741 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			741 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas.util._test_decorators as td
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    MultiIndex,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def gpd_style_subclass_df():
 | 
						|
    class SubclassedDataFrame(DataFrame):
 | 
						|
        @property
 | 
						|
        def _constructor(self):
 | 
						|
            return SubclassedDataFrame
 | 
						|
 | 
						|
    return SubclassedDataFrame({"a": [1, 2, 3]})
 | 
						|
 | 
						|
 | 
						|
class TestDataFrameSubclassing:
 | 
						|
    def test_frame_subclassing_and_slicing(self):
 | 
						|
        # Subclass frame and ensure it returns the right class on slicing it
 | 
						|
        # In reference to PR 9632
 | 
						|
 | 
						|
        class CustomSeries(Series):
 | 
						|
            @property
 | 
						|
            def _constructor(self):
 | 
						|
                return CustomSeries
 | 
						|
 | 
						|
            def custom_series_function(self):
 | 
						|
                return "OK"
 | 
						|
 | 
						|
        class CustomDataFrame(DataFrame):
 | 
						|
            """
 | 
						|
            Subclasses pandas DF, fills DF with simulation results, adds some
 | 
						|
            custom plotting functions.
 | 
						|
            """
 | 
						|
 | 
						|
            def __init__(self, *args, **kw):
 | 
						|
                super().__init__(*args, **kw)
 | 
						|
 | 
						|
            @property
 | 
						|
            def _constructor(self):
 | 
						|
                return CustomDataFrame
 | 
						|
 | 
						|
            _constructor_sliced = CustomSeries
 | 
						|
 | 
						|
            def custom_frame_function(self):
 | 
						|
                return "OK"
 | 
						|
 | 
						|
        data = {"col1": range(10), "col2": range(10)}
 | 
						|
        cdf = CustomDataFrame(data)
 | 
						|
 | 
						|
        # Did we get back our own DF class?
 | 
						|
        assert isinstance(cdf, CustomDataFrame)
 | 
						|
 | 
						|
        # Do we get back our own Series class after selecting a column?
 | 
						|
        cdf_series = cdf.col1
 | 
						|
        assert isinstance(cdf_series, CustomSeries)
 | 
						|
        assert cdf_series.custom_series_function() == "OK"
 | 
						|
 | 
						|
        # Do we get back our own DF class after slicing row-wise?
 | 
						|
        cdf_rows = cdf[1:5]
 | 
						|
        assert isinstance(cdf_rows, CustomDataFrame)
 | 
						|
        assert cdf_rows.custom_frame_function() == "OK"
 | 
						|
 | 
						|
        # Make sure sliced part of multi-index frame is custom class
 | 
						|
        mcol = MultiIndex.from_tuples([("A", "A"), ("A", "B")])
 | 
						|
        cdf_multi = CustomDataFrame([[0, 1], [2, 3]], columns=mcol)
 | 
						|
        assert isinstance(cdf_multi["A"], CustomDataFrame)
 | 
						|
 | 
						|
        mcol = MultiIndex.from_tuples([("A", ""), ("B", "")])
 | 
						|
        cdf_multi2 = CustomDataFrame([[0, 1], [2, 3]], columns=mcol)
 | 
						|
        assert isinstance(cdf_multi2["A"], CustomSeries)
 | 
						|
 | 
						|
    def test_dataframe_metadata(self):
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {"X": [1, 2, 3], "Y": [1, 2, 3]}, index=["a", "b", "c"]
 | 
						|
        )
 | 
						|
        df.testattr = "XXX"
 | 
						|
 | 
						|
        assert df.testattr == "XXX"
 | 
						|
        assert df[["X"]].testattr == "XXX"
 | 
						|
        assert df.loc[["a", "b"], :].testattr == "XXX"
 | 
						|
        assert df.iloc[[0, 1], :].testattr == "XXX"
 | 
						|
 | 
						|
        # see gh-9776
 | 
						|
        assert df.iloc[0:1, :].testattr == "XXX"
 | 
						|
 | 
						|
        # see gh-10553
 | 
						|
        unpickled = tm.round_trip_pickle(df)
 | 
						|
        tm.assert_frame_equal(df, unpickled)
 | 
						|
        assert df._metadata == unpickled._metadata
 | 
						|
        assert df.testattr == unpickled.testattr
 | 
						|
 | 
						|
    def test_indexing_sliced(self):
 | 
						|
        # GH 11559
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {"X": [1, 2, 3], "Y": [4, 5, 6], "Z": [7, 8, 9]}, index=["a", "b", "c"]
 | 
						|
        )
 | 
						|
        res = df.loc[:, "X"]
 | 
						|
        exp = tm.SubclassedSeries([1, 2, 3], index=list("abc"), name="X")
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
        assert isinstance(res, tm.SubclassedSeries)
 | 
						|
 | 
						|
        res = df.iloc[:, 1]
