2154 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2154 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import datetime
 | 
						|
from io import StringIO
 | 
						|
import itertools
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.errors import PerformanceWarning
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    MultiIndex,
 | 
						|
    Period,
 | 
						|
    Series,
 | 
						|
    Timedelta,
 | 
						|
    date_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core.reshape import reshape as reshape_lib
 | 
						|
 | 
						|
 | 
						|
class TestDataFrameReshape:
 | 
						|
    def test_stack_unstack(self, float_frame):
 | 
						|
        df = float_frame.copy()
 | 
						|
        df[:] = np.arange(np.prod(df.shape)).reshape(df.shape)
 | 
						|
 | 
						|
        stacked = df.stack()
 | 
						|
        stacked_df = DataFrame({"foo": stacked, "bar": stacked})
 | 
						|
 | 
						|
        unstacked = stacked.unstack()
 | 
						|
        unstacked_df = stacked_df.unstack()
 | 
						|
 | 
						|
        tm.assert_frame_equal(unstacked, df)
 | 
						|
        tm.assert_frame_equal(unstacked_df["bar"], df)
 | 
						|
 | 
						|
        unstacked_cols = stacked.unstack(0)
 | 
						|
        unstacked_cols_df = stacked_df.unstack(0)
 | 
						|
        tm.assert_frame_equal(unstacked_cols.T, df)
 | 
						|
        tm.assert_frame_equal(unstacked_cols_df["bar"].T, df)
 | 
						|
 | 
						|
    def test_stack_mixed_level(self):
 | 
						|
        # GH 18310
 | 
						|
        levels = [range(3), [3, "a", "b"], [1, 2]]
 | 
						|
 | 
						|
        # flat columns:
 | 
						|
        df = DataFrame(1, index=levels[0], columns=levels[1])
 | 
						|
        result = df.stack()
 | 
						|
        expected = Series(1, index=MultiIndex.from_product(levels[:2]))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # MultiIndex columns:
 | 
						|
        df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:]))
 | 
						|
        result = df.stack(1)
 | 
						|
        expected = DataFrame(
 | 
						|
            1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1]
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # as above, but used labels in level are actually of homogeneous type
 | 
						|
        result = df[["a", "b"]].stack(1)
 | 
						|
        expected = expected[["a", "b"]]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_not_consolidated(self, using_array_manager):
 | 
						|
        # Gh#34708
 | 
						|
        df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]})
 | 
						|
        df2 = df[["x"]]
 | 
						|
        df2["y"] = df["y"]
 | 
						|
        if not using_array_manager:
 | 
						|
            assert len(df2._mgr.blocks) == 2
 | 
						|
 | 
						|
        res = df2.unstack()
 | 
						|
        expected = df.unstack()
 | 
						|
        tm.assert_series_equal(res, expected)
 | 
						|
 | 
						|
    def test_unstack_fill(self):
 | 
						|
 | 
						|
        # GH #9746: fill_value keyword argument for Series
 | 
						|
        # and DataFrame unstack
 | 
						|
 | 
						|
        # From a series
 | 
						|
        data = Series([1, 2, 4, 5], dtype=np.int16)
 | 
						|
        data.index = MultiIndex.from_tuples(
 | 
						|
            [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
        )
 | 
						|
 | 
						|
        result = data.unstack(fill_value=-1)
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # From a series with incorrect data type for fill_value
 | 
						|
        result = data.unstack(fill_value=0.5)
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # GH #13971: fill_value when unstacking multiple levels:
 | 
						|
        df = DataFrame(
 | 
						|
            {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]}
 | 
						|
        ).set_index(["x", "y", "z"])
 | 
						|
        unstacked = df.unstack(["x", "y"], fill_value=0)
 | 
						|
        key = ("w", "b", "j")
 | 
						|
        expected = unstacked[key]
 | 
						|
        result = Series([0, 0, 2], index=unstacked.index, name=key)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        stacked = unstacked.stack(["x", "y"])
 | 
						|
        stacked.index = stacked.index.reorder_levels(df.index.names)
 | 
						|
        # Workaround for GH #17886 (unnecessarily casts to float):
 | 
						|
        stacked = stacked.astype(np.int64)
 | 
						|
        result = stacked.loc[df.index]
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
        # From a series
 | 
						|
        s = df["w"]
 | 
						|
        result = s.unstack(["x", "y"], fill_value=0)
 | 
						|
        expected = unstacked["w"]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_fill_frame(self):
 | 
						|
 | 
						|
        # From a dataframe
 | 
						|
        rows = [[1, 2], [3, 4], [5, 6], [7, 8]]
 | 
						|
        df = DataFrame(rows, columns=list("AB"), dtype=np.int32)
 | 
						|
        df.index = MultiIndex.from_tuples(
 | 
						|
            [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
        )
 | 
						|
 | 
						|
        result = df.unstack(fill_value=-1)
 | 
						|
 | 
						|
        rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]]
 | 
						|
        expected = DataFrame(rows, index=list("xyz"), dtype=np.int32)
 | 
						|
        expected.columns = MultiIndex.from_tuples(
 | 
						|
            [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")]
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # From a mixed type dataframe
 | 
						|
        df["A"] = df["A"].astype(np.int16)
 | 
						|
        df["B"] = df["B"].astype(np.float64)
 | 
						|
 | 
						|
        result = df.unstack(fill_value=-1)
 | 
						|
        expected["A"] = expected["A"].astype(np.int16)
 | 
						|
        expected["B"] = expected["B"].astype(np.float64)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # From a dataframe with incorrect data type for fill_value
 | 
						|
        result = df.unstack(fill_value=0.5)
 | 
						|
 | 
						|
        rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]]
 | 
						|
        expected = DataFrame(rows, index=list("xyz"), dtype=float)
 | 
						|
        expected.columns = MultiIndex.from_tuples(
 | 
						|
            [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")]
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_fill_frame_datetime(self):
 | 
						|
 | 
						|
        # Test unstacking with date times
 | 
						|
        dv = date_range("2012-01-01", periods=4).values
 | 
						|
        data = Series(dv)
 | 
						|
        data.index = MultiIndex.from_tuples(
 | 
						|
            [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
        )
 | 
						|
 | 
						|
        result = data.unstack()
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]},
 | 
						|
            index=["x", "y", "z"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = data.unstack(fill_value=dv[0])
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]},
 | 
						|
