2103 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2103 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
""" Test cases for DataFrame.plot """
 | 
						|
from datetime import (
 | 
						|
    date,
 | 
						|
    datetime,
 | 
						|
)
 | 
						|
import itertools
 | 
						|
import re
 | 
						|
import string
 | 
						|
import warnings
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas.util._test_decorators as td
 | 
						|
 | 
						|
from pandas.core.dtypes.api import is_list_like
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    MultiIndex,
 | 
						|
    PeriodIndex,
 | 
						|
    Series,
 | 
						|
    bdate_range,
 | 
						|
    date_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.tests.plotting.common import (
 | 
						|
    TestPlotBase,
 | 
						|
    _check_plot_works,
 | 
						|
)
 | 
						|
 | 
						|
from pandas.io.formats.printing import pprint_thing
 | 
						|
import pandas.plotting as plotting
 | 
						|
 | 
						|
pytestmark = pytest.mark.slow
 | 
						|
 | 
						|
 | 
						|
@td.skip_if_no_mpl
 | 
						|
class TestDataFramePlots(TestPlotBase):
 | 
						|
    def setup_method(self, method):
 | 
						|
        TestPlotBase.setup_method(self, method)
 | 
						|
        import matplotlib as mpl
 | 
						|
 | 
						|
        mpl.rcdefaults()
 | 
						|
 | 
						|
        self.tdf = tm.makeTimeDataFrame()
 | 
						|
        self.hexbin_df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": np.random.uniform(size=20),
 | 
						|
                "B": np.random.uniform(size=20),
 | 
						|
                "C": np.arange(20) + np.random.uniform(size=20),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
    def test_plot(self):
 | 
						|
        from pandas.plotting._matplotlib.compat import mpl_ge_3_1_0
 | 
						|
 | 
						|
        df = self.tdf
 | 
						|
        _check_plot_works(df.plot, grid=False)
 | 
						|
 | 
						|
        # _check_plot_works adds an ax so use default_axes=True to avoid warning
 | 
						|
        axes = _check_plot_works(df.plot, default_axes=True, subplots=True)
 | 
						|
        self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot,
 | 
						|
            default_axes=True,
 | 
						|
            subplots=True,
 | 
						|
            layout=(-1, 2),
 | 
						|
        )
 | 
						|
        self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot,
 | 
						|
            default_axes=True,
 | 
						|
            subplots=True,
 | 
						|
            use_index=False,
 | 
						|
        )
 | 
						|
        self._check_ticks_props(axes, xrot=0)
 | 
						|
        self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
 | 
						|
 | 
						|
        df = DataFrame({"x": [1, 2], "y": [3, 4]})
 | 
						|
        if mpl_ge_3_1_0():
 | 
						|
            msg = "'Line2D' object has no property 'blarg'"
 | 
						|
        else:
 | 
						|
            msg = "Unknown property blarg"
 | 
						|
        with pytest.raises(AttributeError, match=msg):
 | 
						|
            df.plot.line(blarg=True)
 | 
						|
 | 
						|
        df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, use_index=True)
 | 
						|
        self._check_ticks_props(ax, xrot=0)
 | 
						|
        _check_plot_works(df.plot, sort_columns=False)
 | 
						|
        _check_plot_works(df.plot, yticks=[1, 5, 10])
 | 
						|
        _check_plot_works(df.plot, xticks=[1, 5, 10])
 | 
						|
        _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100))
 | 
						|
 | 
						|
        _check_plot_works(df.plot, default_axes=True, subplots=True, title="blah")
 | 
						|
 | 
						|
        # We have to redo it here because _check_plot_works does two plots,
 | 
						|
        # once without an ax kwarg and once with an ax kwarg and the new sharex
 | 
						|
        # behaviour does not remove the visibility of the latter axis (as ax is
 | 
						|
        # present).  see: https://github.com/pandas-dev/pandas/issues/9737
 | 
						|
 | 
						|
        axes = df.plot(subplots=True, title="blah")
 | 
						|
        self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
 | 
						|
        # axes[0].figure.savefig("test.png")
 | 
						|
        for ax in axes[:2]:
 | 
						|
            self._check_visible(ax.xaxis)  # xaxis must be visible for grid
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=False)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=False)
 | 
						|
            self._check_visible([ax.xaxis.get_label()], visible=False)
 | 
						|
        for ax in [axes[2]]:
 | 
						|
            self._check_visible(ax.xaxis)
 | 
						|
            self._check_visible(ax.get_xticklabels())
 | 
						|
            self._check_visible([ax.xaxis.get_label()])
 | 
						|
            self._check_ticks_props(ax, xrot=0)
 | 
						|
 | 
						|
        _check_plot_works(df.plot, title="blah")
 | 
						|
 | 
						|
        tuples = zip(string.ascii_letters[:10], range(10))
 | 
						|
        df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
 | 
						|
        ax = _check_plot_works(df.plot, use_index=True)
 | 
						|
        self._check_ticks_props(ax, xrot=0)
 | 
						|
 | 
						|
        # unicode
 | 
						|
        index = MultiIndex.from_tuples(
 | 
						|
            [
 | 
						|
                ("\u03b1", 0),
 | 
						|
                ("\u03b1", 1),
 | 
						|
                ("\u03b2", 2),
 | 
						|
                ("\u03b2", 3),
 | 
						|
                ("\u03b3", 4),
 | 
						|
                ("\u03b3", 5),
 | 
						|
                ("\u03b4", 6),
 | 
						|
                ("\u03b4", 7),
 | 
						|
            ],
 | 
						|
            names=["i0", "i1"],
 | 
						|
        )
 | 
						|
        columns = MultiIndex.from_tuples(
 | 
						|
            [("bar", "\u0394"), ("bar", "\u0395")], names=["c0", "c1"]
 | 
						|
        )
 | 
						|
        df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index)
 | 
						|
        _check_plot_works(df.plot, title="\u03A3")
 | 
						|
 | 
						|
        # GH 6951
 | 
						|
        # Test with single column
 | 
						|
        df = DataFrame({"x": np.random.rand(10)})
 | 
						|
        axes = _check_plot_works(df.plot.bar, subplots=True)
 | 
						|
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 | 
						|
 | 
						|
        axes = _check_plot_works(df.plot.bar, subplots=True, layout=(-1, 1))
 | 
						|
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 | 
						|
        # When ax is supplied and required number of axes is 1,
 | 
						|
        # passed ax should be used:
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        axes = df.plot.bar(subplots=True, ax=ax)
 | 
						|
        assert len(axes) == 1
 | 
						|
        result = ax.axes
 | 
						|
        assert result is axes[0]
 | 
						|
 | 
						|
    def test_nullable_int_plot(self):
 | 
						|
        # GH 32073
 | 
						|
        dates = ["2008", "2009", None, "2011", "2012"]
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": [1, 2, 3, 4, 5],
 | 
						|
                "B": [1, 2, 3, 4, 5],
 | 
						|
                "C": np.array([7, 5, np.nan, 3, 2], dtype=object),
 | 
						|
                "D": pd.to_datetime(dates, format="%Y").view("i8"),
 | 
						|
                "E": pd.to_datetime(dates, format="%Y", utc=True).view("i8"),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        _check_plot_works(df.plot, x="A", y="B")
 | 
						|
        _check_plot_works(df[["A", "B"]].plot, x="A", y="B")
 | 
						|
        _check_plot_works(df[["C", "A"]].plot, x="C", y="A")  # nullable value on x-axis
 | 
						|
        _check_plot_works(df[["A", "C"]].plot, x="A", y="C")
 | 
						|
        _check_plot_works(df[["B", "C"]].plot, x="B", y="C")
 | 
						|
        _check_plot_works(df[["A", "D"]].plot, x="A", y="D")
 | 
						|
        _check_plot_works(df[["A", "E"]].plot, x="A", y="E")
 | 
						|
 | 
						|
    def test_integer_array_plot(self):
 | 
						|
        # GH 25587
 | 
						|
        arr = pd.array([1, 2, 3, 4], dtype="UInt32")
 | 
						|
 | 
						|
        s = Series(arr)
 | 
						|
        _check_plot_works(s.plot.line)
 | 
						|
        _check_plot_works(s.plot.bar)
 | 
						|
        _check_plot_works(s.plot.hist)
 | 
						|
        _check_plot_works(s.plot.pie)
 | 
						|
 | 
						|
        df = DataFrame({"x": arr, "y": arr})
 | 
						|
        _check_plot_works(df.plot.line)
 | 
						|
        _check_plot_works(df.plot.bar)
 | 
						|
        _check_plot_works(df.plot.hist)
 | 
						|
        _check_plot_works(df.plot.pie, y="y")
 | 
						|
        _check_plot_works(df.plot.scatter, x="x", y="y")
 | 
						|
        _check_plot_works(df.plot.hexbin, x="x", y="y")
 | 
						|
 | 
						|
    def test_nonnumeric_exclude(self):
 | 
						|
        df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]})
 | 
						|
        ax = df.plot()
 | 
						|
        assert len(ax.get_lines()) == 1  # B was plotted
 | 
						|
 | 
						|
    def test_implicit_label(self):
 | 
						|
        df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"])
 | 
						|
        ax = df.plot(x="a", y="b")
 | 
						|
        self._check_text_labels(ax.xaxis.get_label(), "a")
 | 
						|
 | 
						|
    def test_donot_overwrite_index_name(self):
 | 
						|
        # GH 8494
 | 
						|
        df = DataFrame(np.random.randn(2, 2), columns=["a", "b"])
 | 
						|
        df.index.name = "NAME"
 | 
						|
        df.plot(y="b", label="LABEL")
 | 
						|
        assert df.index.name == "NAME"
 | 
						|
 | 
						|
    def test_plot_xy(self):
 | 
						|
        # columns.inferred_type == 'string'
 | 
						|
        df = self.tdf
 | 
						|
        self._check_data(df.plot(x=0, y=1), df.set_index("A")["B"].plot())
 | 
						|
        self._check_data(df.plot(x=0), df.set_index("A").plot())
 | 
						|
        self._check_data(df.plot(y=0), df.B.plot())
 | 
						|
        self._check_data(df.plot(x="A", y="B"), df.set_index("A").B.plot())
 | 
						|
        self._check_data(df.plot(x="A"), df.set_index("A").plot())
 | 
						|
        self._check_data(df.plot(y="B"), df.B.plot())
 | 
						|
 | 
						|
        # columns.inferred_type == 'integer'
 | 
						|
        df.columns = np.arange(1, len(df.columns) + 1)
 | 
						|
        self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot())
 | 
						|
        self._check_data(df.plot(x=1), df.set_index(1).plot())
 | 
						|
        self._check_data(df.plot(y=1), df[1].plot())
 | 
						|
 | 
						|
        # figsize and title
 | 
						|
        ax = df.plot(x=1, y=2, title="Test", figsize=(16, 8))
 | 
						|
        self._check_text_labels(ax.title, "Test")
 | 
						|
        self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16.0, 8.0))
 | 
						|
 | 
						|
        # columns.inferred_type == 'mixed'
 | 
						|
        # TODO add MultiIndex test
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "input_log, expected_log", [(True, "log"), ("sym", "symlog")]
 | 
						|
    )
 | 
						|
    def test_logscales(self, input_log, expected_log):
 | 
						|
        df = DataFrame({"a": np.arange(100)}, index=np.arange(100))
 | 
						|
 | 
						|
        ax = df.plot(logy=input_log)
 | 
						|
        self._check_ax_scales(ax, yaxis=expected_log)
 | 
						|
        assert ax.get_yscale() == expected_log
 | 
						|
 | 
						|
        ax = df.plot(logx=input_log)
 | 
						|
        self._check_ax_scales(ax, xaxis=expected_log)
 | 
						|
        assert ax.get_xscale() == expected_log
 | 
						|
 | 
						|
        ax = df.plot(loglog=input_log)
 | 
						|
        self._check_ax_scales(ax, xaxis=expected_log, yaxis=expected_log)
 | 
						|
        assert ax.get_xscale() == expected_log
 | 
						|
        assert ax.get_yscale() == expected_log
 | 
						|
 | 
						|
    @pytest.mark.parametrize("input_param", ["logx", "logy", "loglog"])
 | 
						|
    def test_invalid_logscale(self, input_param):
 | 
						|
        # GH: 24867
 | 
						|
        df = DataFrame({"a": np.arange(100)}, index=np.arange(100))
 | 
						|
 | 
						|
        msg = "Boolean, None and 'sym' are valid options, 'sm' is given."