 | 
						|
        exp = tm.SubclassedSeries([4, 5, 6], index=list("abc"), name="Y")
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
        assert isinstance(res, tm.SubclassedSeries)
 | 
						|
 | 
						|
        res = df.loc[:, "Z"]
 | 
						|
        exp = tm.SubclassedSeries([7, 8, 9], index=list("abc"), name="Z")
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
        assert isinstance(res, tm.SubclassedSeries)
 | 
						|
 | 
						|
        res = df.loc["a", :]
 | 
						|
        exp = tm.SubclassedSeries([1, 4, 7], index=list("XYZ"), name="a")
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
        assert isinstance(res, tm.SubclassedSeries)
 | 
						|
 | 
						|
        res = df.iloc[1, :]
 | 
						|
        exp = tm.SubclassedSeries([2, 5, 8], index=list("XYZ"), name="b")
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
        assert isinstance(res, tm.SubclassedSeries)
 | 
						|
 | 
						|
        res = df.loc["c", :]
 | 
						|
        exp = tm.SubclassedSeries([3, 6, 9], index=list("XYZ"), name="c")
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
        assert isinstance(res, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_subclass_attr_err_propagation(self):
 | 
						|
        # GH 11808
 | 
						|
        class A(DataFrame):
 | 
						|
            @property
 | 
						|
            def bar(self):
 | 
						|
                return self.i_dont_exist
 | 
						|
 | 
						|
        with pytest.raises(AttributeError, match=".*i_dont_exist.*"):
 | 
						|
            A().bar
 | 
						|
 | 
						|
    def test_subclass_align(self):
 | 
						|
        # GH 12983
 | 
						|
        df1 = tm.SubclassedDataFrame(
 | 
						|
            {"a": [1, 3, 5], "b": [1, 3, 5]}, index=list("ACE")
 | 
						|
        )
 | 
						|
        df2 = tm.SubclassedDataFrame(
 | 
						|
            {"c": [1, 2, 4], "d": [1, 2, 4]}, index=list("ABD")
 | 
						|
        )
 | 
						|
 | 
						|
        res1, res2 = df1.align(df2, axis=0)
 | 
						|
        exp1 = tm.SubclassedDataFrame(
 | 
						|
            {"a": [1, np.nan, 3, np.nan, 5], "b": [1, np.nan, 3, np.nan, 5]},
 | 
						|
            index=list("ABCDE"),
 | 
						|
        )
 | 
						|
        exp2 = tm.SubclassedDataFrame(
 | 
						|
            {"c": [1, 2, np.nan, 4, np.nan], "d": [1, 2, np.nan, 4, np.nan]},
 | 
						|
            index=list("ABCDE"),
 | 
						|
        )
 | 
						|
        assert isinstance(res1, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(res1, exp1)
 | 
						|
        assert isinstance(res2, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(res2, exp2)
 | 
						|
 | 
						|
        res1, res2 = df1.a.align(df2.c)
 | 
						|
        assert isinstance(res1, tm.SubclassedSeries)
 | 
						|
        tm.assert_series_equal(res1, exp1.a)
 | 
						|
        assert isinstance(res2, tm.SubclassedSeries)
 | 
						|
        tm.assert_series_equal(res2, exp2.c)
 | 
						|
 | 
						|
    def test_subclass_align_combinations(self):
 | 
						|
        # GH 12983
 | 
						|
        df = tm.SubclassedDataFrame({"a": [1, 3, 5], "b": [1, 3, 5]}, index=list("ACE"))
 | 
						|
        s = tm.SubclassedSeries([1, 2, 4], index=list("ABD"), name="x")
 | 
						|
 | 
						|
        # frame + series
 | 
						|
        res1, res2 = df.align(s, axis=0)
 | 
						|
        exp1 = tm.SubclassedDataFrame(
 | 
						|
            {"a": [1, np.nan, 3, np.nan, 5], "b": [1, np.nan, 3, np.nan, 5]},
 | 
						|
            index=list("ABCDE"),
 | 
						|
        )
 | 
						|
        # name is lost when
 | 
						|
        exp2 = tm.SubclassedSeries(
 | 
						|
            [1, 2, np.nan, 4, np.nan], index=list("ABCDE"), name="x"
 | 
						|
        )
 | 
						|
 | 
						|
        assert isinstance(res1, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(res1, exp1)
 | 
						|
        assert isinstance(res2, tm.SubclassedSeries)
 | 
						|
        tm.assert_series_equal(res2, exp2)
 | 
						|
 | 
						|
        # series + frame
 | 
						|
        res1, res2 = s.align(df)
 | 
						|
        assert isinstance(res1, tm.SubclassedSeries)
 | 
						|
        tm.assert_series_equal(res1, exp2)
 | 
						|
        assert isinstance(res2, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(res2, exp1)
 | 
						|
 | 
						|
    def test_subclass_iterrows(self):
 | 
						|
        # GH 13977
 | 
						|
        df = tm.SubclassedDataFrame({"a": [1]})
 | 
						|
        for i, row in df.iterrows():
 | 
						|
            assert isinstance(row, tm.SubclassedSeries)