            index=["x", "y", "z"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_fill_frame_timedelta(self):
 | 
						|
 | 
						|
        # Test unstacking with time deltas
 | 
						|
        td = [Timedelta(days=i) for i in range(4)]
 | 
						|
        data = Series(td)
 | 
						|
        data.index = MultiIndex.from_tuples(
 | 
						|
            [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
        )
 | 
						|
 | 
						|
        result = data.unstack()
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]},
 | 
						|
            index=["x", "y", "z"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = data.unstack(fill_value=td[1])
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]},
 | 
						|
            index=["x", "y", "z"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_fill_frame_period(self):
 | 
						|
 | 
						|
        # Test unstacking with period
 | 
						|
        periods = [
 | 
						|
            Period("2012-01"),
 | 
						|
            Period("2012-02"),
 | 
						|
            Period("2012-03"),
 | 
						|
            Period("2012-04"),
 | 
						|
        ]
 | 
						|
        data = Series(periods)
 | 
						|
        data.index = MultiIndex.from_tuples(
 | 
						|
            [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
        )
 | 
						|
 | 
						|
        result = data.unstack()
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]},
 | 
						|
            index=["x", "y", "z"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = data.unstack(fill_value=periods[1])
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                "a": [periods[0], periods[1], periods[3]],
 | 
						|
                "b": [periods[1], periods[2], periods[1]],
 | 
						|
            },
 | 
						|
            index=["x", "y", "z"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_fill_frame_categorical(self):
 | 
						|
 | 
						|
        # Test unstacking with categorical
 | 
						|
        data = Series(["a", "b", "c", "a"], dtype="category")
 | 
						|
        data.index = MultiIndex.from_tuples(
 | 
						|
            [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
        )
 | 
						|
 | 
						|
        # By default missing values will be NaN
 | 
						|
        result = data.unstack()
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                "a": pd.Categorical(list("axa"), categories=list("abc")),
 | 
						|
                "b": pd.Categorical(list("bcx"), categories=list("abc")),
 | 
						|
            },
 | 
						|
            index=list("xyz"),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # Fill with non-category results in a ValueError
 | 
						|
        msg = r"Cannot setitem on a Categorical with a new category \(d\)"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            data.unstack(fill_value="d")
 | 
						|
 | 
						|
        # Fill with category value replaces missing values as expected
 | 
						|
        result = data.unstack(fill_value="c")
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                "a": pd.Categorical(list("aca"), categories=list("abc")),
 | 
						|
                "b": pd.Categorical(list("bcc"), categories=list("abc")),
 | 
						|
            },
 | 
						|
            index=list("xyz"),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_tuplename_in_multiindex(self):
 | 
						|
        # GH 19966
 | 
						|
        idx = MultiIndex.from_product(
 | 
						|
            [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")]
 | 
						|
        )
 | 
						|
        df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx)
 | 
						|
        result = df.unstack(("A", "a"))
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]],
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [
 | 
						|
                    ("d", "a"),
 | 
						|
                    ("d", "b"),
 | 
						|
                    ("d", "c"),
 | 
						|
                    ("e", "a"),
 | 
						|
                    ("e", "b"),
 | 
						|
                    ("e", "c"),
 | 
						|
                ],
 | 
						|
                names=[None, ("A", "a")],
 | 
						|
            ),
 | 
						|
            index=Index([1, 2, 3], name=("B", "b")),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "unstack_idx, expected_values, expected_index, expected_columns",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                ("A", "a"),
 | 
						|
                [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]],
 | 
						|
                MultiIndex.from_tuples(
 | 
						|
                    [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"]
 | 
						|
                ),
 | 
						|
                MultiIndex.from_tuples(
 | 
						|
                    [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")],
 | 
						|
                    names=[None, ("A", "a")],
 | 
						|
                ),
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                (("A", "a"), "B"),
 | 
						|
                [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]],
 | 
						|
                Index([3, 4], name="C"),
 | 
						|
                MultiIndex.from_tuples(
 | 
						|
                    [
 | 
						|
                        ("d", "a", 1),
 | 
						|
                        ("d", "a", 2),
 | 
						|
                        ("d", "b", 1),
 | 
						|
                        ("d", "b", 2),
 | 
						|
                        ("e", "a", 1),
 | 
						|
                        ("e", "a", 2),
 | 
						|
                        ("e", "b", 1),
 | 
						|
                        ("e", "b", 2),
 | 
						|
                    ],
 | 
						|
                    names=[None, ("A", "a"), "B"],
 | 
						|
                ),
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_unstack_mixed_type_name_in_multiindex(
 | 
						|
        self, unstack_idx, expected_values, expected_index, expected_columns
 | 
						|
    ):
 | 
						|
        # GH 19966
 | 
						|
        idx = MultiIndex.from_product(
 | 
						|
            [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"]
 | 
						|
        )
 | 
						|
        df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx)
 | 
						|
        result = df.unstack(unstack_idx)
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            expected_values, columns=expected_columns, index=expected_index
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_preserve_dtypes(self):
 | 
						|
        # Checks fix for #11847
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "state": ["IL", "MI", "NC"],
 | 
						|
                "index": ["a", "b", "c"],
 | 
						|
                "some_categories": Series(["a", "b", "c"]).astype("category"),
 | 
						|
                "A": np.random.rand(3),
 | 
						|
                "B": 1,
 | 
						|
                "C": "foo",
 | 
						|
                "D": pd.Timestamp("20010102"),
 | 
						|
                "E": Series([1.0, 50.0, 100.0]).astype("float32"),
 | 
						|
                "F": Series([3.0, 4.0, 5.0]).astype("float64"),