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot(**{input_param: "sm"})
 | 
						|
 | 
						|
    def test_xcompat(self):
 | 
						|
 | 
						|
        df = self.tdf
 | 
						|
        ax = df.plot(x_compat=True)
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert not isinstance(lines[0].get_xdata(), PeriodIndex)
 | 
						|
        self._check_ticks_props(ax, xrot=30)
 | 
						|
 | 
						|
        tm.close()
 | 
						|
        plotting.plot_params["xaxis.compat"] = True
 | 
						|
        ax = df.plot()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert not isinstance(lines[0].get_xdata(), PeriodIndex)
 | 
						|
        self._check_ticks_props(ax, xrot=30)
 | 
						|
 | 
						|
        tm.close()
 | 
						|
        plotting.plot_params["x_compat"] = False
 | 
						|
 | 
						|
        ax = df.plot()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert not isinstance(lines[0].get_xdata(), PeriodIndex)
 | 
						|
        assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex)
 | 
						|
 | 
						|
        tm.close()
 | 
						|
        # useful if you're plotting a bunch together
 | 
						|
        with plotting.plot_params.use("x_compat", True):
 | 
						|
            ax = df.plot()
 | 
						|
            lines = ax.get_lines()
 | 
						|
            assert not isinstance(lines[0].get_xdata(), PeriodIndex)
 | 
						|
            self._check_ticks_props(ax, xrot=30)
 | 
						|
 | 
						|
        tm.close()
 | 
						|
        ax = df.plot()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert not isinstance(lines[0].get_xdata(), PeriodIndex)
 | 
						|
        assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex)
 | 
						|
        self._check_ticks_props(ax, xrot=0)
 | 
						|
 | 
						|
    def test_period_compat(self):
 | 
						|
        # GH 9012
 | 
						|
        # period-array conversions
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.rand(21, 2),
 | 
						|
            index=bdate_range(datetime(2000, 1, 1), datetime(2000, 1, 31)),
 | 
						|
            columns=["a", "b"],
 | 
						|
        )
 | 
						|
 | 
						|
        df.plot()
 | 
						|
        self.plt.axhline(y=0)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_unsorted_index(self):
 | 
						|
        df = DataFrame(
 | 
						|
            {"y": np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64
 | 
						|
        )
 | 
						|
        ax = df.plot()
 | 
						|
        lines = ax.get_lines()[0]
 | 
						|
        rs = lines.get_xydata()
 | 
						|
        rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name="y")
 | 
						|
        tm.assert_series_equal(rs, df.y, check_index_type=False)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        df.index = pd.Index(np.arange(99, -1, -1), dtype=np.float64)
 | 
						|
        ax = df.plot()
 | 
						|
        lines = ax.get_lines()[0]
 | 
						|
        rs = lines.get_xydata()
 | 
						|
        rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name="y")
 | 
						|
        tm.assert_series_equal(rs, df.y)
 | 
						|
 | 
						|
    def test_unsorted_index_lims(self):
 | 
						|
        df = DataFrame({"y": [0.0, 1.0, 2.0, 3.0]}, index=[1.0, 0.0, 3.0, 2.0])
 | 
						|
        ax = df.plot()
 | 
						|
        xmin, xmax = ax.get_xlim()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert xmin <= np.nanmin(lines[0].get_data()[0])
 | 
						|
        assert xmax >= np.nanmax(lines[0].get_data()[0])
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {"y": [0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0]},
 | 
						|
            index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0],
 | 
						|
        )
 | 
						|
        ax = df.plot()
 | 
						|
        xmin, xmax = ax.get_xlim()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert xmin <= np.nanmin(lines[0].get_data()[0])
 | 
						|
        assert xmax >= np.nanmax(lines[0].get_data()[0])
 | 
						|
 | 
						|
        df = DataFrame({"y": [0.0, 1.0, 2.0, 3.0], "z": [91.0, 90.0, 93.0, 92.0]})
 | 
						|
        ax = df.plot(x="z", y="y")
 | 
						|
        xmin, xmax = ax.get_xlim()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert xmin <= np.nanmin(lines[0].get_data()[0])
 | 
						|
        assert xmax >= np.nanmax(lines[0].get_data()[0])
 | 
						|
 | 
						|
    def test_negative_log(self):
 | 
						|
        df = -DataFrame(
 | 
						|
            np.random.rand(6, 4),
 | 
						|
            index=list(string.ascii_letters[:6]),
 | 
						|
            columns=["x", "y", "z", "four"],
 | 
						|
        )
 | 
						|
        msg = "Log-y scales are not supported in area plot"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot.area(logy=True)
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot.area(loglog=True)
 | 
						|
 | 
						|
    def _compare_stacked_y_cood(self, normal_lines, stacked_lines):
 | 
						|
        base = np.zeros(len(normal_lines[0].get_data()[1]))
 | 
						|
        for nl, sl in zip(normal_lines, stacked_lines):
 | 
						|
            base += nl.get_data()[1]  # get y coordinates
 | 
						|
            sy = sl.get_data()[1]
 | 
						|
            tm.assert_numpy_array_equal(base, sy)
 | 
						|
 | 
						|
    def test_line_area_stacked(self):
 | 
						|
        with tm.RNGContext(42):
 | 
						|
            df = DataFrame(np.random.rand(6, 4), columns=["w", "x", "y", "z"])
 | 
						|
            neg_df = -df
 | 
						|
            # each column has either positive or negative value
 | 
						|
            sep_df = DataFrame(
 | 
						|
                {
 | 
						|
                    "w": np.random.rand(6),
 | 
						|
                    "x": np.random.rand(6),
 | 
						|
                    "y": -np.random.rand(6),
 | 
						|
                    "z": -np.random.rand(6),
 | 
						|
                }
 | 
						|
            )
 | 
						|
            # each column has positive-negative mixed value
 | 
						|
            mixed_df = DataFrame(
 | 
						|
                np.random.randn(6, 4),
 | 
						|
                index=list(string.ascii_letters[:6]),
 | 
						|
                columns=["w", "x", "y", "z"],
 | 
						|
            )
 | 
						|
 | 
						|
            for kind in ["line", "area"]:
 | 
						|
                ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
 | 
						|
                ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
 | 
						|
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)
 | 
						|
 | 
						|
                ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
 | 
						|
                ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
 | 
						|
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)
 | 
						|
 | 
						|
                ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
 | 
						|
                ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
 | 
						|
                self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
 | 
						|
                self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])
 | 
						|
 | 
						|
                _check_plot_works(mixed_df.plot, stacked=False)
 | 
						|
                msg = (
 | 
						|
                    "When stacked is True, each column must be either all positive or "
 | 
						|
                    "all negative. Column 'w' contains both positive and negative "
 | 
						|
                    "values"
 | 
						|
                )
 | 
						|
                with pytest.raises(ValueError, match=msg):
 | 
						|
                    mixed_df.plot(stacked=True)
 | 
						|
 | 
						|
                # Use an index with strictly positive values, preventing
 | 
						|
                #  matplotlib from warning about ignoring xlim
 | 
						|
                df2 = df.set_index(df.index + 1)
 | 
						|
                _check_plot_works(df2.plot, kind=kind, logx=True, stacked=True)
 | 
						|
 | 
						|
    def test_line_area_nan_df(self):
 | 
						|
        values1 = [1, 2, np.nan, 3]
 | 
						|
        values2 = [3, np.nan, 2, 1]
 | 
						|
        df = DataFrame({"a": values1, "b": values2})
 | 
						|
        tdf = DataFrame({"a": values1, "b": values2}, index=tm.makeDateIndex(k=4))
 | 
						|
 | 
						|
        for d in [df, tdf]:
 | 
						|
            ax = _check_plot_works(d.plot)
 | 
						|
            masked1 = ax.lines[0].get_ydata()
 | 
						|
            masked2 = ax.lines[1].get_ydata()
 | 
						|
            # remove nan for comparison purpose
 | 
						|
 | 
						|
            exp = np.array([1, 2, 3], dtype=np.float64)
 | 
						|
            tm.assert_numpy_array_equal(np.delete(masked1.data, 2), exp)
 | 
						|
 | 
						|
            exp = np.array([3, 2, 1], dtype=np.float64)
 | 
						|
            tm.assert_numpy_array_equal(np.delete(masked2.data, 1), exp)
 | 
						|
            tm.assert_numpy_array_equal(
 | 
						|
                masked1.mask, np.array([False, False, True, False])
 | 
						|
            )
 | 
						|
            tm.assert_numpy_array_equal(
 | 
						|
                masked2.mask, np.array([False, True, False, False])
 | 
						|
            )
 | 
						|
 | 
						|
            expected1 = np.array([1, 2, 0, 3], dtype=np.float64)
 | 
						|
            expected2 = np.array([3, 0, 2, 1], dtype=np.float64)
 | 
						|
 | 
						|
            ax = _check_plot_works(d.plot, stacked=True)
 | 
						|
            tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1)
 | 
						|
            tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2)
 | 
						|
 | 
						|
            ax = _check_plot_works(d.plot.area)
 | 
						|
            tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1)
 | 
						|
            tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2)
 | 
						|
 | 
						|
            ax = _check_plot_works(d.plot.area, stacked=False)
 | 
						|
            tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1)
 | 
						|
            tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected2)
 | 
						|
 | 
						|
    def test_line_lim(self):
 | 
						|
        df = DataFrame(np.random.rand(6, 3), columns=["x", "y", "z"])
 | 
						|
        ax = df.plot()
 | 
						|
        xmin, xmax = ax.get_xlim()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert xmin <= lines[0].get_data()[0][0]
 | 
						|
        assert xmax >= lines[0].get_data()[0][-1]
 | 
						|
 | 
						|
        ax = df.plot(secondary_y=True)
 | 
						|
        xmin, xmax = ax.get_xlim()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert xmin <= lines[0].get_data()[0][0]
 | 
						|
        assert xmax >= lines[0].get_data()[0][-1]
 | 
						|
 | 
						|
        axes = df.plot(secondary_y=True, subplots=True)
 | 
						|
        self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
 | 
						|
        for ax in axes:
 | 
						|
            assert hasattr(ax, "left_ax")
 | 
						|
            assert not hasattr(ax, "right_ax")
 | 
						|
            xmin, xmax = ax.get_xlim()
 | 
						|
            lines = ax.get_lines()
 | 
						|
            assert xmin <= lines[0].get_data()[0][0]
 | 
						|
            assert xmax >= lines[0].get_data()[0][-1]
 | 
						|
 | 
						|
    @pytest.mark.xfail(
 | 
						|
        strict=False,
 | 
						|
        reason="2020-12-01 this has been failing periodically on the "
 | 
						|
        "ymin==0 assertion for a week or so.",
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize("stacked", [True, False])
 | 
						|
    def test_area_lim(self, stacked):
 | 
						|
        df = DataFrame(np.random.rand(6, 4), columns=["x", "y", "z", "four"])
 | 
						|
 | 
						|
        neg_df = -df
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.area, stacked=stacked)
 | 
						|
        xmin, xmax = ax.get_xlim()
 | 
						|
        ymin, ymax = ax.get_ylim()
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert xmin <= lines[0].get_data()[0][0]
 | 
						|
        assert xmax >= lines[0].get_data()[0][-1]
 | 
						|
        assert ymin == 0
 | 
						|
 | 
						|
        ax = _check_plot_works(neg_df.plot.area, stacked=stacked)
 | 
						|
        ymin, ymax = ax.get_ylim()
 | 
						|
        assert ymax == 0
 | 
						|
 | 
						|
    def test_area_sharey_dont_overwrite(self):
 | 
						|