 | 
						|
            tm.assert_series_equal(row, df.loc[i])
 | 
						|
 | 
						|
    def test_subclass_stack(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
 | 
						|
            index=["a", "b", "c"],
 | 
						|
            columns=["X", "Y", "Z"],
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.stack()
 | 
						|
        exp = tm.SubclassedSeries(
 | 
						|
            [1, 2, 3, 4, 5, 6, 7, 8, 9], index=[list("aaabbbccc"), list("XYZXYZXYZ")]
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
 | 
						|
    def test_subclass_stack_multi(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [[10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"]
 | 
						|
            ),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 12],
 | 
						|
                [11, 13],
 | 
						|
                [20, 22],
 | 
						|
                [21, 23],
 | 
						|
                [30, 32],
 | 
						|
                [31, 33],
 | 
						|
                [40, 42],
 | 
						|
                [41, 43],
 | 
						|
            ],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AAAABBBB"), list("ccddccdd"), list("yzyzyzyz"))),
 | 
						|
                names=["aaa", "ccc", "yyy"],
 | 
						|
            ),
 | 
						|
            columns=Index(["W", "X"], name="www"),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.stack()
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        res = df.stack("yyy")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 11],
 | 
						|
                [12, 13],
 | 
						|
                [20, 21],
 | 
						|
                [22, 23],
 | 
						|
                [30, 31],
 | 
						|
                [32, 33],
 | 
						|
                [40, 41],
 | 
						|
                [42, 43],
 | 
						|
            ],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AAAABBBB"), list("ccddccdd"), list("WXWXWXWX"))),
 | 
						|
                names=["aaa", "ccc", "www"],
 | 
						|
            ),
 | 
						|
            columns=Index(["y", "z"], name="yyy"),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.stack("www")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
    def test_subclass_stack_multi_mixed(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 11, 12.0, 13.0],
 | 
						|
                [20, 21, 22.0, 23.0],
 | 
						|
                [30, 31, 32.0, 33.0],
 | 
						|
                [40, 41, 42.0, 43.0],
 | 
						|
            ],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"]
 | 
						|
            ),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 12.0],
 | 
						|
                [11, 13.0],
 | 
						|
                [20, 22.0],
 | 
						|
                [21, 23.0],
 | 
						|
                [30, 32.0],
 | 
						|
                [31, 33.0],
 | 
						|
                [40, 42.0],
 | 
						|
                [41, 43.0],
 | 
						|
            ],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AAAABBBB"), list("ccddccdd"), list("yzyzyzyz"))),
 | 
						|
                names=["aaa", "ccc", "yyy"],
 | 
						|
            ),
 | 
						|
            columns=Index(["W", "X"], name="www"),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.stack()
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        res = df.stack("yyy")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10.0, 11.0],
 | 
						|
                [12.0, 13.0],
 | 
						|
                [20.0, 21.0],
 | 
						|
                [22.0, 23.0],
 | 
						|
                [30.0, 31.0],
 | 
						|
                [32.0, 33.0],
 | 
						|
                [40.0, 41.0],
 | 
						|
                [42.0, 43.0],
 | 
						|
            ],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AAAABBBB"), list("ccddccdd"), list("WXWXWXWX"))),
 | 
						|
                names=["aaa", "ccc", "www"],
 | 
						|
            ),
 | 
						|
            columns=Index(["y", "z"], name="yyy"),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.stack("www")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
    def test_subclass_unstack(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
 | 
						|
            index=["a", "b", "c"],
 | 
						|
            columns=["X", "Y", "Z"],
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.unstack()
 | 
						|
        exp = tm.SubclassedSeries(
 | 
						|
            [1, 4, 7, 2, 5, 8, 3, 6, 9], index=[list("XXXYYYZZZ"), list("abcabcabc")]
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(res, exp)
 | 
						|
 | 
						|