 | 
						|
                "G": False,
 | 
						|
                "H": Series([1, 200, 923442]).astype("int8"),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        def unstack_and_compare(df, column_name):
 | 
						|
            unstacked1 = df.unstack([column_name])
 | 
						|
            unstacked2 = df.unstack(column_name)
 | 
						|
            tm.assert_frame_equal(unstacked1, unstacked2)
 | 
						|
 | 
						|
        df1 = df.set_index(["state", "index"])
 | 
						|
        unstack_and_compare(df1, "index")
 | 
						|
 | 
						|
        df1 = df.set_index(["state", "some_categories"])
 | 
						|
        unstack_and_compare(df1, "some_categories")
 | 
						|
 | 
						|
        df1 = df.set_index(["F", "C"])
 | 
						|
        unstack_and_compare(df1, "F")
 | 
						|
 | 
						|
        df1 = df.set_index(["G", "B", "state"])
 | 
						|
        unstack_and_compare(df1, "B")
 | 
						|
 | 
						|
        df1 = df.set_index(["E", "A"])
 | 
						|
        unstack_and_compare(df1, "E")
 | 
						|
 | 
						|
        df1 = df.set_index(["state", "index"])
 | 
						|
        s = df1["A"]
 | 
						|
        unstack_and_compare(s, "index")
 | 
						|
 | 
						|
    def test_stack_ints(self):
 | 
						|
        columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3)))
 | 
						|
        df = DataFrame(np.random.randn(30, 27), columns=columns)
 | 
						|
 | 
						|
        tm.assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1))
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1)
 | 
						|
        )
 | 
						|
 | 
						|
        df_named = df.copy()
 | 
						|
        return_value = df_named.columns.set_names(range(3), inplace=True)
 | 
						|
        assert return_value is None
 | 
						|
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1)
 | 
						|
        )
 | 
						|
 | 
						|
    def test_stack_mixed_levels(self):
 | 
						|
        columns = MultiIndex.from_tuples(
 | 
						|
            [
 | 
						|
                ("A", "cat", "long"),
 | 
						|
                ("B", "cat", "long"),
 | 
						|
                ("A", "dog", "short"),
 | 
						|
                ("B", "dog", "short"),
 | 
						|
            ],
 | 
						|
            names=["exp", "animal", "hair_length"],
 | 
						|
        )
 | 
						|
        df = DataFrame(np.random.randn(4, 4), columns=columns)
 | 
						|
 | 
						|
        animal_hair_stacked = df.stack(level=["animal", "hair_length"])
 | 
						|
        exp_hair_stacked = df.stack(level=["exp", "hair_length"])
 | 
						|
 | 
						|
        # GH #8584: Need to check that stacking works when a number
 | 
						|
        # is passed that is both a level name and in the range of
 | 
						|
        # the level numbers
 | 
						|
        df2 = df.copy()
 | 
						|
        df2.columns.names = ["exp", "animal", 1]
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df2.stack(level=["animal", 1]), animal_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df2.stack(level=["exp", 1]), exp_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
 | 
						|
        # When mixed types are passed and the ints are not level
 | 
						|
        # names, raise
 | 
						|
        msg = (
 | 
						|
            "level should contain all level names or all level numbers, not "
 | 
						|
            "a mixture of the two"
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df2.stack(level=["animal", 0])
 | 
						|
 | 
						|
        # GH #8584: Having 0 in the level names could raise a
 | 
						|
        # strange error about lexsort depth
 | 
						|
        df3 = df.copy()
 | 
						|
        df3.columns.names = ["exp", "animal", 0]
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df3.stack(level=["animal", 0]), animal_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
 | 
						|
    def test_stack_int_level_names(self):
 | 
						|
        columns = MultiIndex.from_tuples(
 | 
						|
            [
 | 
						|
                ("A", "cat", "long"),
 | 
						|
                ("B", "cat", "long"),
 | 
						|
                ("A", "dog", "short"),
 | 
						|
                ("B", "dog", "short"),
 | 
						|
            ],
 | 
						|
            names=["exp", "animal", "hair_length"],
 | 
						|
        )
 | 
						|
        df = DataFrame(np.random.randn(4, 4), columns=columns)
 | 
						|
 | 
						|
        exp_animal_stacked = df.stack(level=["exp", "animal"])
 | 
						|
        animal_hair_stacked = df.stack(level=["animal", "hair_length"])
 | 
						|
        exp_hair_stacked = df.stack(level=["exp", "hair_length"])
 | 
						|
 | 
						|
        df2 = df.copy()
 | 
						|
        df2.columns.names = [0, 1, 2]
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
 | 
						|
        # Out-of-order int column names
 | 
						|
        df3 = df.copy()
 | 
						|
        df3.columns.names = [2, 0, 1]
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False
 | 
						|
        )
 | 
						|
 | 
						|
    def test_unstack_bool(self):
 | 
						|
        df = DataFrame(
 | 
						|
            [False, False],
 | 
						|
            index=MultiIndex.from_arrays([["a", "b"], ["c", "l"]]),
 | 
						|
            columns=["col"],
 | 
						|
        )
 | 
						|
        rs = df.unstack()
 | 
						|
        xp = DataFrame(
 | 
						|
            np.array([[False, np.nan], [np.nan, False]], dtype=object),
 | 
						|
            index=["a", "b"],
 | 
						|
            columns=MultiIndex.from_arrays([["col", "col"], ["c", "l"]]),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(rs, xp)
 | 
						|
 | 
						|
    def test_unstack_level_binding(self):
 | 
						|
        # GH9856
 | 
						|
        mi = MultiIndex(
 | 
						|
            levels=[["foo", "bar"], ["one", "two"], ["a", "b"]],
 | 
						|
            codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]],
 | 
						|
            names=["first", "second", "third"],
 | 
						|
        )
 | 
						|
        s = Series(0, index=mi)
 | 
						|
        result = s.unstack([1, 2]).stack(0)
 | 
						|
 | 
						|
        expected_mi = MultiIndex(
 | 
						|
            levels=[["foo", "bar"], ["one", "two"]],
 | 
						|
            codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
 | 
						|
            names=["first", "second"],
 | 
						|
        )
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            np.array(
 | 
						|
                [[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64
 | 
						|
            ),
 | 
						|
            index=expected_mi,
 | 
						|
            columns=Index(["a", "b"], name="third"),
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_to_series(self, float_frame):
 | 
						|
        # check reversibility
 | 
						|
        data = float_frame.unstack()
 | 
						|
 | 
						|
        assert isinstance(data, Series)
 | 
						|
        undo = data.unstack().T
 | 
						|
        tm.assert_frame_equal(undo, float_frame)
 | 
						|
 | 
						|
        # check NA handling
 | 
						|
        data = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]})