        # GH37942
 | 
						|
        df = DataFrame(np.random.rand(4, 2), columns=["x", "y"])
 | 
						|
        fig, (ax1, ax2) = self.plt.subplots(1, 2, sharey=True)
 | 
						|
 | 
						|
        df.plot(ax=ax1, kind="area")
 | 
						|
        df.plot(ax=ax2, kind="area")
 | 
						|
 | 
						|
        assert self.get_y_axis(ax1).joined(ax1, ax2)
 | 
						|
        assert self.get_y_axis(ax2).joined(ax1, ax2)
 | 
						|
 | 
						|
    def test_bar_linewidth(self):
 | 
						|
        df = DataFrame(np.random.randn(5, 5))
 | 
						|
 | 
						|
        # regular
 | 
						|
        ax = df.plot.bar(linewidth=2)
 | 
						|
        for r in ax.patches:
 | 
						|
            assert r.get_linewidth() == 2
 | 
						|
 | 
						|
        # stacked
 | 
						|
        ax = df.plot.bar(stacked=True, linewidth=2)
 | 
						|
        for r in ax.patches:
 | 
						|
            assert r.get_linewidth() == 2
 | 
						|
 | 
						|
        # subplots
 | 
						|
        axes = df.plot.bar(linewidth=2, subplots=True)
 | 
						|
        self._check_axes_shape(axes, axes_num=5, layout=(5, 1))
 | 
						|
        for ax in axes:
 | 
						|
            for r in ax.patches:
 | 
						|
                assert r.get_linewidth() == 2
 | 
						|
 | 
						|
    def test_bar_barwidth(self):
 | 
						|
        df = DataFrame(np.random.randn(5, 5))
 | 
						|
 | 
						|
        width = 0.9
 | 
						|
 | 
						|
        # regular
 | 
						|
        ax = df.plot.bar(width=width)
 | 
						|
        for r in ax.patches:
 | 
						|
            assert r.get_width() == width / len(df.columns)
 | 
						|
 | 
						|
        # stacked
 | 
						|
        ax = df.plot.bar(stacked=True, width=width)
 | 
						|
        for r in ax.patches:
 | 
						|
            assert r.get_width() == width
 | 
						|
 | 
						|
        # horizontal regular
 | 
						|
        ax = df.plot.barh(width=width)
 | 
						|
        for r in ax.patches:
 | 
						|
            assert r.get_height() == width / len(df.columns)
 | 
						|
 | 
						|
        # horizontal stacked
 | 
						|
        ax = df.plot.barh(stacked=True, width=width)
 | 
						|
        for r in ax.patches:
 | 
						|
            assert r.get_height() == width
 | 
						|
 | 
						|
        # subplots
 | 
						|
        axes = df.plot.bar(width=width, subplots=True)
 | 
						|
        for ax in axes:
 | 
						|
            for r in ax.patches:
 | 
						|
                assert r.get_width() == width
 | 
						|
 | 
						|
        # horizontal subplots
 | 
						|
        axes = df.plot.barh(width=width, subplots=True)
 | 
						|
        for ax in axes:
 | 
						|
            for r in ax.patches:
 | 
						|
                assert r.get_height() == width
 | 
						|
 | 
						|
    def test_bar_bottom_left(self):
 | 
						|
        df = DataFrame(np.random.rand(5, 5))
 | 
						|
        ax = df.plot.bar(stacked=False, bottom=1)
 | 
						|
        result = [p.get_y() for p in ax.patches]
 | 
						|
        assert result == [1] * 25
 | 
						|
 | 
						|
        ax = df.plot.bar(stacked=True, bottom=[-1, -2, -3, -4, -5])
 | 
						|
        result = [p.get_y() for p in ax.patches[:5]]
 | 
						|
        assert result == [-1, -2, -3, -4, -5]
 | 
						|
 | 
						|
        ax = df.plot.barh(stacked=False, left=np.array([1, 1, 1, 1, 1]))
 | 
						|
        result = [p.get_x() for p in ax.patches]
 | 
						|
        assert result == [1] * 25
 | 
						|
 | 
						|
        ax = df.plot.barh(stacked=True, left=[1, 2, 3, 4, 5])
 | 
						|
        result = [p.get_x() for p in ax.patches[:5]]
 | 
						|
        assert result == [1, 2, 3, 4, 5]
 | 
						|
 | 
						|
        axes = df.plot.bar(subplots=True, bottom=-1)
 | 
						|
        for ax in axes:
 | 
						|
            result = [p.get_y() for p in ax.patches]
 | 
						|
            assert result == [-1] * 5
 | 
						|
 | 
						|
        axes = df.plot.barh(subplots=True, left=np.array([1, 1, 1, 1, 1]))
 | 
						|
        for ax in axes:
 | 
						|
            result = [p.get_x() for p in ax.patches]
 | 
						|
            assert result == [1] * 5
 | 
						|
 | 
						|
    def test_bar_nan(self):
 | 
						|
        df = DataFrame({"A": [10, np.nan, 20], "B": [5, 10, 20], "C": [1, 2, 3]})
 | 
						|
        ax = df.plot.bar()
 | 
						|
        expected = [10, 0, 20, 5, 10, 20, 1, 2, 3]
 | 
						|
        result = [p.get_height() for p in ax.patches]
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
        ax = df.plot.bar(stacked=True)
 | 
						|
        result = [p.get_height() for p in ax.patches]
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
        result = [p.get_y() for p in ax.patches]
 | 
						|
        expected = [0.0, 0.0, 0.0, 10.0, 0.0, 20.0, 15.0, 10.0, 40.0]
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    def test_bar_categorical(self):
 | 
						|
        # GH 13019
 | 
						|
        df1 = DataFrame(
 | 
						|
            np.random.randn(6, 5),
 | 
						|
            index=pd.Index(list("ABCDEF")),
 | 
						|
            columns=pd.Index(list("abcde")),
 | 
						|
        )
 | 
						|
        # categorical index must behave the same
 | 
						|
        df2 = DataFrame(
 | 
						|
            np.random.randn(6, 5),
 | 
						|
            index=pd.CategoricalIndex(list("ABCDEF")),
 | 
						|
            columns=pd.CategoricalIndex(list("abcde")),
 | 
						|
        )
 | 
						|
 | 
						|
        for df in [df1, df2]:
 | 
						|
            ax = df.plot.bar()
 | 
						|
            ticks = ax.xaxis.get_ticklocs()
 | 
						|
            tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5]))
 | 
						|
            assert ax.get_xlim() == (-0.5, 5.5)
 | 
						|
            # check left-edge of bars
 | 
						|
            assert ax.patches[0].get_x() == -0.25
 | 
						|
            assert ax.patches[-1].get_x() == 5.15
 | 
						|
 | 
						|
            ax = df.plot.bar(stacked=True)
 | 
						|
            tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5]))
 | 
						|
            assert ax.get_xlim() == (-0.5, 5.5)
 | 
						|
            assert ax.patches[0].get_x() == -0.25
 | 
						|
            assert ax.patches[-1].get_x() == 4.75
 | 
						|
 | 
						|
    def test_plot_scatter(self):
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.randn(6, 4),
 | 
						|
            index=list(string.ascii_letters[:6]),
 | 
						|
            columns=["x", "y", "z", "four"],
 | 
						|
        )
 | 
						|
 | 
						|
        _check_plot_works(df.plot.scatter, x="x", y="y")
 | 
						|
        _check_plot_works(df.plot.scatter, x=1, y=2)
 | 
						|
 | 
						|
        msg = re.escape("scatter() missing 1 required positional argument: 'y'")
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df.plot.scatter(x="x")
 | 
						|
        msg = re.escape("scatter() missing 1 required positional argument: 'x'")
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df.plot.scatter(y="y")
 | 
						|
 | 
						|
        # GH 6951
 | 
						|
        axes = df.plot(x="x", y="y", kind="scatter", subplots=True)
 | 
						|
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 | 
						|
 | 
						|
    def test_raise_error_on_datetime_time_data(self):
 | 
						|
        # GH 8113, datetime.time type is not supported by matplotlib in scatter
 | 
						|
        df = DataFrame(np.random.randn(10), columns=["a"])
 | 
						|
        df["dtime"] = date_range(start="2014-01-01", freq="h", periods=10).time
 | 
						|
        msg = "must be a string or a (real )?number, not 'datetime.time'"
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df.plot(kind="scatter", x="dtime", y="a")
 | 
						|
 | 
						|
    def test_scatterplot_datetime_data(self):
 | 
						|
        # GH 30391
 | 
						|
        dates = date_range(start=date(2019, 1, 1), periods=12, freq="W")
 | 
						|
        vals = np.random.normal(0, 1, len(dates))
 | 
						|
        df = DataFrame({"dates": dates, "vals": vals})
 | 
						|
 | 
						|
        _check_plot_works(df.plot.scatter, x="dates", y="vals")
 | 
						|
        _check_plot_works(df.plot.scatter, x=0, y=1)
 | 
						|
 | 
						|
    def test_scatterplot_object_data(self):
 | 
						|
        # GH 18755
 | 
						|
        df = DataFrame({"a": ["A", "B", "C"], "b": [2, 3, 4]})
 | 
						|
 | 
						|
        _check_plot_works(df.plot.scatter, x="a", y="b")
 | 
						|
        _check_plot_works(df.plot.scatter, x=0, y=1)
 | 
						|
 | 
						|
        df = DataFrame({"a": ["A", "B", "C"], "b": ["a", "b", "c"]})
 | 
						|
 | 
						|
        _check_plot_works(df.plot.scatter, x="a", y="b")
 | 
						|
        _check_plot_works(df.plot.scatter, x=0, y=1)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("ordered", [True, False])
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "categories",
 | 
						|
        (["setosa", "versicolor", "virginica"], ["versicolor", "virginica", "setosa"]),
 | 
						|
    )
 | 
						|
    def test_scatterplot_color_by_categorical(self, ordered, categories):
 | 
						|
        df = DataFrame(
 | 
						|
            [[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]],
 | 
						|
            columns=["length", "width"],
 | 
						|
        )
 | 
						|
        df["species"] = pd.Categorical(
 | 
						|
            ["setosa", "setosa", "virginica", "virginica", "versicolor"],
 | 
						|
            ordered=ordered,
 | 
						|
            categories=categories,
 | 
						|
        )
 | 
						|
        ax = df.plot.scatter(x=0, y=1, c="species")
 | 
						|
        (colorbar_collection,) = ax.collections
 | 
						|
        colorbar = colorbar_collection.colorbar
 | 
						|
 | 
						|
        expected_ticks = np.array([0.5, 1.5, 2.5])
 | 
						|
        result_ticks = colorbar.get_ticks()
 | 
						|
        tm.assert_numpy_array_equal(result_ticks, expected_ticks)
 | 
						|
 | 
						|
        expected_boundaries = np.array([0.0, 1.0, 2.0, 3.0])
 | 
						|
        result_boundaries = colorbar._boundaries
 | 
						|
        tm.assert_numpy_array_equal(result_boundaries, expected_boundaries)
 | 
						|
 | 
						|
        expected_yticklabels = categories
 | 
						|
        result_yticklabels = [i.get_text() for i in colorbar.ax.get_ymajorticklabels()]
 | 
						|
        assert all(i == j for i, j in zip(result_yticklabels, expected_yticklabels))
 | 
						|
 | 
						|
    @pytest.mark.parametrize("x, y", [("x", "y"), ("y", "x"), ("y", "y")])
 | 
						|
    def test_plot_scatter_with_categorical_data(self, x, y):
 | 
						|
        # after fixing GH 18755, should be able to plot categorical data
 | 
						|
        df = DataFrame({"x": [1, 2, 3, 4], "y": pd.Categorical(["a", "b", "a", "c"])})
 | 
						|
 | 
						|
        _check_plot_works(df.plot.scatter, x=x, y=y)
 | 
						|
 | 
						|
    def test_plot_scatter_with_c(self, request):
 | 
						|
        from pandas.plotting._matplotlib.compat import mpl_ge_3_4_0
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.randn(6, 4),
 | 
						|
            index=list(string.ascii_letters[:6]),
 | 
						|
            columns=["x", "y", "z", "four"],
 | 
						|
        )
 | 
						|
 | 
						|
        axes = [df.plot.scatter(x="x", y="y", c="z"), df.plot.scatter(x=0, y=1, c=2)]
 | 
						|
        for ax in axes:
 | 
						|
            # default to Greys
 | 
						|
            assert ax.collections[0].cmap.name == "Greys"
 | 
						|
 | 
						|
            if mpl_ge_3_4_0():
 | 
						|
                assert ax.collections[0].colorbar.ax.get_ylabel() == "z"
 | 
						|
            else:
 | 
						|
                assert ax.collections[0].colorbar._label == "z"
 | 
						|
 | 
						|
        cm = "cubehelix"
 | 
						|
        ax = df.plot.scatter(x="x", y="y", c="z", colormap=cm)
 | 
						|
        assert ax.collections[0].cmap.name == cm
 | 
						|
 | 
						|
        # verify turning off colorbar works
 | 
						|
        ax = df.plot.scatter(x="x", y="y", c="z", colorbar=False)
 | 
						|
        assert ax.collections[0].colorbar is None
 | 
						|
 | 
						|
        # verify that we can still plot a solid color
 | 
						|
        ax = df.plot.scatter(x=0, y=1, c="red")
 | 
						|
        assert ax.collections[0].colorbar is None
 | 
						|
        self._check_colors(ax.collections, facecolors=["r"])