    def test_subclass_unstack_multi(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [[10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"]
 | 
						|
            ),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [[10, 20, 11, 21, 12, 22, 13, 23], [30, 40, 31, 41, 32, 42, 33, 43]],
 | 
						|
            index=Index(["A", "B"], name="aaa"),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("cdcdcdcd"))),
 | 
						|
                names=["www", "yyy", "ccc"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.unstack()
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        res = df.unstack("ccc")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [[10, 30, 11, 31, 12, 32, 13, 33], [20, 40, 21, 41, 22, 42, 23, 43]],
 | 
						|
            index=Index(["c", "d"], name="ccc"),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("ABABABAB"))),
 | 
						|
                names=["www", "yyy", "aaa"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.unstack("aaa")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
    def test_subclass_unstack_multi_mixed(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 11, 12.0, 13.0],
 | 
						|
                [20, 21, 22.0, 23.0],
 | 
						|
                [30, 31, 32.0, 33.0],
 | 
						|
                [40, 41, 42.0, 43.0],
 | 
						|
            ],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"]
 | 
						|
            ),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 20, 11, 21, 12.0, 22.0, 13.0, 23.0],
 | 
						|
                [30, 40, 31, 41, 32.0, 42.0, 33.0, 43.0],
 | 
						|
            ],
 | 
						|
            index=Index(["A", "B"], name="aaa"),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("cdcdcdcd"))),
 | 
						|
                names=["www", "yyy", "ccc"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.unstack()
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        res = df.unstack("ccc")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
        exp = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                [10, 30, 11, 31, 12.0, 32.0, 13.0, 33.0],
 | 
						|
                [20, 40, 21, 41, 22.0, 42.0, 23.0, 43.0],
 | 
						|
            ],
 | 
						|
            index=Index(["c", "d"], name="ccc"),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("ABABABAB"))),
 | 
						|
                names=["www", "yyy", "aaa"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        res = df.unstack("aaa")
 | 
						|
        tm.assert_frame_equal(res, exp)
 | 
						|
 | 
						|
    def test_subclass_pivot(self):
 | 
						|
        # GH 15564
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {
 | 
						|
                "index": ["A", "B", "C", "C", "B", "A"],
 | 
						|
                "columns": ["One", "One", "One", "Two", "Two", "Two"],
 | 
						|
                "values": [1.0, 2.0, 3.0, 3.0, 2.0, 1.0],
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        pivoted = df.pivot(index="index", columns="columns", values="values")
 | 
						|
 | 
						|
        expected = tm.SubclassedDataFrame(
 | 
						|
            {
 | 
						|
                "One": {"A": 1.0, "B": 2.0, "C": 3.0},
 | 
						|
                "Two": {"A": 1.0, "B": 2.0, "C": 3.0},
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        expected.index.name, expected.columns.name = "index", "columns"
 | 
						|
 | 
						|
        tm.assert_frame_equal(pivoted, expected)
 | 
						|
 | 
						|
    def test_subclassed_melt(self):
 | 
						|
        # GH 15564
 | 
						|
        cheese = tm.SubclassedDataFrame(
 | 
						|
            {
 | 
						|
                "first": ["John", "Mary"],
 | 
						|
                "last": ["Doe", "Bo"],
 | 
						|
                "height": [5.5, 6.0],
 | 
						|
                "weight": [130, 150],
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        melted = pd.melt(cheese, id_vars=["first", "last"])
 | 
						|
 | 
						|
        expected = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                ["John", "Doe", "height", 5.5],
 | 
						|
                ["Mary", "Bo", "height", 6.0],
 | 
						|
                ["John", "Doe", "weight", 130],
 | 
						|
                ["Mary", "Bo", "weight", 150],
 | 
						|
            ],
 | 
						|
            columns=["first", "last", "variable", "value"],
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_frame_equal(melted, expected)
 | 
						|
 | 
						|
    def test_subclassed_wide_to_long(self):
 | 
						|
        # GH 9762
 | 
						|
 | 
						|