 | 
						|
        data.index = Index(["a", "b", "c"])
 | 
						|
        result = data.unstack()
 | 
						|
 | 
						|
        midx = MultiIndex(
 | 
						|
            levels=[["x", "y"], ["a", "b", "c"]],
 | 
						|
            codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]],
 | 
						|
        )
 | 
						|
        expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx)
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # check composability of unstack
 | 
						|
        old_data = data.copy()
 | 
						|
        for _ in range(4):
 | 
						|
            data = data.unstack()
 | 
						|
        tm.assert_frame_equal(old_data, data)
 | 
						|
 | 
						|
    def test_unstack_dtypes(self):
 | 
						|
 | 
						|
        # GH 2929
 | 
						|
        rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]]
 | 
						|
 | 
						|
        df = DataFrame(rows, columns=list("ABCD"))
 | 
						|
        result = df.dtypes
 | 
						|
        expected = Series([np.dtype("int64")] * 4, index=list("ABCD"))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # single dtype
 | 
						|
        df2 = df.set_index(["A", "B"])
 | 
						|
        df3 = df2.unstack("B")
 | 
						|
        result = df3.dtypes
 | 
						|
        expected = Series(
 | 
						|
            [np.dtype("int64")] * 4,
 | 
						|
            index=MultiIndex.from_arrays(
 | 
						|
                [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B")
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # mixed
 | 
						|
        df2 = df.set_index(["A", "B"])
 | 
						|
        df2["C"] = 3.0
 | 
						|
        df3 = df2.unstack("B")
 | 
						|
        result = df3.dtypes
 | 
						|
        expected = Series(
 | 
						|
            [np.dtype("float64")] * 2 + [np.dtype("int64")] * 2,
 | 
						|
            index=MultiIndex.from_arrays(
 | 
						|
                [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B")
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        df2["D"] = "foo"
 | 
						|
        df3 = df2.unstack("B")
 | 
						|
        result = df3.dtypes
 | 
						|
        expected = Series(
 | 
						|
            [np.dtype("float64")] * 2 + [np.dtype("object")] * 2,
 | 
						|
            index=MultiIndex.from_arrays(
 | 
						|
                [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B")
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # GH7405
 | 
						|
        for c, d in (
 | 
						|
            (np.zeros(5), np.zeros(5)),
 | 
						|
            (np.arange(5, dtype="f8"), np.arange(5, 10, dtype="f8")),
 | 
						|
        ):
 | 
						|
 | 
						|
            df = DataFrame(
 | 
						|
                {
 | 
						|
                    "A": ["a"] * 5,
 | 
						|
                    "C": c,
 | 
						|
                    "D": d,
 | 
						|
                    "B": date_range("2012-01-01", periods=5),
 | 
						|
                }
 | 
						|
            )
 | 
						|
 | 
						|
            right = df.iloc[:3].copy(deep=True)
 | 
						|
 | 
						|
            df = df.set_index(["A", "B"])
 | 
						|
            df["D"] = df["D"].astype("int64")
 | 
						|
 | 
						|
            left = df.iloc[:3].unstack(0)
 | 
						|
            right = right.set_index(["A", "B"]).unstack(0)
 | 
						|
            right[("D", "a")] = right[("D", "a")].astype("int64")
 | 
						|
 | 
						|
            assert left.shape == (3, 2)
 | 
						|
            tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
    def test_unstack_non_unique_index_names(self):
 | 
						|
        idx = MultiIndex.from_tuples([("a", "b"), ("c", "d")], names=["c1", "c1"])
 | 
						|
        df = DataFrame([1, 2], index=idx)
 | 
						|
        msg = "The name c1 occurs multiple times, use a level number"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.unstack("c1")
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.T.stack("c1")
 | 
						|
 | 
						|
    def test_unstack_unused_levels(self):
 | 
						|
        # GH 17845: unused codes in index make unstack() cast int to float
 | 
						|
        idx = MultiIndex.from_product([["a"], ["A", "B", "C", "D"]])[:-1]
 | 
						|
        df = DataFrame([[1, 0]] * 3, index=idx)
 | 
						|
 | 
						|
        result = df.unstack()
 | 
						|
        exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]])
 | 
						|
        expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
        assert (result.columns.levels[1] == idx.levels[1]).all()
 | 
						|
 | 
						|
        # Unused items on both levels
 | 
						|
        levels = [[0, 1, 7], [0, 1, 2, 3]]
 | 
						|
        codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
 | 
						|
        idx = MultiIndex(levels, codes)
 | 
						|
        block = np.arange(4).reshape(2, 2)
 | 
						|
        df = DataFrame(np.concatenate([block, block + 4]), index=idx)
 | 
						|
        result = df.unstack()
 | 
						|
        expected = DataFrame(
 | 
						|
            np.concatenate([block * 2, block * 2 + 1], axis=1), columns=idx
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
        assert (result.columns.levels[1] == idx.levels[1]).all()
 | 
						|
 | 
						|
        # With mixed dtype and NaN
 | 
						|
        levels = [["a", 2, "c"], [1, 3, 5, 7]]
 | 
						|
        codes = [[0, -1, 1, 1], [0, 2, -1, 2]]
 | 
						|
        idx = MultiIndex(levels, codes)
 | 
						|
        data = np.arange(8)
 | 
						|
        df = DataFrame(data.reshape(4, 2), index=idx)
 | 
						|
 | 
						|
        cases = (
 | 
						|
            (0, [13, 16, 6, 9, 2, 5, 8, 11], [np.nan, "a", 2], [np.nan, 5, 1]),
 | 
						|
            (1, [8, 11, 1, 4, 12, 15, 13, 16], [np.nan, 5, 1], [np.nan, "a", 2]),
 | 
						|
        )
 | 
						|
        for level, idces, col_level, idx_level in cases:
 | 
						|
            result = df.unstack(level=level)
 | 
						|
            exp_data = np.zeros(18) * np.nan
 | 
						|
            exp_data[idces] = data
 | 
						|
            cols = MultiIndex.from_product([[0, 1], col_level])
 | 
						|
            expected = DataFrame(exp_data.reshape(3, 6), index=idx_level, columns=cols)
 | 
						|
            tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("cols", [["A", "C"], slice(None)])
 | 
						|
    def test_unstack_unused_level(self, cols):
 | 
						|
        # GH 18562 : unused codes on the unstacked level
 | 
						|
        df = DataFrame([[2010, "a", "I"], [2011, "b", "II"]], columns=["A", "B", "C"])
 | 
						|
 | 
						|
        ind = df.set_index(["A", "B", "C"], drop=False)
 | 
						|
        selection = ind.loc[(slice(None), slice(None), "I"), cols]
 | 
						|
        result = selection.unstack()
 | 
						|
 | 
						|
        expected = ind.iloc[[0]][cols]
 | 
						|
        expected.columns = MultiIndex.from_product(
 | 
						|
            [expected.columns, ["I"]], names=[None, "C"]
 | 
						|
        )
 | 
						|
        expected.index = expected.index.droplevel("C")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_long_index(self):