 | 
						|
 | 
						|
        # Ensure that we can pass an np.array straight through to matplotlib,
 | 
						|
        # this functionality was accidentally removed previously.
 | 
						|
        # See https://github.com/pandas-dev/pandas/issues/8852 for bug report
 | 
						|
        #
 | 
						|
        # Exercise colormap path and non-colormap path as they are independent
 | 
						|
        #
 | 
						|
        df = DataFrame({"A": [1, 2], "B": [3, 4]})
 | 
						|
        red_rgba = [1.0, 0.0, 0.0, 1.0]
 | 
						|
        green_rgba = [0.0, 1.0, 0.0, 1.0]
 | 
						|
        rgba_array = np.array([red_rgba, green_rgba])
 | 
						|
        ax = df.plot.scatter(x="A", y="B", c=rgba_array)
 | 
						|
        # expect the face colors of the points in the non-colormap path to be
 | 
						|
        # identical to the values we supplied, normally we'd be on shaky ground
 | 
						|
        # comparing floats for equality but here we expect them to be
 | 
						|
        # identical.
 | 
						|
        tm.assert_numpy_array_equal(ax.collections[0].get_facecolor(), rgba_array)
 | 
						|
        # we don't test the colors of the faces in this next plot because they
 | 
						|
        # are dependent on the spring colormap, which may change its colors
 | 
						|
        # later.
 | 
						|
        float_array = np.array([0.0, 1.0])
 | 
						|
        df.plot.scatter(x="A", y="B", c=float_array, cmap="spring")
 | 
						|
 | 
						|
    def test_plot_scatter_with_s(self):
 | 
						|
        # this refers to GH 32904
 | 
						|
        df = DataFrame(np.random.random((10, 3)) * 100, columns=["a", "b", "c"])
 | 
						|
 | 
						|
        ax = df.plot.scatter(x="a", y="b", s="c")
 | 
						|
        tm.assert_numpy_array_equal(df["c"].values, right=ax.collections[0].get_sizes())
 | 
						|
 | 
						|
    def test_plot_bar(self):
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.randn(6, 4),
 | 
						|
            index=list(string.ascii_letters[:6]),
 | 
						|
            columns=["one", "two", "three", "four"],
 | 
						|
        )
 | 
						|
 | 
						|
        _check_plot_works(df.plot.bar)
 | 
						|
        _check_plot_works(df.plot.bar, legend=False)
 | 
						|
        _check_plot_works(df.plot.bar, default_axes=True, subplots=True)
 | 
						|
        _check_plot_works(df.plot.bar, stacked=True)
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.randn(10, 15),
 | 
						|
            index=list(string.ascii_letters[:10]),
 | 
						|
            columns=range(15),
 | 
						|
        )
 | 
						|
        _check_plot_works(df.plot.bar)
 | 
						|
 | 
						|
        df = DataFrame({"a": [0, 1], "b": [1, 0]})
 | 
						|
        ax = _check_plot_works(df.plot.bar)
 | 
						|
        self._check_ticks_props(ax, xrot=90)
 | 
						|
 | 
						|
        ax = df.plot.bar(rot=35, fontsize=10)
 | 
						|
        self._check_ticks_props(ax, xrot=35, xlabelsize=10, ylabelsize=10)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.barh)
 | 
						|
        self._check_ticks_props(ax, yrot=0)
 | 
						|
 | 
						|
        ax = df.plot.barh(rot=55, fontsize=11)
 | 
						|
        self._check_ticks_props(ax, yrot=55, ylabelsize=11, xlabelsize=11)
 | 
						|
 | 
						|
    def test_boxplot(self):
 | 
						|
        df = self.hist_df
 | 
						|
        series = df["height"]
 | 
						|
        numeric_cols = df._get_numeric_data().columns
 | 
						|
        labels = [pprint_thing(c) for c in numeric_cols]
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.box)
 | 
						|
        self._check_text_labels(ax.get_xticklabels(), labels)
 | 
						|
        tm.assert_numpy_array_equal(
 | 
						|
            ax.xaxis.get_ticklocs(), np.arange(1, len(numeric_cols) + 1)
 | 
						|
        )
 | 
						|
        assert len(ax.lines) == self.bp_n_objects * len(numeric_cols)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        axes = series.plot.box(rot=40)
 | 
						|
        self._check_ticks_props(axes, xrot=40, yrot=0)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        ax = _check_plot_works(series.plot.box)
 | 
						|
 | 
						|
        positions = np.array([1, 6, 7])
 | 
						|
        ax = df.plot.box(positions=positions)
 | 
						|
        numeric_cols = df._get_numeric_data().columns
 | 
						|
        labels = [pprint_thing(c) for c in numeric_cols]
 | 
						|
        self._check_text_labels(ax.get_xticklabels(), labels)
 | 
						|
        tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), positions)
 | 
						|
        assert len(ax.lines) == self.bp_n_objects * len(numeric_cols)
 | 
						|
 | 
						|
    def test_boxplot_vertical(self):
 | 
						|
        df = self.hist_df
 | 
						|
        numeric_cols = df._get_numeric_data().columns
 | 
						|
        labels = [pprint_thing(c) for c in numeric_cols]
 | 
						|
 | 
						|
        # if horizontal, yticklabels are rotated
 | 
						|
        ax = df.plot.box(rot=50, fontsize=8, vert=False)
 | 
						|
        self._check_ticks_props(ax, xrot=0, yrot=50, ylabelsize=8)
 | 
						|
        self._check_text_labels(ax.get_yticklabels(), labels)
 | 
						|
        assert len(ax.lines) == self.bp_n_objects * len(numeric_cols)
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot.box,
 | 
						|
            default_axes=True,
 | 
						|
            subplots=True,
 | 
						|
            vert=False,
 | 
						|
            logx=True,
 | 
						|
        )
 | 
						|
        self._check_axes_shape(axes, axes_num=3, layout=(1, 3))
 | 
						|
        self._check_ax_scales(axes, xaxis="log")
 | 
						|
        for ax, label in zip(axes, labels):
 | 
						|
            self._check_text_labels(ax.get_yticklabels(), [label])
 | 
						|
            assert len(ax.lines) == self.bp_n_objects
 | 
						|
 | 
						|
        positions = np.array([3, 2, 8])
 | 
						|
        ax = df.plot.box(positions=positions, vert=False)
 | 
						|
        self._check_text_labels(ax.get_yticklabels(), labels)
 | 
						|
        tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), positions)
 | 
						|
        assert len(ax.lines) == self.bp_n_objects * len(numeric_cols)
 | 
						|
 | 
						|
    def test_boxplot_return_type(self):
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.randn(6, 4),
 | 
						|
            index=list(string.ascii_letters[:6]),
 | 
						|
            columns=["one", "two", "three", "four"],
 | 
						|
        )
 | 
						|
        msg = "return_type must be {None, 'axes', 'dict', 'both'}"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot.box(return_type="not_a_type")
 | 
						|
 | 
						|
        result = df.plot.box(return_type="dict")
 | 
						|
        self._check_box_return_type(result, "dict")
 | 
						|
 | 
						|
        result = df.plot.box(return_type="axes")
 | 
						|
        self._check_box_return_type(result, "axes")
 | 
						|
 | 
						|
        result = df.plot.box()  # default axes
 | 
						|
        self._check_box_return_type(result, "axes")
 | 
						|
 | 
						|
        result = df.plot.box(return_type="both")
 | 
						|
        self._check_box_return_type(result, "both")
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_kde_df(self):
 | 
						|
        df = DataFrame(np.random.randn(100, 4))
 | 
						|
        ax = _check_plot_works(df.plot, kind="kde")
 | 
						|
        expected = [pprint_thing(c) for c in df.columns]
 | 
						|
        self._check_legend_labels(ax, labels=expected)
 | 
						|
        self._check_ticks_props(ax, xrot=0)
 | 
						|
 | 
						|
        ax = df.plot(kind="kde", rot=20, fontsize=5)
 | 
						|
        self._check_ticks_props(ax, xrot=20, xlabelsize=5, ylabelsize=5)
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot,
 | 
						|
            default_axes=True,
 | 
						|
            kind="kde",
 | 
						|
            subplots=True,
 | 
						|
        )
 | 
						|
        self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
 | 
						|
 | 
						|
        axes = df.plot(kind="kde", logy=True, subplots=True)
 | 
						|
        self._check_ax_scales(axes, yaxis="log")
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_kde_missing_vals(self):
 | 
						|
        df = DataFrame(np.random.uniform(size=(100, 4)))
 | 
						|
        df.loc[0, 0] = np.nan
 | 
						|
        _check_plot_works(df.plot, kind="kde")
 | 
						|
 | 
						|
    def test_hist_df(self):
 | 
						|
        from matplotlib.patches import Rectangle
 | 
						|
 | 
						|
        df = DataFrame(np.random.randn(100, 4))
 | 
						|
        series = df[0]
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.hist)
 | 
						|
        expected = [pprint_thing(c) for c in df.columns]
 | 
						|
        self._check_legend_labels(ax, labels=expected)
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot.hist,
 | 
						|
            default_axes=True,
 | 
						|
            subplots=True,
 | 
						|
            logy=True,
 | 
						|
        )
 | 
						|
        self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
 | 
						|
        self._check_ax_scales(axes, yaxis="log")
 | 
						|
 | 
						|
        axes = series.plot.hist(rot=40)
 | 
						|
        self._check_ticks_props(axes, xrot=40, yrot=0)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        ax = series.plot.hist(cumulative=True, bins=4, density=True)
 | 
						|
        # height of last bin (index 5) must be 1.0
 | 
						|
        rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
 | 
						|
        tm.assert_almost_equal(rects[-1].get_height(), 1.0)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        ax = series.plot.hist(cumulative=True, bins=4)
 | 
						|
        rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
 | 
						|
 | 
						|
        tm.assert_almost_equal(rects[-2].get_height(), 100.0)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        # if horizontal, yticklabels are rotated
 | 
						|
        axes = df.plot.hist(rot=50, fontsize=8, orientation="horizontal")
 | 
						|
        self._check_ticks_props(axes, xrot=0, yrot=50, ylabelsize=8)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "weights", [0.1 * np.ones(shape=(100,)), 0.1 * np.ones(shape=(100, 2))]
 | 
						|
    )
 | 
						|
    def test_hist_weights(self, weights):
 | 
						|
        # GH 33173
 | 
						|
        np.random.seed(0)
 | 
						|
        df = DataFrame(dict(zip(["A", "B"], np.random.randn(2, 100))))
 | 
						|
 | 
						|
        ax1 = _check_plot_works(df.plot, kind="hist", weights=weights)
 | 
						|
        ax2 = _check_plot_works(df.plot, kind="hist")
 | 
						|
 | 
						|
        patch_height_with_weights = [patch.get_height() for patch in ax1.patches]
 | 
						|
 | 
						|
        # original heights with no weights, and we manually multiply with example
 | 
						|
        # weights, so after multiplication, they should be almost same
 | 
						|
        expected_patch_height = [0.1 * patch.get_height() for patch in ax2.patches]
 | 
						|
 | 
						|
        tm.assert_almost_equal(patch_height_with_weights, expected_patch_height)
 | 
						|
 | 
						|
    def _check_box_coord(
 | 
						|
        self,
 | 
						|
        patches,
 | 
						|
        expected_y=None,
 | 
						|
        expected_h=None,
 | 
						|
        expected_x=None,
 | 
						|
        expected_w=None,
 | 
						|
    ):
 | 
						|
        result_y = np.array([p.get_y() for p in patches])
 | 
						|
        result_height = np.array([p.get_height() for p in patches])
 | 
						|
        result_x = np.array([p.get_x() for p in patches])
 | 
						|
        result_width = np.array([p.get_width() for p in patches])
 | 
						|
        # dtype is depending on above values, no need to check
 | 
						|
 | 
						|
        if expected_y is not None:
 | 
						|
            tm.assert_numpy_array_equal(result_y, expected_y, check_dtype=False)
 | 
						|
        if expected_h is not None:
 | 
						|
            tm.assert_numpy_array_equal(result_height, expected_h, check_dtype=False)
 | 
						|
        if expected_x is not None:
 | 
						|
            tm.assert_numpy_array_equal(result_x, expected_x, check_dtype=False)
 | 
						|