        np.random.seed(123)
 | 
						|
        x = np.random.randn(3)
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {
 | 
						|
                "A1970": {0: "a", 1: "b", 2: "c"},
 | 
						|
                "A1980": {0: "d", 1: "e", 2: "f"},
 | 
						|
                "B1970": {0: 2.5, 1: 1.2, 2: 0.7},
 | 
						|
                "B1980": {0: 3.2, 1: 1.3, 2: 0.1},
 | 
						|
                "X": dict(zip(range(3), x)),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        df["id"] = df.index
 | 
						|
        exp_data = {
 | 
						|
            "X": x.tolist() + x.tolist(),
 | 
						|
            "A": ["a", "b", "c", "d", "e", "f"],
 | 
						|
            "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1],
 | 
						|
            "year": [1970, 1970, 1970, 1980, 1980, 1980],
 | 
						|
            "id": [0, 1, 2, 0, 1, 2],
 | 
						|
        }
 | 
						|
        expected = tm.SubclassedDataFrame(exp_data)
 | 
						|
        expected = expected.set_index(["id", "year"])[["X", "A", "B"]]
 | 
						|
        long_frame = pd.wide_to_long(df, ["A", "B"], i="id", j="year")
 | 
						|
 | 
						|
        tm.assert_frame_equal(long_frame, expected)
 | 
						|
 | 
						|
    def test_subclassed_apply(self):
 | 
						|
        # GH 19822
 | 
						|
 | 
						|
        def check_row_subclass(row):
 | 
						|
            assert isinstance(row, tm.SubclassedSeries)
 | 
						|
 | 
						|
        def stretch(row):
 | 
						|
            if row["variable"] == "height":
 | 
						|
                row["value"] += 0.5
 | 
						|
            return row
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                ["John", "Doe", "height", 5.5],
 | 
						|
                ["Mary", "Bo", "height", 6.0],
 | 
						|
                ["John", "Doe", "weight", 130],
 | 
						|
                ["Mary", "Bo", "weight", 150],
 | 
						|
            ],
 | 
						|
            columns=["first", "last", "variable", "value"],
 | 
						|
        )
 | 
						|
 | 
						|
        df.apply(lambda x: check_row_subclass(x))
 | 
						|
        df.apply(lambda x: check_row_subclass(x), axis=1)
 | 
						|
 | 
						|
        expected = tm.SubclassedDataFrame(
 | 
						|
            [
 | 
						|
                ["John", "Doe", "height", 6.0],
 | 
						|
                ["Mary", "Bo", "height", 6.5],
 | 
						|
                ["John", "Doe", "weight", 130],
 | 
						|
                ["Mary", "Bo", "weight", 150],
 | 
						|
            ],
 | 
						|
            columns=["first", "last", "variable", "value"],
 | 
						|
        )
 | 
						|
 | 
						|
        result = df.apply(lambda x: stretch(x), axis=1)
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        expected = tm.SubclassedDataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]])
 | 
						|
 | 
						|
        result = df.apply(lambda x: tm.SubclassedSeries([1, 2, 3]), axis=1)
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = df.apply(lambda x: [1, 2, 3], axis=1, result_type="expand")
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        expected = tm.SubclassedSeries([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]])
 | 
						|
 | 
						|
        result = df.apply(lambda x: [1, 2, 3], axis=1)
 | 
						|
        assert not isinstance(result, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.filterwarnings("ignore:.*None will no longer:FutureWarning")
 | 
						|
    def test_subclassed_reductions(self, all_reductions):
 | 
						|
        # GH 25596
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = getattr(df, all_reductions)()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_subclassed_count(self):
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {
 | 
						|
                "Person": ["John", "Myla", "Lewis", "John", "Myla"],
 | 
						|
                "Age": [24.0, np.nan, 21.0, 33, 26],
 | 
						|
                "Single": [False, True, True, True, False],
 | 
						|
            }
 | 
						|
        )
 | 
						|
        result = df.count()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 0, 3], "B": [0, 5, 6], "C": [7, 8, 0]})
 | 
						|
        result = df.count()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            [[10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"]
 | 
						|
            ),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        with tm.assert_produces_warning(FutureWarning):
 | 
						|
            result = df.count(level=1)
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame()
 | 
						|
