[1:]), zip(ends[:-1], ends[1:])
 | 
						|
    ):
 | 
						|
        assert sp < sn
 | 
						|
        assert ep < en
 | 
						|
        assert ep <= sn
 | 
						|
 | 
						|
 | 
						|
def test_qcut_return_intervals():
 | 
						|
    ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
 | 
						|
    res = qcut(ser, [0, 0.333, 0.666, 1])
 | 
						|
 | 
						|
    exp_levels = np.array(
 | 
						|
        [Interval(-0.001, 2.664), Interval(2.664, 5.328), Interval(5.328, 8)]
 | 
						|
    )
 | 
						|
    exp = Series(exp_levels.take([0, 0, 0, 1, 1, 1, 2, 2, 2])).astype(CDT(ordered=True))
 | 
						|
    tm.assert_series_equal(res, exp)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("labels", ["foo", 1, True])
 | 
						|
def test_qcut_incorrect_labels(labels):
 | 
						|
    # GH 13318
 | 
						|
    values = range(5)
 | 
						|
    msg = "Bin labels must either be False, None or passed in as a list-like argument"
 | 
						|
    with pytest.raises(ValueError, match=msg):
 | 
						|
        qcut(values, 4, labels=labels)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("labels", [["a", "b", "c"], list(range(3))])
 | 
						|
def test_qcut_wrong_length_labels(labels):
 | 
						|
    # GH 13318
 | 
						|
    values = range(10)
 | 
						|
    msg = "Bin labels must be one fewer than the number of bin edges"
 | 
						|
    with pytest.raises(ValueError, match=msg):
 | 
						|
        qcut(values, 4, labels=labels)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "labels, expected",
 | 
						|
    [
 | 
						|
        (["a", "b", "c"], Categorical(["a", "b", "c"], ordered=True)),
 | 
						|
        (list(range(3)), Categorical([0, 1, 2], ordered=True)),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_qcut_list_like_labels(labels, expected):
 | 
						|
    # GH 13318
 | 
						|
    values = range(3)
 | 
						|
    result = qcut(values, 3, labels=labels)
 | 
						|
    tm.assert_categorical_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "kwargs,msg",
 | 
						|
    [
 | 
						|
        ({"duplicates": "drop"}, None),
 | 
						|
        ({}, "Bin edges must be unique"),
 | 
						|
        ({"duplicates": "raise"}, "Bin edges must be unique"),
 | 
						|
        ({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_qcut_duplicates_bin(kwargs, msg):
 | 
						|
    # see gh-7751
 | 
						|
    values = [0, 0, 0, 0, 1, 2, 3]
 | 
						|
 | 
						|
    if msg is not None:
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            qcut(values, 3, **kwargs)
 | 
						|
    else:
 | 
						|
        result = qcut(values, 3, **kwargs)
 | 
						|
        expected = IntervalIndex([Interval(-0.001, 1), Interval(1, 3)])
 | 
						|
        tm.assert_index_equal(result.categories, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "data,start,end", [(9.0, 8.999, 9.0), (0.0, -0.001, 0.0), (-9.0, -9.001, -9.0)]
 | 
						|
)
 | 
						|
@pytest.mark.parametrize("length", [1, 2])
 | 
						|
@pytest.mark.parametrize("labels", [None, False])
 | 
						|
def test_single_quantile(data, start, end, length, labels):
 | 
						|
    # see gh-15431
 | 
						|
    ser = Series([data] * length)
 | 
						|
    result = qcut(ser, 1, labels=labels)
 | 
						|
 | 
						|
    if labels is None:
 | 
						|
        intervals = IntervalIndex([Interval(start, end)] * length, closed="right")
 | 
						|
        expected = Series(intervals).astype(CDT(ordered=True))
 | 
						|
    else:
 | 
						|
        expected = Series([0] * length, dtype=np.intp)
 | 
						|
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "ser",
 | 
						|
    [
 | 