 | 
						|
        # PH 32624: Error when using a lot of indices to unstack.
 | 
						|
        # The error occurred only, if a lot of indices are used.
 | 
						|
        df = DataFrame(
 | 
						|
            [[1]],
 | 
						|
            columns=MultiIndex.from_tuples([[0]], names=["c1"]),
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                [[0, 0, 1, 0, 0, 0, 1]],
 | 
						|
                names=["i1", "i2", "i3", "i4", "i5", "i6", "i7"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        result = df.unstack(["i2", "i3", "i4", "i5", "i6", "i7"])
 | 
						|
        expected = DataFrame(
 | 
						|
            [[1]],
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [[0, 0, 1, 0, 0, 0, 1]],
 | 
						|
                names=["c1", "i2", "i3", "i4", "i5", "i6", "i7"],
 | 
						|
            ),
 | 
						|
            index=Index([0], name="i1"),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_multi_level_cols(self):
 | 
						|
        # PH 24729: Unstack a df with multi level columns
 | 
						|
        df = DataFrame(
 | 
						|
            [[0.0, 0.0], [0.0, 0.0]],
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [["B", "C"], ["B", "D"]], names=["c1", "c2"]
 | 
						|
            ),
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                [[10, 20, 30], [10, 20, 40]], names=["i1", "i2", "i3"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        assert df.unstack(["i2", "i1"]).columns.names[-2:] == ["i2", "i1"]
 | 
						|
 | 
						|
    def test_unstack_multi_level_rows_and_cols(self):
 | 
						|
        # PH 28306: Unstack df with multi level cols and rows
 | 
						|
        df = DataFrame(
 | 
						|
            [[1, 2], [3, 4], [-1, -2], [-3, -4]],
 | 
						|
            columns=MultiIndex.from_tuples([["a", "b", "c"], ["d", "e", "f"]]),
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                [
 | 
						|
                    ["m1", "P3", 222],
 | 
						|
                    ["m1", "A5", 111],
 | 
						|
                    ["m2", "P3", 222],
 | 
						|
                    ["m2", "A5", 111],
 | 
						|
                ],
 | 
						|
                names=["i1", "i2", "i3"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        result = df.unstack(["i3", "i2"])
 | 
						|
        expected = df.unstack(["i3"]).unstack(["i2"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("idx", [("jim", "joe"), ("joe", "jim")])
 | 
						|
    @pytest.mark.parametrize("lev", list(range(2)))
 | 
						|
    def test_unstack_nan_index1(self, idx, lev):
 | 
						|
        # GH7466
 | 
						|
        def cast(val):
 | 
						|
            val_str = "" if val != val else val
 | 
						|
            return f"{val_str:1}"
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "jim": ["a", "b", np.nan, "d"],
 | 
						|
                "joe": ["w", "x", "y", "z"],
 | 
						|
                "jolie": ["a.w", "b.x", " .y", "d.z"],
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        left = df.set_index(["jim", "joe"]).unstack()["jolie"]
 | 
						|
        right = df.set_index(["joe", "jim"]).unstack()["jolie"].T
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
        mi = df.set_index(list(idx))
 | 
						|
        udf = mi.unstack(level=lev)
 | 
						|
        assert udf.notna().values.sum() == len(df)
 | 
						|
        mk_list = lambda a: list(a) if isinstance(a, tuple) else [a]
 | 
						|
        rows, cols = udf["jolie"].notna().values.nonzero()
 | 
						|
        for i, j in zip(rows, cols):
 | 
						|
            left = sorted(udf["jolie"].iloc[i, j].split("."))
 | 
						|
            right = mk_list(udf["jolie"].index[i]) + mk_list(udf["jolie"].columns[j])
 | 
						|
            right = sorted(map(cast, right))
 | 
						|
            assert left == right
 | 
						|
 | 
						|
    @pytest.mark.parametrize("idx", itertools.permutations(["1st", "2nd", "3rd"]))
 | 
						|
    @pytest.mark.parametrize("lev", list(range(3)))
 | 
						|
    @pytest.mark.parametrize("col", ["4th", "5th"])
 | 
						|
    def test_unstack_nan_index_repeats(self, idx, lev, col):
 | 
						|
        def cast(val):
 | 
						|
            val_str = "" if val != val else val
 | 
						|
            return f"{val_str:1}"
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "1st": ["d"] * 3
 | 
						|
                + [np.nan] * 5
 | 
						|
                + ["a"] * 2
 | 
						|
                + ["c"] * 3
 | 
						|
                + ["e"] * 2
 | 
						|
                + ["b"] * 5,
 | 
						|
                "2nd": ["y"] * 2
 | 
						|
                + ["w"] * 3
 | 
						|
                + [np.nan] * 3
 | 
						|
                + ["z"] * 4
 | 
						|
                + [np.nan] * 3
 | 
						|
                + ["x"] * 3
 | 
						|
                + [np.nan] * 2,
 | 
						|
                "3rd": [
 | 
						|
                    67,
 | 
						|
                    39,
 | 
						|
                    53,
 | 
						|
                    72,
 | 
						|
                    57,
 | 
						|
                    80,
 | 
						|
                    31,
 | 
						|
                    18,
 | 
						|
                    11,
 | 
						|
                    30,
 | 
						|
                    59,
 | 
						|
                    50,
 | 
						|
                    62,
 | 
						|
                    59,
 | 
						|
                    76,
 | 
						|
                    52,
 | 
						|
                    14,
 | 
						|
                    53,
 | 
						|
                    60,
 | 
						|
                    51,
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        df["4th"], df["5th"] = (
 | 
						|
            df.apply(lambda r: ".".join(map(cast, r)), axis=1),
 | 
						|
            df.apply(lambda r: ".".join(map(cast, r.iloc[::-1])), axis=1),
 | 
						|
        )
 | 
						|
 | 
						|
        mi = df.set_index(list(idx))
 | 
						|
        udf = mi.unstack(level=lev)
 | 
						|
        assert udf.notna().values.sum() == 2 * len(df)
 | 
						|
        mk_list = lambda a: list(a) if isinstance(a, tuple) else [a]
 | 
						|
        rows, cols = udf[col].notna().values.nonzero()
 | 
						|
        for i, j in zip(rows, cols):
 | 
						|
            left = sorted(udf[col].iloc[i, j].split("."))
