116 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    CategoricalIndex,
 | 
						|
    Index,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
class TestMap:
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data, categories",
 | 
						|
        [
 | 
						|
            (list("abcbca"), list("cab")),
 | 
						|
            (pd.interval_range(0, 3).repeat(3), pd.interval_range(0, 3)),
 | 
						|
        ],
 | 
						|
        ids=["string", "interval"],
 | 
						|
    )
 | 
						|
    def test_map_str(self, data, categories, ordered):
 | 
						|
        # GH 31202 - override base class since we want to maintain categorical/ordered
 | 
						|
        index = CategoricalIndex(data, categories=categories, ordered=ordered)
 | 
						|
        result = index.map(str)
 | 
						|
        expected = CategoricalIndex(
 | 
						|
            map(str, data), categories=map(str, categories), ordered=ordered
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_map(self):
 | 
						|
        ci = CategoricalIndex(list("ABABC"), categories=list("CBA"), ordered=True)
 | 
						|
        result = ci.map(lambda x: x.lower())
 | 
						|
        exp = CategoricalIndex(list("ababc"), categories=list("cba"), ordered=True)
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
        ci = CategoricalIndex(
 | 
						|
            list("ABABC"), categories=list("BAC"), ordered=False, name="XXX"
 | 
						|
        )
 | 
						|
        result = ci.map(lambda x: x.lower())
 | 
						|
        exp = CategoricalIndex(
 | 
						|
            list("ababc"), categories=list("bac"), ordered=False, name="XXX"
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
        # GH 12766: Return an index not an array
 | 
						|
        tm.assert_index_equal(
 | 
						|
            ci.map(lambda x: 1), Index(np.array([1] * 5, dtype=np.int64), name="XXX")
 | 
						|
        )
 | 
						|
 | 
						|
        # change categories dtype
 | 
						|
        ci = CategoricalIndex(list("ABABC"), categories=list("BAC"), ordered=False)
 | 
						|
 | 
						|
        def f(x):
 | 
						|
            return {"A": 10, "B": 20, "C": 30}.get(x)
 | 
						|
 | 
						|
        result = ci.map(f)
 | 
						|
        exp = CategoricalIndex(
 | 
						|
            [10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
        result = ci.map(Series([10, 20, 30], index=["A", "B", "C"]))
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
        result = ci.map({"A": 10, "B": 20, "C": 30})
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
    def test_map_with_categorical_series(self):
 | 
						|
        # GH 12756
 | 
						|
        a = Index([1, 2, 3, 4])
 | 
						|
        b = Series(["even", "odd", "even", "odd"], dtype="category")
 | 
						|
        c = Series(["even", "odd", "even", "odd"])
 | 
						|
 | 
						|
        exp = CategoricalIndex(["odd", "even", "odd", np.nan])
 | 
						|
        tm.assert_index_equal(a.map(b), exp)
 | 
						|
        exp = Index(["odd", "even", "odd", np.nan])
 | 
						|
        tm.assert_index_equal(a.map(c), exp)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        ("data", "f"),
 | 
						|
        (
 | 
						|
            ([1, 1, np.nan], pd.isna),
 | 
						|
            ([1, 2, np.nan], pd.isna),
 | 
						|
            ([1, 1, np.nan], {1: False}),
 | 
						|
            ([1, 2, np.nan], {1: False, 2: False}),
 | 
						|
            ([1, 1, np.nan], Series([False, False])),
 | 
						|
            ([1, 2, np.nan], Series([False, False, False])),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    def test_map_with_nan(self, data, f):  # GH 24241
 | 
						|
        values = pd.Categorical(data)
 | 
						|
        result = values.map(f)
 | 
						|
        if data[1] == 1:
 | 
						|
            expected = pd.Categorical([False, False, np.nan])
 | 
						|
            tm.assert_categorical_equal(result, expected)
 | 
						|
        else:
 | 
						|
            expected = Index([False, False, np.nan])
 | 
						|
            tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_map_with_dict_or_series(self):
 | 
						|
        orig_values = ["a", "B", 1, "a"]
 | 
						|
        new_values = ["one", 2, 3.0, "one"]
 | 
						|
        cur_index = CategoricalIndex(orig_values, name="XXX")
 | 
						|
        expected = CategoricalIndex(new_values, name="XXX", categories=[3.0, 2, "one"])
 | 
						|
 | 
						|
        mapper = Series(new_values[:-1], index=orig_values[:-1])
 | 
						|
        result = cur_index.map(mapper)
 | 
						|
        # Order of categories in result can be different
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        mapper = {o: n for o, n in zip(orig_values[:-1], new_values[:-1])}
 | 
						|
        result = cur_index.map(mapper)
 | 
						|
        # Order of categories in result can be different
 | 
						|
        tm.assert_index_equal(result, expected)
 |