        if expected_w is not None:
 | 
						|
            tm.assert_numpy_array_equal(result_width, expected_w, check_dtype=False)
 | 
						|
 | 
						|
    def test_hist_df_coord(self):
 | 
						|
        normal_df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([10, 9, 8, 7, 6])),
 | 
						|
                "B": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([8, 8, 8, 8, 8])),
 | 
						|
                "C": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([6, 7, 8, 9, 10])),
 | 
						|
            },
 | 
						|
            columns=["A", "B", "C"],
 | 
						|
        )
 | 
						|
 | 
						|
        nan_df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": np.repeat(
 | 
						|
                    np.array([np.nan, 1, 2, 3, 4, 5]), np.array([3, 10, 9, 8, 7, 6])
 | 
						|
                ),
 | 
						|
                "B": np.repeat(
 | 
						|
                    np.array([1, np.nan, 2, 3, 4, 5]), np.array([8, 3, 8, 8, 8, 8])
 | 
						|
                ),
 | 
						|
                "C": np.repeat(
 | 
						|
                    np.array([1, 2, 3, np.nan, 4, 5]), np.array([6, 7, 8, 3, 9, 10])
 | 
						|
                ),
 | 
						|
            },
 | 
						|
            columns=["A", "B", "C"],
 | 
						|
        )
 | 
						|
 | 
						|
        for df in [normal_df, nan_df]:
 | 
						|
            ax = df.plot.hist(bins=5)
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[:5],
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([10, 9, 8, 7, 6]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[5:10],
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([8, 8, 8, 8, 8]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[10:],
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([6, 7, 8, 9, 10]),
 | 
						|
            )
 | 
						|
 | 
						|
            ax = df.plot.hist(bins=5, stacked=True)
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[:5],
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([10, 9, 8, 7, 6]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[5:10],
 | 
						|
                expected_y=np.array([10, 9, 8, 7, 6]),
 | 
						|
                expected_h=np.array([8, 8, 8, 8, 8]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[10:],
 | 
						|
                expected_y=np.array([18, 17, 16, 15, 14]),
 | 
						|
                expected_h=np.array([6, 7, 8, 9, 10]),
 | 
						|
            )
 | 
						|
 | 
						|
            axes = df.plot.hist(bins=5, stacked=True, subplots=True)
 | 
						|
            self._check_box_coord(
 | 
						|
                axes[0].patches,
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([10, 9, 8, 7, 6]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                axes[1].patches,
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([8, 8, 8, 8, 8]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                axes[2].patches,
 | 
						|
                expected_y=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_h=np.array([6, 7, 8, 9, 10]),
 | 
						|
            )
 | 
						|
 | 
						|
            # horizontal
 | 
						|
            ax = df.plot.hist(bins=5, orientation="horizontal")
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[:5],
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([10, 9, 8, 7, 6]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[5:10],
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([8, 8, 8, 8, 8]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[10:],
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([6, 7, 8, 9, 10]),
 | 
						|
            )
 | 
						|
 | 
						|
            ax = df.plot.hist(bins=5, stacked=True, orientation="horizontal")
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[:5],
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([10, 9, 8, 7, 6]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[5:10],
 | 
						|
                expected_x=np.array([10, 9, 8, 7, 6]),
 | 
						|
                expected_w=np.array([8, 8, 8, 8, 8]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                ax.patches[10:],
 | 
						|
                expected_x=np.array([18, 17, 16, 15, 14]),
 | 
						|
                expected_w=np.array([6, 7, 8, 9, 10]),
 | 
						|
            )
 | 
						|
 | 
						|
            axes = df.plot.hist(
 | 
						|
                bins=5, stacked=True, subplots=True, orientation="horizontal"
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                axes[0].patches,
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([10, 9, 8, 7, 6]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                axes[1].patches,
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([8, 8, 8, 8, 8]),
 | 
						|
            )
 | 
						|
            self._check_box_coord(
 | 
						|
                axes[2].patches,
 | 
						|
                expected_x=np.array([0, 0, 0, 0, 0]),
 | 
						|
                expected_w=np.array([6, 7, 8, 9, 10]),
 | 
						|
            )
 | 
						|
 | 
						|
    def test_plot_int_columns(self):
 | 
						|
        df = DataFrame(np.random.randn(100, 4)).cumsum()
 | 
						|
        _check_plot_works(df.plot, legend=True)
 | 
						|
 | 
						|
    def test_style_by_column(self):
 | 
						|
        import matplotlib.pyplot as plt
 | 
						|
 | 
						|
        fig = plt.gcf()
 | 
						|
 | 
						|
        df = DataFrame(np.random.randn(100, 3))
 | 
						|
        for markers in [
 | 
						|
            {0: "^", 1: "+", 2: "o"},
 | 
						|
            {0: "^", 1: "+"},
 | 
						|
            ["^", "+", "o"],
 | 
						|
            ["^", "+"],
 | 
						|
        ]:
 | 
						|
            fig.clf()
 | 
						|
            fig.add_subplot(111)
 | 
						|
            ax = df.plot(style=markers)
 | 
						|
            for idx, line in enumerate(ax.get_lines()[: len(markers)]):
 | 
						|
                assert line.get_marker() == markers[idx]
 | 
						|
 | 
						|
    def test_line_label_none(self):
 | 
						|
        s = Series([1, 2])
 | 
						|
        ax = s.plot()
 | 
						|
        assert ax.get_legend() is None
 | 
						|
 | 
						|
        ax = s.plot(legend=True)
 | 
						|
        assert ax.get_legend().get_texts()[0].get_text() == "None"
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "props, expected",
 | 
						|
        [
 | 
						|
            ("boxprops", "boxes"),
 | 
						|
            ("whiskerprops", "whiskers"),
 | 
						|
            ("capprops", "caps"),
 | 
						|
            ("medianprops", "medians"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_specified_props_kwd_plot_box(self, props, expected):
 | 
						|
        # GH 30346
 | 
						|
        df = DataFrame({k: np.random.random(100) for k in "ABC"})
 | 
						|
        kwd = {props: {"color": "C1"}}
 | 
						|
        result = df.plot.box(return_type="dict", **kwd)
 | 
						|
 | 
						|
        assert result[expected][0].get_color() == "C1"
 | 
						|
 | 
						|
    def test_unordered_ts(self):
 | 
						|
        df = DataFrame(
 | 
						|
            np.array([3.0, 2.0, 1.0]),
 | 
						|
            index=[date(2012, 10, 1), date(2012, 9, 1), date(2012, 8, 1)],
 | 
						|
            columns=["test"],
 | 
						|
        )
 | 
						|
        ax = df.plot()
 | 
						|
        xticks = ax.lines[0].get_xdata()
 | 
						|
        assert xticks[0] < xticks[1]
 | 
						|
        ydata = ax.lines[0].get_ydata()
 | 
						|
        tm.assert_numpy_array_equal(ydata, np.array([1.0, 2.0, 3.0]))
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_kind_both_ways(self):
 | 
						|
        df = DataFrame({"x": [1, 2, 3]})
 | 
						|
        for kind in plotting.PlotAccessor._common_kinds:
 | 
						|
 | 
						|
            df.plot(kind=kind)
 | 
						|
            getattr(df.plot, kind)()
 | 
						|
        for kind in ["scatter", "hexbin"]:
 | 
						|
            df.plot("x", "x", kind=kind)
 | 
						|
            getattr(df.plot, kind)("x", "x")
 | 
						|
 | 
						|
    def test_all_invalid_plot_data(self):
 | 
						|
        df = DataFrame(list("abcd"))
 | 
						|
        for kind in plotting.PlotAccessor._common_kinds:
 | 
						|
 | 
						|
            msg = "no numeric data to plot"
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                df.plot(kind=kind)
 | 
						|
 | 
						|
    def test_partially_invalid_plot_data(self):
 | 
						|
        with tm.RNGContext(42):
 | 
						|
            df = DataFrame(np.random.randn(10, 2), dtype=object)
 | 
						|
            df[np.random.rand(df.shape[0]) > 0.5] = "a"
 | 
						|
            for kind in plotting.PlotAccessor._common_kinds:
 | 
						|
                msg = "no numeric data to plot"
 | 
						|
                with pytest.raises(TypeError, match=msg):
 | 
						|
                    df.plot(kind=kind)
 | 
						|
 | 
						|
        with tm.RNGContext(42):
 | 
						|
            # area plot doesn't support positive/negative mixed data
 | 
						|
            df = DataFrame(np.random.rand(10, 2), dtype=object)
 | 
						|
            df[np.random.rand(df.shape[0]) > 0.5] = "a"
 | 
						|
            with pytest.raises(TypeError, match="no numeric data to plot"):
 | 
						|
                df.plot(kind="area")
 | 
						|
 | 
						|
    def test_invalid_kind(self):
 | 
						|
        df = DataFrame(np.random.randn(10, 2))
 | 
						|
        msg = "invalid_plot_kind is not a valid plot kind"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot(kind="invalid_plot_kind")
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "x,y,lbl",
 | 
						|
        [
 | 
						|
            (["B", "C"], "A", "a"),
 | 
						|
            (["A"], ["B", "C"], ["b", "c"]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_invalid_xy_args(self, x, y, lbl):
 | 
						|
        # GH 18671, 19699 allows y to be list-like but not x
 | 
						|
        df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
 | 
						|
        with pytest.raises(ValueError, match="x must be a label or position"):
 | 
						|
            df.plot(x=x, y=y, label=lbl)
 | 
						|
 | 
						|
    def test_bad_label(self):
 | 
						|
        df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
 | 
						|
        msg = "label should be list-like and same length as y"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot(x="A", y=["B", "C"], label="bad_label")
 | 
						|
 | 
						|
    @pytest.mark.parametrize("x,y", [("A", "B"), (["A"], "B")])
 | 
						|
    def test_invalid_xy_args_dup_cols(self, x, y):
 | 
						|
        # GH 18671, 19699 allows y to be list-like but not x
 | 
						|
        df = DataFrame([[1, 3, 5], [2, 4, 6]], columns=list("AAB"))
 | 
						|
        with pytest.raises(ValueError, match="x must be a label or position"):
 | 
						|
            df.plot(x=x, y=y)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "x,y,lbl,colors",
 | 
						|
        [
 | 
						|
            ("A", ["B"], ["b"], ["red"]),
 | 
						|
            ("A", ["B", "C"], ["b", "c"], ["red", "blue"]),
 | 
						|
            (0, [1, 2], ["bokeh", "cython"], ["green", "yellow"]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_y_listlike(self, x, y, lbl, colors):
 | 
						|
        # GH 19699: tests list-like y and verifies lbls & colors
 | 
						|
        df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
 | 
						|
        _check_plot_works(df.plot, x="A", y=y, label=lbl)
 | 
						|
 | 
						|
        ax = df.plot(x=x, y=y, label=lbl, color=colors)
 | 
						|
        assert len(ax.lines) == len(y)
 | 
						|
        self._check_colors(ax.get_lines(), linecolors=colors)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("x,y,colnames", [(0, 1, ["A", "B"]), (1, 0, [0, 1])])
 | 
						|
    def test_xy_args_integer(self, x, y, colnames):
 | 
						|
        # GH 20056: tests integer args for xy and checks col names
 | 
						|
        df = DataFrame({"A": [1, 2], "B": [3, 4]})
 | 
						|
        df.columns = colnames
 | 
						|
        _check_plot_works(df.plot, x=x, y=y)
 | 
						|
 | 
						|
    def test_hexbin_basic(self):
 | 
						|
        df = self.hexbin_df
 | 
						|
 | 
						|
        ax = df.plot.hexbin(x="A", y="B", gridsize=10)