 | 
						|
            right = mk_list(udf[col].index[i]) + mk_list(udf[col].columns[j])
 | 
						|
            right = sorted(map(cast, right))
 | 
						|
            assert left == right
 | 
						|
 | 
						|
    def test_unstack_nan_index2(self):
 | 
						|
        # GH7403
 | 
						|
        df = DataFrame({"A": list("aaaabbbb"), "B": range(8), "C": range(8)})
 | 
						|
        df.iloc[3, 1] = np.NaN
 | 
						|
        left = df.set_index(["A", "B"]).unstack(0)
 | 
						|
 | 
						|
        vals = [
 | 
						|
            [3, 0, 1, 2, np.nan, np.nan, np.nan, np.nan],
 | 
						|
            [np.nan, np.nan, np.nan, np.nan, 4, 5, 6, 7],
 | 
						|
        ]
 | 
						|
        vals = list(map(list, zip(*vals)))
 | 
						|
        idx = Index([np.nan, 0, 1, 2, 4, 5, 6, 7], name="B")
 | 
						|
        cols = MultiIndex(
 | 
						|
            levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"]
 | 
						|
        )
 | 
						|
 | 
						|
        right = DataFrame(vals, columns=cols, index=idx)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
        df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)})
 | 
						|
        df.iloc[2, 1] = np.NaN
 | 
						|
        left = df.set_index(["A", "B"]).unstack(0)
 | 
						|
 | 
						|
        vals = [[2, np.nan], [0, 4], [1, 5], [np.nan, 6], [3, 7]]
 | 
						|
        cols = MultiIndex(
 | 
						|
            levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"]
 | 
						|
        )
 | 
						|
        idx = Index([np.nan, 0, 1, 2, 3], name="B")
 | 
						|
        right = DataFrame(vals, columns=cols, index=idx)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
        df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)})
 | 
						|
        df.iloc[3, 1] = np.NaN
 | 
						|
        left = df.set_index(["A", "B"]).unstack(0)
 | 
						|
 | 
						|
        vals = [[3, np.nan], [0, 4], [1, 5], [2, 6], [np.nan, 7]]
 | 
						|
        cols = MultiIndex(
 | 
						|
            levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"]
 | 
						|
        )
 | 
						|
        idx = Index([np.nan, 0, 1, 2, 3], name="B")
 | 
						|
        right = DataFrame(vals, columns=cols, index=idx)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
    def test_unstack_nan_index3(self, using_array_manager):
 | 
						|
        # GH7401
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": list("aaaaabbbbb"),
 | 
						|
                "B": (date_range("2012-01-01", periods=5).tolist() * 2),
 | 
						|
                "C": np.arange(10),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        df.iloc[3, 1] = np.NaN
 | 
						|
        left = df.set_index(["A", "B"]).unstack()
 | 
						|
 | 
						|
        vals = np.array([[3, 0, 1, 2, np.nan, 4], [np.nan, 5, 6, 7, 8, 9]])
 | 
						|
        idx = Index(["a", "b"], name="A")
 | 
						|
        cols = MultiIndex(
 | 
						|
            levels=[["C"], date_range("2012-01-01", periods=5)],
 | 
						|
            codes=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]],
 | 
						|
            names=[None, "B"],
 | 
						|
        )
 | 
						|
 | 
						|
        right = DataFrame(vals, columns=cols, index=idx)
 | 
						|
        if using_array_manager:
 | 
						|
            # INFO(ArrayManager) with ArrayManager preserve dtype where possible
 | 
						|
            cols = right.columns[[1, 2, 3, 5]]
 | 
						|
            right[cols] = right[cols].astype(df["C"].dtype)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
    def test_unstack_nan_index4(self):
 | 
						|
        # GH4862
 | 
						|
        vals = [
 | 
						|
            ["Hg", np.nan, np.nan, 680585148],
 | 
						|
            ["U", 0.0, np.nan, 680585148],
 | 
						|
            ["Pb", 7.07e-06, np.nan, 680585148],
 | 
						|
            ["Sn", 2.3614e-05, 0.0133, 680607017],
 | 
						|
            ["Ag", 0.0, 0.0133, 680607017],
 | 
						|
            ["Hg", -0.00015, 0.0133, 680607017],
 | 
						|
        ]
 | 
						|
        df = DataFrame(
 | 
						|
            vals,
 | 
						|
            columns=["agent", "change", "dosage", "s_id"],
 | 
						|
            index=[17263, 17264, 17265, 17266, 17267, 17268],
 | 
						|
        )
 | 
						|
 | 
						|
        left = df.copy().set_index(["s_id", "dosage", "agent"]).unstack()
 | 
						|
 | 
						|
        vals = [
 | 
						|
            [np.nan, np.nan, 7.07e-06, np.nan, 0.0],
 | 
						|
            [0.0, -0.00015, np.nan, 2.3614e-05, np.nan],
 | 
						|
        ]
 | 
						|
 | 
						|
        idx = MultiIndex(
 | 
						|
            levels=[[680585148, 680607017], [0.0133]],
 | 
						|
            codes=[[0, 1], [-1, 0]],
 | 
						|
            names=["s_id", "dosage"],
 | 
						|
        )
 | 
						|
 | 
						|
        cols = MultiIndex(
 | 
						|
            levels=[["change"], ["Ag", "Hg", "Pb", "Sn", "U"]],
 | 
						|
            codes=[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4]],
 | 
						|
            names=[None, "agent"],
 | 
						|
        )
 | 
						|
 | 
						|
        right = DataFrame(vals, columns=cols, index=idx)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
        left = df.loc[17264:].copy().set_index(["s_id", "dosage", "agent"])
 | 
						|
        tm.assert_frame_equal(left.unstack(), right)
 | 
						|
 | 
						|
    def test_unstack_nan_index5(self):
 | 
						|
        # GH9497 - multiple unstack with nulls
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "1st": [1, 2, 1, 2, 1, 2],
 | 
						|
                "2nd": date_range("2014-02-01", periods=6, freq="D"),
 | 
						|
                "jim": 100 + np.arange(6),
 | 
						|
                "joe": (np.random.randn(6) * 10).round(2),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        df["3rd"] = df["2nd"] - pd.Timestamp("2014-02-02")
 | 
						|
        df.loc[1, "2nd"] = df.loc[3, "2nd"] = np.nan
 | 
						|
        df.loc[1, "3rd"] = df.loc[4, "3rd"] = np.nan
 | 
						|
 | 
						|
        left = df.set_index(["1st", "2nd", "3rd"]).unstack(["2nd", "3rd"])
 | 
						|
        assert left.notna().values.sum() == 2 * len(df)
 | 
						|
 | 
						|
        for col in ["jim", "joe"]:
 | 
						|
            for _, r in df.iterrows():
 | 
						|
                key = r["1st"], (col, r["2nd"], r["3rd"])
 | 
						|
                assert r[col] == left.loc[key]
 | 
						|
 | 
						|
    def test_stack_datetime_column_multiIndex(self):
 | 
						|
        # GH 8039
 | 
						|
        t = datetime(2014, 1, 1)
 | 
						|
        df = DataFrame([1, 2, 3, 4], columns=MultiIndex.from_tuples([(t, "A", "B")]))
 | 
						|
        result = df.stack()
 | 
						|
 | 
						|
        eidx = MultiIndex.from_product([(0, 1, 2, 3), ("B",)])
 | 
						|
        ecols = MultiIndex.from_tuples([(t, "A")])
 | 
						|
        expected = DataFrame([1, 2, 3, 4], index=eidx, columns=ecols)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_partial_multiIndex(self):
 | 
						|
        # GH 8844
 | 
						|
        def _test_stack_with_multiindex(multiindex):
 | 
						|
            df = DataFrame(
 | 
						|
                np.arange(3 * len(multiindex)).reshape(3, len(multiindex)),
 | 
						|
                columns=multiindex,
 | 
						|
            )
 | 
						|
            for level in (-1, 0, 1, [0, 1], [1, 0]):
 | 
						|
                result = df.stack(level=level, dropna=False)
 | 
						|
 | 
						|
                if isinstance(level, int):