        result = df.count()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_isin(self):
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {"num_legs": [2, 4], "num_wings": [2, 0]}, index=["falcon", "dog"]
 | 
						|
        )
 | 
						|
        result = df.isin([0, 2])
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
 | 
						|
    def test_duplicated(self):
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = df.duplicated()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame()
 | 
						|
        result = df.duplicated()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("idx_method", ["idxmax", "idxmin"])
 | 
						|
    def test_idx(self, idx_method):
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = getattr(df, idx_method)()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_dot(self):
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
 | 
						|
        s = tm.SubclassedSeries([1, 1, 2, 1])
 | 
						|
        result = df.dot(s)
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
 | 
						|
        s = tm.SubclassedDataFrame([1, 1, 2, 1])
 | 
						|
        result = df.dot(s)
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
 | 
						|
    def test_memory_usage(self):
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = df.memory_usage()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
        result = df.memory_usage(index=False)
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_corrwith(self):
 | 
						|
        index = ["a", "b", "c", "d", "e"]
 | 
						|
        columns = ["one", "two", "three", "four"]
 | 
						|
        df1 = tm.SubclassedDataFrame(
 | 
						|
            np.random.randn(5, 4), index=index, columns=columns
 | 
						|
        )
 | 
						|
        df2 = tm.SubclassedDataFrame(
 | 
						|
            np.random.randn(4, 4), index=index[:4], columns=columns
 | 
						|
        )
 | 
						|
        correls = df1.corrwith(df2, axis=1, drop=True, method="kendall")
 | 
						|
 | 
						|
        assert isinstance(correls, (tm.SubclassedSeries))
 | 
						|
 | 
						|
    def test_asof(self):
 | 
						|
 | 
						|
        N = 3
 | 
						|
        rng = pd.date_range("1/1/1990", periods=N, freq="53s")
 | 
						|
        df = tm.SubclassedDataFrame(
 | 
						|
            {
 | 
						|
                "A": [np.nan, np.nan, np.nan],
 | 
						|
                "B": [np.nan, np.nan, np.nan],
 | 
						|
                "C": [np.nan, np.nan, np.nan],
 | 
						|
            },
 | 
						|
            index=rng,
 | 
						|
        )
 | 
						|
 | 
						|
        result = df.asof(rng[-2:])
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
 | 
						|
        result = df.asof(rng[-2])
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
        result = df.asof("1989-12-31")
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_idxmin_preserves_subclass(self):
 | 
						|
        # GH 28330
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = df.idxmin()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_idxmax_preserves_subclass(self):
 | 
						|
        # GH 28330
 | 
						|
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = df.idxmax()
 | 
						|
        assert isinstance(result, tm.SubclassedSeries)
 | 
						|
 | 
						|
    def test_convert_dtypes_preserves_subclass(self, gpd_style_subclass_df):
 | 
						|
        # GH 43668
 | 
						|
        df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
 | 
						|
        result = df.convert_dtypes()
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
 | 
						|
        result = gpd_style_subclass_df.convert_dtypes()
 | 
						|
        assert isinstance(result, type(gpd_style_subclass_df))
 | 
						|
 | 
						|
    def test_equals_subclass(self):
 | 
						|
        # https://github.com/pandas-dev/pandas/pull/34402
 | 
						|
        # allow subclass in both directions
 | 
						|
        df1 = DataFrame({"a": [1, 2, 3]})
 | 
						|
        df2 = tm.SubclassedDataFrame({"a": [1, 2, 3]})
 | 
						|
        assert df1.equals(df2)
 | 
						|
        assert df2.equals(df1)
 | 
						|
 | 
						|
    def test_replace_list_method(self):
 | 
						|
        # https://github.com/pandas-dev/pandas/pull/46018
 | 
						|
        df = tm.SubclassedDataFrame({"A": [0, 1, 2]})
 | 
						|
        result = df.replace([1, 2], method="ffill")
 | 
						|
        expected = tm.SubclassedDataFrame({"A": [0, 0, 0]})
 | 
						|
        assert isinstance(result, tm.SubclassedDataFrame)
 | 
						|
        tm.assert_frame_equal(result, expected)
 |