						|
        Series(DatetimeIndex(["20180101", NaT, "20180103"])),
 | 
						|
        Series(TimedeltaIndex(["0 days", NaT, "2 days"])),
 | 
						|
    ],
 | 
						|
    ids=lambda x: str(x.dtype),
 | 
						|
)
 | 
						|
def test_qcut_nat(ser):
 | 
						|
    # see gh-19768
 | 
						|
    intervals = IntervalIndex.from_tuples(
 | 
						|
        [(ser[0] - Nano(), ser[2] - Day()), np.nan, (ser[2] - Day(), ser[2])]
 | 
						|
    )
 | 
						|
    expected = Series(Categorical(intervals, ordered=True))
 | 
						|
 | 
						|
    result = qcut(ser, 2)
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("bins", [3, np.linspace(0, 1, 4)])
 | 
						|
def test_datetime_tz_qcut(bins):
 | 
						|
    # see gh-19872
 | 
						|
    tz = "US/Eastern"
 | 
						|
    ser = Series(date_range("20130101", periods=3, tz=tz))
 | 
						|
 | 
						|
    result = qcut(ser, bins)
 | 
						|
    expected = Series(
 | 
						|
        IntervalIndex(
 | 
						|
            [
 | 
						|
                Interval(
 | 
						|
                    Timestamp("2012-12-31 23:59:59.999999999", tz=tz),
 | 
						|
                    Timestamp("2013-01-01 16:00:00", tz=tz),
 | 
						|
                ),
 | 
						|
                Interval(
 | 
						|
                    Timestamp("2013-01-01 16:00:00", tz=tz),
 | 
						|
                    Timestamp("2013-01-02 08:00:00", tz=tz),
 | 
						|
                ),
 | 
						|
                Interval(
 | 
						|
                    Timestamp("2013-01-02 08:00:00", tz=tz),
 | 
						|
                    Timestamp("2013-01-03 00:00:00", tz=tz),
 | 
						|
                ),
 | 
						|
            ]
 | 
						|
        )
 | 
						|
    ).astype(CDT(ordered=True))
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "arg,expected_bins",
 | 
						|
    [
 | 
						|
        [
 | 
						|
            timedelta_range("1day", periods=3),
 | 
						|
            TimedeltaIndex(["1 days", "2 days", "3 days"]),
 | 
						|
        ],
 | 
						|
        [
 | 
						|
            date_range("20180101", periods=3),
 | 
						|
            DatetimeIndex(["2018-01-01", "2018-01-02", "2018-01-03"]),
 | 
						|
        ],
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_date_like_qcut_bins(arg, expected_bins):
 | 
						|
    # see gh-19891
 | 
						|
    ser = Series(arg)
 | 
						|
    result, result_bins = qcut(ser, 2, retbins=True)
 | 
						|
    tm.assert_index_equal(result_bins, expected_bins)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("bins", [6, 7])
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "box, compare",
 | 
						|
    [
 | 
						|
        (Series, tm.assert_series_equal),
 | 
						|
        (np.array, tm.assert_categorical_equal),
 | 
						|
        (list, tm.assert_equal),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_qcut_bool_coercion_to_int(bins, box, compare):
 | 
						|
    # issue 20303
 | 
						|
    data_expected = box([0, 1, 1, 0, 1] * 10)
 | 
						|
    data_result = box([False, True, True, False, True] * 10)
 | 
						|
    expected = qcut(data_expected, bins, duplicates="drop")
 | 
						|
    result = qcut(data_result, bins, duplicates="drop")
 | 
						|
    compare(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("q", [2, 5, 10])
 | 
						|
def test_qcut_nullable_integer(q, any_numeric_ea_dtype):
 | 
						|
    arr = pd.array(np.arange(100), dtype=any_numeric_ea_dtype)
 | 
						|
    arr[::2] = pd.NA
 | 
						|
 | 
						|
    result = qcut(arr, q)
 | 
						|
    expected = qcut(arr.astype(float), q)
 | 
						|
 | 
						|
    tm.assert_categorical_equal(result, expected)
 |