 | 
						|
        # TODO: need better way to test. This just does existence.
 | 
						|
        assert len(ax.collections) == 1
 | 
						|
 | 
						|
        # GH 6951
 | 
						|
        axes = df.plot.hexbin(x="A", y="B", subplots=True)
 | 
						|
        # hexbin should have 2 axes in the figure, 1 for plotting and another
 | 
						|
        # is colorbar
 | 
						|
        assert len(axes[0].figure.axes) == 2
 | 
						|
        # return value is single axes
 | 
						|
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 | 
						|
 | 
						|
    def test_hexbin_with_c(self):
 | 
						|
        df = self.hexbin_df
 | 
						|
 | 
						|
        ax = df.plot.hexbin(x="A", y="B", C="C")
 | 
						|
        assert len(ax.collections) == 1
 | 
						|
 | 
						|
        ax = df.plot.hexbin(x="A", y="B", C="C", reduce_C_function=np.std)
 | 
						|
        assert len(ax.collections) == 1
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "kwargs, expected",
 | 
						|
        [
 | 
						|
            ({}, "BuGn"),  # default cmap
 | 
						|
            ({"colormap": "cubehelix"}, "cubehelix"),
 | 
						|
            ({"cmap": "YlGn"}, "YlGn"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_hexbin_cmap(self, kwargs, expected):
 | 
						|
        df = self.hexbin_df
 | 
						|
        ax = df.plot.hexbin(x="A", y="B", **kwargs)
 | 
						|
        assert ax.collections[0].cmap.name == expected
 | 
						|
 | 
						|
    def test_pie_df(self):
 | 
						|
        df = DataFrame(
 | 
						|
            np.random.rand(5, 3),
 | 
						|
            columns=["X", "Y", "Z"],
 | 
						|
            index=["a", "b", "c", "d", "e"],
 | 
						|
        )
 | 
						|
        msg = "pie requires either y column or 'subplots=True'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot.pie()
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.pie, y="Y")
 | 
						|
        self._check_text_labels(ax.texts, df.index)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.pie, y=2)
 | 
						|
        self._check_text_labels(ax.texts, df.index)
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot.pie,
 | 
						|
            default_axes=True,
 | 
						|
            subplots=True,
 | 
						|
        )
 | 
						|
        assert len(axes) == len(df.columns)
 | 
						|
        for ax in axes:
 | 
						|
            self._check_text_labels(ax.texts, df.index)
 | 
						|
        for ax, ylabel in zip(axes, df.columns):
 | 
						|
            assert ax.get_ylabel() == ylabel
 | 
						|
 | 
						|
        labels = ["A", "B", "C", "D", "E"]
 | 
						|
        color_args = ["r", "g", "b", "c", "m"]
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot.pie,
 | 
						|
            default_axes=True,
 | 
						|
            subplots=True,
 | 
						|
            labels=labels,
 | 
						|
            colors=color_args,
 | 
						|
        )
 | 
						|
        assert len(axes) == len(df.columns)
 | 
						|
 | 
						|
        for ax in axes:
 | 
						|
            self._check_text_labels(ax.texts, labels)
 | 
						|
            self._check_colors(ax.patches, facecolors=color_args)
 | 
						|
 | 
						|
    def test_pie_df_nan(self):
 | 
						|
        import matplotlib as mpl
 | 
						|
 | 
						|
        df = DataFrame(np.random.rand(4, 4))
 | 
						|
        for i in range(4):
 | 
						|
            df.iloc[i, i] = np.nan
 | 
						|
        fig, axes = self.plt.subplots(ncols=4)
 | 
						|
 | 
						|
        # GH 37668
 | 
						|
        kwargs = {}
 | 
						|
        if mpl.__version__ >= "3.3":
 | 
						|
            kwargs = {"normalize": True}
 | 
						|
 | 
						|
        with tm.assert_produces_warning(None):
 | 
						|
            df.plot.pie(subplots=True, ax=axes, legend=True, **kwargs)
 | 
						|
 | 
						|
        base_expected = ["0", "1", "2", "3"]
 | 
						|
        for i, ax in enumerate(axes):
 | 
						|
            expected = list(base_expected)  # force copy
 | 
						|
            expected[i] = ""
 | 
						|
            result = [x.get_text() for x in ax.texts]
 | 
						|
            assert result == expected
 | 
						|
 | 
						|
            # legend labels
 | 
						|
            # NaN's not included in legend with subplots
 | 
						|
            # see https://github.com/pandas-dev/pandas/issues/8390
 | 
						|
            result_labels = [x.get_text() for x in ax.get_legend().get_texts()]
 | 
						|
            expected_labels = base_expected[:i] + base_expected[i + 1 :]
 | 
						|
            assert result_labels == expected_labels
 | 
						|
 | 
						|
    def test_errorbar_plot(self):
 | 
						|
        d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
 | 
						|
        df = DataFrame(d)
 | 
						|
        d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4}
 | 
						|
        df_err = DataFrame(d_err)
 | 
						|
 | 
						|
        # check line plots
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err, logy=True)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err, logx=True, logy=True)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err, loglog=True)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(
 | 
						|
            (df + 1).plot, yerr=df_err, xerr=df_err, kind="bar", log=True
 | 
						|
        )
 | 
						|
        self._check_has_errorbars(ax, xerr=2, yerr=2)
 | 
						|
 | 
						|
        # yerr is raw error values
 | 
						|
        ax = _check_plot_works(df["y"].plot, yerr=np.ones(12) * 0.4)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=np.ones((2, 12)) * 0.4)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        # yerr is column name
 | 
						|
        for yerr in ["yerr", "誤差"]:
 | 
						|
            s_df = df.copy()
 | 
						|
            s_df[yerr] = np.ones(12) * 0.2
 | 
						|
 | 
						|
            ax = _check_plot_works(s_df.plot, yerr=yerr)
 | 
						|
            self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
            ax = _check_plot_works(s_df.plot, y="y", x="x", yerr=yerr)
 | 
						|
            self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
 | 
						|
        with tm.external_error_raised(ValueError):
 | 
						|
            df.plot(yerr=np.random.randn(11))
 | 
						|
 | 
						|
        df_err = DataFrame({"x": ["zzz"] * 12, "y": ["zzz"] * 12})
 | 
						|
        with tm.external_error_raised(TypeError):
 | 
						|
            df.plot(yerr=df_err)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("kind", ["line", "bar", "barh"])
 | 
						|
    def test_errorbar_plot_different_kinds(self, kind):
 | 
						|
        d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
 | 
						|
        df = DataFrame(d)
 | 
						|
        d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4}
 | 
						|
        df_err = DataFrame(d_err)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err["x"], kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=d_err, kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err, xerr=df_err, kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=2, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err["x"], xerr=df_err["x"], kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=2, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot, xerr=0.2, yerr=0.2, kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=2, yerr=2)
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            df.plot,
 | 
						|
            default_axes=True,
 | 
						|
            yerr=df_err,
 | 
						|
            xerr=df_err,
 | 
						|
            subplots=True,
 | 
						|
            kind=kind,
 | 
						|
        )
 | 
						|
        self._check_has_errorbars(axes, xerr=1, yerr=1)
 | 
						|
 | 
						|
    @pytest.mark.xfail(reason="Iterator is consumed", raises=ValueError)
 | 
						|
    def test_errorbar_plot_iterator(self):
 | 
						|
        with warnings.catch_warnings():
 | 
						|
            d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
 | 
						|
            df = DataFrame(d)
 | 
						|
 | 
						|
            # yerr is iterator
 | 
						|
            ax = _check_plot_works(df.plot, yerr=itertools.repeat(0.1, len(df)))
 | 
						|
            self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
    def test_errorbar_with_integer_column_names(self):
 | 
						|
        # test with integer column names
 | 
						|
        df = DataFrame(np.random.randn(10, 2))
 | 
						|
        df_err = DataFrame(np.random.randn(10, 2))
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
        ax = _check_plot_works(df.plot, y=0, yerr=1)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
 | 
						|
    def test_errorbar_with_partial_columns(self):
 | 
						|
        df = DataFrame(np.random.randn(10, 3))
 | 
						|
        df_err = DataFrame(np.random.randn(10, 2), columns=[0, 2])
 | 
						|
        kinds = ["line", "bar"]
 | 
						|
        for kind in kinds:
 | 
						|
            ax = _check_plot_works(df.plot, yerr=df_err, kind=kind)
 | 
						|
            self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ix = date_range("1/1/2000", periods=10, freq="M")
 | 
						|
        df.set_index(ix, inplace=True)
 | 
						|
        df_err.set_index(ix, inplace=True)
 | 
						|
        ax = _check_plot_works(df.plot, yerr=df_err, kind="line")
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
 | 
						|
        df = DataFrame(d)
 | 
						|
        d_err = {"x": np.ones(12) * 0.2, "z": np.ones(12) * 0.4}
 | 
						|
        df_err = DataFrame(d_err)
 | 
						|
        for err in [d_err, df_err]:
 | 
						|
            ax = _check_plot_works(df.plot, yerr=err)
 | 
						|
            self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("kind", ["line", "bar", "barh"])
 | 
						|
    def test_errorbar_timeseries(self, kind):
 | 
						|
        d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
 | 
						|
        d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4}
 | 
						|
 | 
						|
        # check time-series plots
 | 
						|
        ix = date_range("1/1/2000", "1/1/2001", freq="M")
 | 
						|
        tdf = DataFrame(d, index=ix)
 | 
						|
        tdf_err = DataFrame(d_err, index=ix)
 | 
						|
 | 
						|
        ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(tdf.plot, yerr=d_err, kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        ax = _check_plot_works(tdf.plot, y="y", yerr=tdf_err["x"], kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
 | 
						|
        ax = _check_plot_works(tdf.plot, y="y", yerr="x", kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
 | 
						|
        ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=2)
 | 
						|
 | 
						|
        axes = _check_plot_works(
 | 
						|
            tdf.plot,
 | 
						|
            default_axes=True,
 | 
						|
            kind=kind,
 | 
						|
            yerr=tdf_err,
 | 
						|
            subplots=True,
 | 
						|
        )
 | 
						|
        self._check_has_errorbars(axes, xerr=0, yerr=1)
 | 
						|
 | 
						|
    def test_errorbar_asymmetrical(self):
 | 
						|
        np.random.seed(0)
 | 
						|
        err = np.random.rand(3, 2, 5)