 | 
						|
                    # Stacking a single level should not make any all-NaN rows,
 | 
						|
                    # so df.stack(level=level, dropna=False) should be the same
 | 
						|
                    # as df.stack(level=level, dropna=True).
 | 
						|
                    expected = df.stack(level=level, dropna=True)
 | 
						|
                    if isinstance(expected, Series):
 | 
						|
                        tm.assert_series_equal(result, expected)
 | 
						|
                    else:
 | 
						|
                        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
                df.columns = MultiIndex.from_tuples(
 | 
						|
                    df.columns.to_numpy(), names=df.columns.names
 | 
						|
                )
 | 
						|
                expected = df.stack(level=level, dropna=False)
 | 
						|
                if isinstance(expected, Series):
 | 
						|
                    tm.assert_series_equal(result, expected)
 | 
						|
                else:
 | 
						|
                    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        full_multiindex = MultiIndex.from_tuples(
 | 
						|
            [("B", "x"), ("B", "z"), ("A", "y"), ("C", "x"), ("C", "u")],
 | 
						|
            names=["Upper", "Lower"],
 | 
						|
        )
 | 
						|
        for multiindex_columns in (
 | 
						|
            [0, 1, 2, 3, 4],
 | 
						|
            [0, 1, 2, 3],
 | 
						|
            [0, 1, 2, 4],
 | 
						|
            [0, 1, 2],
 | 
						|
            [1, 2, 3],
 | 
						|
            [2, 3, 4],
 | 
						|
            [0, 1],
 | 
						|
            [0, 2],
 | 
						|
            [0, 3],
 | 
						|
            [0],
 | 
						|
            [2],
 | 
						|
            [4],
 | 
						|
        ):
 | 
						|
            _test_stack_with_multiindex(full_multiindex[multiindex_columns])
 | 
						|
            if len(multiindex_columns) > 1:
 | 
						|
                multiindex_columns.reverse()
 | 
						|
                _test_stack_with_multiindex(full_multiindex[multiindex_columns])
 | 
						|
 | 
						|
        df = DataFrame(np.arange(6).reshape(2, 3), columns=full_multiindex[[0, 1, 3]])
 | 
						|
        result = df.stack(dropna=False)
 | 
						|
        expected = DataFrame(
 | 
						|
            [[0, 2], [1, np.nan], [3, 5], [4, np.nan]],
 | 
						|
            index=MultiIndex(
 | 
						|
                levels=[[0, 1], ["u", "x", "y", "z"]],
 | 
						|
                codes=[[0, 0, 1, 1], [1, 3, 1, 3]],
 | 
						|
                names=[None, "Lower"],
 | 
						|
            ),
 | 
						|
            columns=Index(["B", "C"], name="Upper"),
 | 
						|
        )
 | 
						|
        expected["B"] = expected["B"].astype(df.dtypes[0])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("ordered", [False, True])
 | 
						|
    @pytest.mark.parametrize("labels", [list("yxz"), list("yxy")])
 | 
						|
    def test_stack_preserve_categorical_dtype(self, ordered, labels):
 | 
						|
        # GH13854
 | 
						|
        cidx = pd.CategoricalIndex(labels, categories=list("xyz"), ordered=ordered)
 | 
						|
        df = DataFrame([[10, 11, 12]], columns=cidx)
 | 
						|
        result = df.stack()