 | 
						|
 | 
						|
        # each column is [0, 1, 2, 3, 4], [3, 4, 5, 6, 7]...
 | 
						|
        df = DataFrame(np.arange(15).reshape(3, 5)).T
 | 
						|
 | 
						|
        ax = df.plot(yerr=err, xerr=err / 2)
 | 
						|
 | 
						|
        yerr_0_0 = ax.collections[1].get_paths()[0].vertices[:, 1]
 | 
						|
        expected_0_0 = err[0, :, 0] * np.array([-1, 1])
 | 
						|
        tm.assert_almost_equal(yerr_0_0, expected_0_0)
 | 
						|
 | 
						|
        msg = re.escape(
 | 
						|
            "Asymmetrical error bars should be provided with the shape (3, 2, 5)"
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.plot(yerr=err.T)
 | 
						|
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_table(self):
 | 
						|
        df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
 | 
						|
        _check_plot_works(df.plot, table=True)
 | 
						|
        _check_plot_works(df.plot, table=df)
 | 
						|
 | 
						|
        # GH 35945 UserWarning
 | 
						|
        with tm.assert_produces_warning(None):
 | 
						|
            ax = df.plot()
 | 
						|
            assert len(ax.tables) == 0
 | 
						|
            plotting.table(ax, df.T)
 | 
						|
            assert len(ax.tables) == 1
 | 
						|
 | 
						|
    def test_errorbar_scatter(self):
 | 
						|
        df = DataFrame(np.random.randn(5, 2), index=range(5), columns=["x", "y"])
 | 
						|
        df_err = DataFrame(
 | 
						|
            np.random.randn(5, 2) / 5, index=range(5), columns=["x", "y"]
 | 
						|
        )
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.scatter, x="x", y="y")
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=0)
 | 
						|
        ax = _check_plot_works(df.plot.scatter, x="x", y="y", xerr=df_err)
 | 
						|
        self._check_has_errorbars(ax, xerr=1, yerr=0)
 | 
						|
 | 
						|
        ax = _check_plot_works(df.plot.scatter, x="x", y="y", yerr=df_err)
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
        ax = _check_plot_works(df.plot.scatter, x="x", y="y", xerr=df_err, yerr=df_err)
 | 
						|
        self._check_has_errorbars(ax, xerr=1, yerr=1)
 | 
						|
 | 
						|
        def _check_errorbar_color(containers, expected, has_err="has_xerr"):
 | 
						|
            lines = []
 | 
						|
            errs = [c.lines for c in ax.containers if getattr(c, has_err, False)][0]
 | 
						|
            for el in errs:
 | 
						|
                if is_list_like(el):
 | 
						|
                    lines.extend(el)
 | 
						|
                else:
 | 
						|
                    lines.append(el)
 | 
						|
            err_lines = [x for x in lines if x in ax.collections]
 | 
						|
            self._check_colors(
 | 
						|
                err_lines, linecolors=np.array([expected] * len(err_lines))
 | 
						|
            )
 | 
						|
 | 
						|
        # GH 8081
 | 
						|
        df = DataFrame(np.random.randn(10, 5), columns=["a", "b", "c", "d", "e"])
 | 
						|
        ax = df.plot.scatter(x="a", y="b", xerr="d", yerr="e", c="red")
 | 
						|
        self._check_has_errorbars(ax, xerr=1, yerr=1)
 | 
						|
        _check_errorbar_color(ax.containers, "red", has_err="has_xerr")
 | 
						|
        _check_errorbar_color(ax.containers, "red", has_err="has_yerr")
 | 
						|
 | 
						|
        ax = df.plot.scatter(x="a", y="b", yerr="e", color="green")
 | 
						|
        self._check_has_errorbars(ax, xerr=0, yerr=1)
 | 
						|
        _check_errorbar_color(ax.containers, "green", has_err="has_yerr")
 | 
						|
 | 
						|
    def test_sharex_and_ax(self):
 | 
						|
        # https://github.com/pandas-dev/pandas/issues/9737 using gridspec,
 | 
						|
        # the axis in fig.get_axis() are sorted differently than pandas
 | 
						|
        # expected them, so make sure that only the right ones are removed
 | 
						|
        import matplotlib.pyplot as plt
 | 
						|
 | 
						|
        plt.close("all")
 | 
						|
        gs, axes = _generate_4_axes_via_gridspec()
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "a": [1, 2, 3, 4, 5, 6],
 | 
						|
                "b": [1, 2, 3, 4, 5, 6],
 | 
						|
                "c": [1, 2, 3, 4, 5, 6],
 | 
						|
                "d": [1, 2, 3, 4, 5, 6],
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        def _check(axes):
 | 
						|
            for ax in axes:
 | 
						|
                assert len(ax.lines) == 1
 | 
						|
                self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
            for ax in [axes[0], axes[2]]:
 | 
						|
                self._check_visible(ax.get_xticklabels(), visible=False)
 | 
						|
                self._check_visible(ax.get_xticklabels(minor=True), visible=False)
 | 
						|
            for ax in [axes[1], axes[3]]:
 | 
						|
                self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
                self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
 | 
						|
        for ax in axes:
 | 
						|
            df.plot(x="a", y="b", title="title", ax=ax, sharex=True)
 | 
						|
        gs.tight_layout(plt.gcf())
 | 
						|
        _check(axes)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        gs, axes = _generate_4_axes_via_gridspec()
 | 
						|
        with tm.assert_produces_warning(UserWarning):
 | 
						|
            axes = df.plot(subplots=True, ax=axes, sharex=True)
 | 
						|
        _check(axes)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        gs, axes = _generate_4_axes_via_gridspec()
 | 
						|
        # without sharex, no labels should be touched!
 | 
						|
        for ax in axes:
 | 
						|
            df.plot(x="a", y="b", title="title", ax=ax)
 | 
						|
 | 
						|
        gs.tight_layout(plt.gcf())
 | 
						|
        for ax in axes:
 | 
						|
            assert len(ax.lines) == 1
 | 
						|
            self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_sharey_and_ax(self):
 | 
						|
        # https://github.com/pandas-dev/pandas/issues/9737 using gridspec,
 | 
						|
        # the axis in fig.get_axis() are sorted differently than pandas
 | 
						|
        # expected them, so make sure that only the right ones are removed
 | 
						|
        import matplotlib.pyplot as plt
 | 
						|
 | 
						|
        gs, axes = _generate_4_axes_via_gridspec()
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "a": [1, 2, 3, 4, 5, 6],
 | 
						|
                "b": [1, 2, 3, 4, 5, 6],
 | 
						|
                "c": [1, 2, 3, 4, 5, 6],
 | 
						|
                "d": [1, 2, 3, 4, 5, 6],
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        def _check(axes):
 | 
						|
            for ax in axes:
 | 
						|
                assert len(ax.lines) == 1
 | 
						|
                self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
                self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
            for ax in [axes[0], axes[1]]:
 | 
						|
                self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
            for ax in [axes[2], axes[3]]:
 | 
						|
                self._check_visible(ax.get_yticklabels(), visible=False)
 | 
						|
 | 
						|
        for ax in axes:
 | 
						|
            df.plot(x="a", y="b", title="title", ax=ax, sharey=True)
 | 
						|
        gs.tight_layout(plt.gcf())
 | 
						|
        _check(axes)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        gs, axes = _generate_4_axes_via_gridspec()
 | 
						|
        with tm.assert_produces_warning(UserWarning):
 | 
						|
            axes = df.plot(subplots=True, ax=axes, sharey=True)
 | 
						|
 | 
						|
        gs.tight_layout(plt.gcf())
 | 
						|
        _check(axes)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        gs, axes = _generate_4_axes_via_gridspec()
 | 
						|
        # without sharex, no labels should be touched!
 | 
						|
        for ax in axes:
 | 
						|
            df.plot(x="a", y="b", title="title", ax=ax)
 | 
						|
 | 
						|
        gs.tight_layout(plt.gcf())
 | 
						|
        for ax in axes:
 | 
						|
            assert len(ax.lines) == 1
 | 
						|
            self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_memory_leak(self):
 | 
						|
        """Check that every plot type gets properly collected."""
 | 
						|
        import gc
 | 
						|
        import weakref
 | 
						|
 | 
						|
        results = {}
 | 
						|
        for kind in plotting.PlotAccessor._all_kinds:
 | 
						|
 | 
						|
            args = {}
 | 
						|
            if kind in ["hexbin", "scatter", "pie"]:
 | 
						|
                df = self.hexbin_df
 | 
						|
                args = {"x": "A", "y": "B"}
 | 
						|
            elif kind == "area":
 | 
						|
                df = self.tdf.abs()
 | 
						|
            else:
 | 
						|
                df = self.tdf
 | 
						|
 | 
						|
            # Use a weakref so we can see if the object gets collected without
 | 
						|
            # also preventing it from being collected
 | 
						|
            results[kind] = weakref.proxy(df.plot(kind=kind, **args))
 | 
						|
 | 
						|
        # have matplotlib delete all the figures
 | 
						|
        tm.close()
 | 
						|
        # force a garbage collection
 | 
						|
        gc.collect()
 | 
						|
        msg = "weakly-referenced object no longer exists"
 | 
						|
        for key in results:
 | 
						|
            # check that every plot was collected
 | 
						|
            with pytest.raises(ReferenceError, match=msg):
 | 
						|
                # need to actually access something to get an error
 | 
						|
                results[key].lines
 | 
						|
 | 
						|
    def test_df_gridspec_patterns(self):
 | 
						|
        # GH 10819
 | 
						|
        import matplotlib.gridspec as gridspec
 | 
						|
        import matplotlib.pyplot as plt
 | 
						|
 | 
						|
        ts = Series(np.random.randn(10), index=date_range("1/1/2000", periods=10))
 | 
						|
 | 
						|
        df = DataFrame(np.random.randn(10, 2), index=ts.index, columns=list("AB"))
 | 
						|
 | 
						|
        def _get_vertical_grid():
 | 
						|
            gs = gridspec.GridSpec(3, 1)
 | 
						|
            fig = plt.figure()
 | 
						|
            ax1 = fig.add_subplot(gs[:2, :])
 | 
						|
            ax2 = fig.add_subplot(gs[2, :])
 | 
						|
            return ax1, ax2
 | 
						|
 | 
						|
        def _get_horizontal_grid():
 | 
						|
            gs = gridspec.GridSpec(1, 3)
 | 
						|
            fig = plt.figure()
 | 
						|
            ax1 = fig.add_subplot(gs[:, :2])
 | 
						|
            ax2 = fig.add_subplot(gs[:, 2])
 | 
						|
            return ax1, ax2
 | 
						|
 | 
						|
        for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]:
 | 
						|
            ax1 = ts.plot(ax=ax1)
 | 
						|
            assert len(ax1.lines) == 1
 | 
						|
            ax2 = df.plot(ax=ax2)
 | 
						|
            assert len(ax2.lines) == 2
 | 
						|
            for ax in [ax1, ax2]:
 | 
						|
                self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
                self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
                self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
            tm.close()
 | 
						|
 | 
						|
        # subplots=True
 | 
						|
        for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]:
 | 
						|
            axes = df.plot(subplots=True, ax=[ax1, ax2])
 | 
						|
            assert len(ax1.lines) == 1
 | 
						|
            assert len(ax2.lines) == 1
 | 
						|
            for ax in axes:
 | 
						|
                self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
                self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
                self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
            tm.close()
 | 
						|
 | 
						|
        # vertical / subplots / sharex=True / sharey=True
 | 
						|
        ax1, ax2 = _get_vertical_grid()
 | 
						|
        with tm.assert_produces_warning(UserWarning):
 | 
						|
            axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True)
 | 
						|
        assert len(axes[0].lines) == 1
 | 
						|
        assert len(axes[1].lines) == 1
 | 
						|
        for ax in [ax1, ax2]:
 | 
						|
            # yaxis are visible because there is only one column
 | 
						|
            self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
        # xaxis of axes0 (top) are hidden
 | 
						|
        self._check_visible(axes[0].get_xticklabels(), visible=False)
 | 
						|
        self._check_visible(axes[0].get_xticklabels(minor=True), visible=False)
 | 
						|
        self._check_visible(axes[1].get_xticklabels(), visible=True)
 | 
						|
        self._check_visible(axes[1].get_xticklabels(minor=True), visible=True)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        # horizontal / subplots / sharex=True / sharey=True
 | 
						|
        ax1, ax2 = _get_horizontal_grid()
 | 
						|
        with tm.assert_produces_warning(UserWarning):
 | 
						|
            axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True)
 | 
						|
        assert len(axes[0].lines) == 1
 | 
						|
        assert len(axes[1].lines) == 1
 | 
						|
        self._check_visible(axes[0].get_yticklabels(), visible=True)
 | 
						|
        # yaxis of axes1 (right) are hidden
 | 
						|
        self._check_visible(axes[1].get_yticklabels(), visible=False)
 | 
						|
        for ax in [ax1, ax2]:
 | 
						|
            # xaxis are visible because there is only one column
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        # boxed
 | 
						|
        def _get_boxed_grid():
 | 
						|
            gs = gridspec.GridSpec(3, 3)
 | 
						|
            fig = plt.figure()
 | 
						|
            ax1 = fig.add_subplot(gs[:2, :2])
 | 
						|
            ax2 = fig.add_subplot(gs[:2, 2])
 | 
						|
            ax3 = fig.add_subplot(gs[2, :2])
 | 
						|
            ax4 = fig.add_subplot(gs[2, 2])
 | 
						|
            return ax1, ax2, ax3, ax4
 | 
						|
 | 
						|
        axes = _get_boxed_grid()
 | 
						|
        df = DataFrame(np.random.randn(10, 4), index=ts.index, columns=list("ABCD"))
 | 
						|
        axes = df.plot(subplots=True, ax=axes)
 | 
						|
        for ax in axes:
 | 
						|
            assert len(ax.lines) == 1
 | 
						|
            # axis are visible because these are not shared
 | 
						|
            self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        # subplots / sharex=True / sharey=True
 | 
						|
        axes = _get_boxed_grid()
 | 
						|
        with tm.assert_produces_warning(UserWarning):
 | 
						|
            axes = df.plot(subplots=True, ax=axes, sharex=True, sharey=True)
 | 
						|
        for ax in axes:
 | 
						|
            assert len(ax.lines) == 1
 | 
						|
        for ax in [axes[0], axes[2]]:  # left column
 | 
						|
            self._check_visible(ax.get_yticklabels(), visible=True)
 | 
						|
        for ax in [axes[1], axes[3]]:  # right column
 | 
						|
            self._check_visible(ax.get_yticklabels(), visible=False)
 | 
						|
        for ax in [axes[0], axes[1]]:  # top row
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=False)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=False)
 | 
						|
        for ax in [axes[2], axes[3]]:  # bottom row
 | 
						|
            self._check_visible(ax.get_xticklabels(), visible=True)
 | 
						|
            self._check_visible(ax.get_xticklabels(minor=True), visible=True)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_df_grid_settings(self):
 | 
						|
        # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
 | 
						|
        self._check_grid_settings(
 | 
						|
            DataFrame({"a": [1, 2, 3], "b": [2, 3, 4]}),
 | 
						|
            plotting.PlotAccessor._dataframe_kinds,
 | 
						|
            kws={"x": "a", "y": "b"},
 | 
						|
        )
 | 
						|
 | 
						|
    def test_plain_axes(self):
 | 
						|
 | 
						|
        # supplied ax itself is a SubplotAxes, but figure contains also
 | 
						|
        # a plain Axes object (GH11556)
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        fig.add_axes([0.2, 0.2, 0.2, 0.2])
 | 
						|
        Series(np.random.rand(10)).plot(ax=ax)
 | 
						|
 | 
						|
        # supplied ax itself is a plain Axes, but because the cmap keyword
 | 
						|
        # a new ax is created for the colorbar -> also multiples axes (GH11520)
 | 
						|
        df = DataFrame({"a": np.random.randn(8), "b": np.random.randn(8)})
 | 
						|
        fig = self.plt.figure()
 | 
						|
        ax = fig.add_axes((0, 0, 1, 1))
 | 
						|
        df.plot(kind="scatter", ax=ax, x="a", y="b", c="a", cmap="hsv")
 | 
						|
 | 
						|
        # other examples
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        from mpl_toolkits.axes_grid1 import make_axes_locatable
 | 
						|
 | 
						|
        divider = make_axes_locatable(ax)
 | 
						|
        cax = divider.append_axes("right", size="5%", pad=0.05)
 | 
						|
        Series(np.random.rand(10)).plot(ax=ax)
 | 
						|
        Series(np.random.rand(10)).plot(ax=cax)
 | 
						|
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        from mpl_toolkits.axes_grid1.inset_locator import inset_axes
 | 
						|
 | 
						|
        iax = inset_axes(ax, width="30%", height=1.0, loc=3)
 | 
						|
        Series(np.random.rand(10)).plot(ax=ax)
 | 
						|
        Series(np.random.rand(10)).plot(ax=iax)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("method", ["line", "barh", "bar"])
 | 
						|
    def test_secondary_axis_font_size(self, method):
 | 
						|
        # GH: 12565
 | 
						|
        df = (
 | 
						|
            DataFrame(np.random.randn(15, 2), columns=list("AB"))
 | 
						|
            .assign(C=lambda df: df.B.cumsum())
 | 
						|
            .assign(D=lambda df: df.C * 1.1)
 | 
						|
        )
 | 
						|
 | 
						|
        fontsize = 20
 | 
						|
        sy = ["C", "D"]
 | 
						|
 | 
						|
        kwargs = {"secondary_y": sy, "fontsize": fontsize, "mark_right": True}
 | 
						|
        ax = getattr(df.plot, method)(**kwargs)
 | 
						|
        self._check_ticks_props(axes=ax.right_ax, ylabelsize=fontsize)
 | 
						|
 | 
						|
    def test_x_string_values_ticks(self):
 | 
						|
        # Test if string plot index have a fixed xtick position
 | 
						|
        # GH: 7612, GH: 22334
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "sales": [3, 2, 3],
 | 
						|
                "visits": [20, 42, 28],
 | 
						|
                "day": ["Monday", "Tuesday", "Wednesday"],
 | 
						|
            }
 | 
						|
        )
 | 
						|
        ax = df.plot.area(x="day")
 | 
						|
        ax.set_xlim(-1, 3)
 | 
						|
        xticklabels = [t.get_text() for t in ax.get_xticklabels()]
 | 
						|
        labels_position = dict(zip(xticklabels, ax.get_xticks()))
 | 
						|
        # Testing if the label stayed at the right position
 | 
						|
        assert labels_position["Monday"] == 0.0
 | 
						|
        assert labels_position["Tuesday"] == 1.0
 | 
						|
        assert labels_position["Wednesday"] == 2.0
 | 
						|
 | 
						|
    def test_x_multiindex_values_ticks(self):
 | 
						|
        # Test if multiindex plot index have a fixed xtick position
 | 
						|
        # GH: 15912
 | 
						|
        index = MultiIndex.from_product([[2012, 2013], [1, 2]])
 | 
						|
        df = DataFrame(np.random.randn(4, 2), columns=["A", "B"], index=index)
 | 
						|
        ax = df.plot()
 | 
						|
        ax.set_xlim(-1, 4)
 | 
						|
        xticklabels = [t.get_text() for t in ax.get_xticklabels()]
 | 
						|
        labels_position = dict(zip(xticklabels, ax.get_xticks()))
 | 
						|
        # Testing if the label stayed at the right position
 | 
						|
        assert labels_position["(2012, 1)"] == 0.0
 | 
						|
        assert labels_position["(2012, 2)"] == 1.0
 | 
						|
        assert labels_position["(2013, 1)"] == 2.0
 | 
						|
        assert labels_position["(2013, 2)"] == 3.0
 | 
						|
 | 
						|
    @pytest.mark.parametrize("kind", ["line", "area"])
 | 
						|
    def test_xlim_plot_line(self, kind):
 | 
						|
        # test if xlim is set correctly in plot.line and plot.area
 | 
						|
        # GH 27686
 | 
						|
        df = DataFrame([2, 4], index=[1, 2])
 | 
						|
        ax = df.plot(kind=kind)
 | 
						|
        xlims = ax.get_xlim()
 | 
						|
        assert xlims[0] < 1
 | 
						|
        assert xlims[1] > 2
 | 
						|
 | 
						|
    def test_xlim_plot_line_correctly_in_mixed_plot_type(self):
 | 
						|
        # test if xlim is set correctly when ax contains multiple different kinds
 | 
						|
        # of plots, GH 27686
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
 | 
						|
        indexes = ["k1", "k2", "k3", "k4"]
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "s1": [1000, 2000, 1500, 2000],
 | 
						|
                "s2": [900, 1400, 2000, 3000],
 | 
						|
                "s3": [1500, 1500, 1600, 1200],
 | 
						|
                "secondary_y": [1, 3, 4, 3],
 | 
						|
            },
 | 
						|
            index=indexes,
 | 
						|
        )
 | 
						|
        df[["s1", "s2", "s3"]].plot.bar(ax=ax, stacked=False)
 | 
						|
        df[["secondary_y"]].plot(ax=ax, secondary_y=True)
 | 
						|
 | 
						|
        xlims = ax.get_xlim()
 | 
						|
        assert xlims[0] < 0
 | 
						|
        assert xlims[1] > 3
 | 
						|
 | 
						|
        # make sure axis labels are plotted correctly as well
 | 
						|
        xticklabels = [t.get_text() for t in ax.get_xticklabels()]
 | 
						|
        assert xticklabels == indexes
 | 
						|
 | 
						|
    def test_plot_no_rows(self):
 | 
						|
        # GH 27758
 | 
						|
        df = DataFrame(columns=["foo"], dtype=int)
 | 
						|
        assert df.empty
 | 
						|
        ax = df.plot()
 | 
						|
        assert len(ax.get_lines()) == 1
 | 
						|
        line = ax.get_lines()[0]
 | 
						|
        assert len(line.get_xdata()) == 0
 | 
						|
        assert len(line.get_ydata()) == 0
 | 
						|
 | 
						|
    def test_plot_no_numeric_data(self):
 | 
						|
        df = DataFrame(["a", "b", "c"])
 | 
						|
        with pytest.raises(TypeError, match="no numeric data to plot"):
 | 
						|
            df.plot()
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index_name, old_label, new_label",
 | 
						|
        [
 | 
						|
            (None, "", "new"),
 | 
						|
            ("old", "old", "new"),
 | 
						|
            (None, "", ""),
 | 
						|
            (None, "", 1),
 | 
						|
            (None, "", [1, 2]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize("kind", ["line", "area", "bar"])
 | 
						|
    def test_xlabel_ylabel_dataframe_single_plot(
 | 
						|
        self, kind, index_name, old_label, new_label
 | 
						|
    ):
 | 
						|
        # GH 9093
 | 
						|
        df = DataFrame([[1, 2], [2, 5]], columns=["Type A", "Type B"])
 | 
						|
        df.index.name = index_name
 | 
						|
 | 
						|
        # default is the ylabel is not shown and xlabel is index name
 | 
						|
        ax = df.plot(kind=kind)
 | 
						|
        assert ax.get_xlabel() == old_label
 | 
						|
        assert ax.get_ylabel() == ""
 | 
						|
 | 
						|
        # old xlabel will be overridden and assigned ylabel will be used as ylabel
 | 
						|
        ax = df.plot(kind=kind, ylabel=new_label, xlabel=new_label)
 | 
						|
        assert ax.get_ylabel() == str(new_label)
 | 
						|
        assert ax.get_xlabel() == str(new_label)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "xlabel, ylabel",
 | 
						|
        [
 | 
						|
            (None, None),
 | 
						|
            ("X Label", None),
 | 
						|
            (None, "Y Label"),
 | 
						|
            ("X Label", "Y Label"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize("kind", ["scatter", "hexbin"])
 | 
						|
    def test_xlabel_ylabel_dataframe_plane_plot(self, kind, xlabel, ylabel):
 | 
						|
        # GH 37001
 | 
						|
        xcol = "Type A"
 | 
						|
        ycol = "Type B"
 | 
						|
        df = DataFrame([[1, 2], [2, 5]], columns=[xcol, ycol])
 | 
						|
 | 
						|
        # default is the labels are column names
 | 
						|
        ax = df.plot(kind=kind, x=xcol, y=ycol, xlabel=xlabel, ylabel=ylabel)
 | 
						|
        assert ax.get_xlabel() == (xcol if xlabel is None else xlabel)
 | 
						|
        assert ax.get_ylabel() == (ycol if ylabel is None else ylabel)
 | 
						|
 | 
						|
 | 
						|
def _generate_4_axes_via_gridspec():
 | 
						|
    import matplotlib as mpl
 | 
						|
    import matplotlib.gridspec
 | 
						|
    import matplotlib.pyplot as plt
 | 
						|
 | 
						|
    gs = mpl.gridspec.GridSpec(2, 2)
 | 
						|
    ax_tl = plt.subplot(gs[0, 0])
 | 
						|
    ax_ll = plt.subplot(gs[1, 0])
 | 
						|
    ax_tr = plt.subplot(gs[0, 1])
 | 
						|
    ax_lr = plt.subplot(gs[1, 1])
 | 
						|
 | 
						|
    return gs, [ax_tl, ax_ll, ax_tr, ax_lr]
 |