 | 
						|
 | 
						|
        # `MultiIndex.from_product` preserves categorical dtype -
 | 
						|
        # it's tested elsewhere.
 | 
						|
        midx = MultiIndex.from_product([df.index, cidx])
 | 
						|
        expected = Series([10, 11, 12], index=midx)
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("ordered", [False, True])
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "labels,data",
 | 
						|
        [
 | 
						|
            (list("xyz"), [10, 11, 12, 13, 14, 15]),
 | 
						|
            (list("zyx"), [14, 15, 12, 13, 10, 11]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_stack_multi_preserve_categorical_dtype(self, ordered, labels, data):
 | 
						|
        # GH-36991
 | 
						|
        cidx = pd.CategoricalIndex(labels, categories=sorted(labels), ordered=ordered)
 | 
						|
        cidx2 = pd.CategoricalIndex(["u", "v"], ordered=ordered)
 | 
						|
        midx = MultiIndex.from_product([cidx, cidx2])
 | 
						|
        df = DataFrame([sorted(data)], columns=midx)
 | 
						|
        result = df.stack([0, 1])
 | 
						|
 | 
						|
        s_cidx = pd.CategoricalIndex(sorted(labels), ordered=ordered)
 | 
						|
        expected = Series(data, index=MultiIndex.from_product([[0], s_cidx, cidx2]))
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_preserve_categorical_dtype_values(self):
 | 
						|
        # GH-23077
 | 
						|
        cat = pd.Categorical(["a", "a", "b", "c"])
 | 
						|
        df = DataFrame({"A": cat, "B": cat})
 | 
						|
        result = df.stack()
 | 
						|
        index = MultiIndex.from_product([[0, 1, 2, 3], ["A", "B"]])
 | 
						|
        expected = Series(
 | 
						|
            pd.Categorical(["a", "a", "a", "a", "b", "b", "c", "c"]), index=index
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index, columns",
 | 
						|
        [
 | 
						|
            ([0, 0, 1, 1], MultiIndex.from_product([[1, 2], ["a", "b"]])),
 | 
						|
            ([0, 0, 2, 3], MultiIndex.from_product([[1, 2], ["a", "b"]])),
 | 
						|
            ([0, 1, 2, 3], MultiIndex.from_product([[1, 2], ["a", "b"]])),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_stack_multi_columns_non_unique_index(self, index, columns):
 | 
						|
        # GH-28301
 | 
						|
        df = DataFrame(index=index, columns=columns).fillna(1)
 | 
						|
        stacked = df.stack()
 | 
						|
        new_index = MultiIndex.from_tuples(stacked.index.to_numpy())
 | 
						|
        expected = DataFrame(
 | 
						|
            stacked.to_numpy(), index=new_index, columns=stacked.columns
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(stacked, expected)
 | 
						|
        stacked_codes = np.asarray(stacked.index.codes)
 | 
						|
        expected_codes = np.asarray(new_index.codes)
 | 
						|
        tm.assert_numpy_array_equal(stacked_codes, expected_codes)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("level", [0, 1])
 | 
						|
    def test_unstack_mixed_extension_types(self, level):
 | 
						|
        index = MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 1)], names=["a", "b"])
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": pd.array([0, 1, None], dtype="Int64"),
 | 
						|
                "B": pd.Categorical(["a", "a", "b"]),
 | 
						|
            },
 | 
						|
            index=index,
 | 
						|
        )
 | 
						|
 | 
						|
        result = df.unstack(level=level)
 | 
						|
        expected = df.astype(object).unstack(level=level)
 | 
						|
 | 
						|
        expected_dtypes = Series(
 | 
						|
            [df.A.dtype] * 2 + [df.B.dtype] * 2, index=result.columns
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result.dtypes, expected_dtypes)
 | 
						|
        tm.assert_frame_equal(result.astype(object), expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("level", [0, "baz"])
 | 
						|
    def test_unstack_swaplevel_sortlevel(self, level):
 | 
						|
        # GH 20994
 | 
						|
        mi = MultiIndex.from_product([[0], ["d", "c"]], names=["bar", "baz"])
 | 
						|
        df = DataFrame([[0, 2], [1, 3]], index=mi, columns=["B", "A"])
 | 
						|
        df.columns.name = "foo"
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            [[3, 1, 2, 0]],
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [("c", "A"), ("c", "B"), ("d", "A"), ("d", "B")], names=["baz", "foo"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        expected.index.name = "bar"
 | 
						|
 | 
						|
        result = df.unstack().swaplevel(axis=1).sort_index(axis=1, level=level)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_unstack_fill_frame_object():
 | 
						|
    # GH12815 Test unstacking with object.
 | 
						|
    data = Series(["a", "b", "c", "a"], dtype="object")
 | 
						|
    data.index = MultiIndex.from_tuples(
 | 
						|
        [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
 | 
						|
    )
 | 
						|
 | 
						|
    # By default missing values will be NaN
 | 
						|
    result = data.unstack()
 | 
						|
    expected = DataFrame(
 | 
						|
        {"a": ["a", np.nan, "a"], "b": ["b", "c", np.nan]}, index=list("xyz")
 | 
						|
    )
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    # Fill with any value replaces missing values as expected
 | 
						|
    result = data.unstack(fill_value="d")
 | 
						|
    expected = DataFrame(
 | 
						|
        {"a": ["a", "d", "a"], "b": ["b", "c", "d"]}, index=list("xyz")
 | 
						|
    )
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_unstack_timezone_aware_values():
 | 
						|
    # GH 18338
 | 
						|
    df = DataFrame(
 | 
						|
        {
 | 
						|
            "timestamp": [pd.Timestamp("2017-08-27 01:00:00.709949+0000", tz="UTC")],
 | 
						|
            "a": ["a"],
 | 
						|
            "b": ["b"],
 | 
						|
            "c": ["c"],
 | 
						|
        },
 | 
						|
        columns=["timestamp", "a", "b", "c"],
 | 
						|
    )
 | 
						|
    result = df.set_index(["a", "b"]).unstack()
 | 
						|
    expected = DataFrame(
 | 
						|
        [[pd.Timestamp("2017-08-27 01:00:00.709949+0000", tz="UTC"), "c"]],
 | 
						|
        index=Index(["a"], name="a"),
 | 
						|
        columns=MultiIndex(
 | 
						|
            levels=[["timestamp", "c"], ["b"]],
 | 
						|
            codes=[[0, 1], [0, 0]],
 | 
						|
            names=[None, "b"],
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_stack_timezone_aware_values():
 | 
						|
    # GH 19420
 | 
						|
    ts = date_range(freq="D", start="20180101", end="20180103", tz="America/New_York")
 | 
						|
    df = DataFrame({"A": ts}, index=["a", "b", "c"])
 | 
						|
    result = df.stack()
 | 
						|
    expected = Series(
 | 
						|
        ts,
 | 
						|
        index=MultiIndex(levels=[["a", "b", "c"], ["A"]], codes=[[0, 1, 2], [0, 0, 0]]),
 | 
						|
    )
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("dropna", [True, False])
 | 
						|
def test_stack_empty_frame(dropna):
 | 
						|
    # GH 36113
 | 
						|
    expected = Series(index=MultiIndex([[], []], [[], []]), dtype=np.float64)
 | 
						|
    result = DataFrame(dtype=np.float64).stack(dropna=dropna)
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("dropna", [True, False])
 | 
						|
@pytest.mark.parametrize("fill_value", [None, 0])
 | 
						|
def test_stack_unstack_empty_frame(dropna, fill_value):
 | 
						|
    # GH 36113
 | 
						|
    result = (
 | 
						|
        DataFrame(dtype=np.int64).stack(dropna=dropna).unstack(fill_value=fill_value)
 | 
						|
    )
 | 
						|
    expected = DataFrame(dtype=np.int64)
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_unstack_single_index_series():
 | 
						|
    # GH 36113
 | 
						|
    msg = r"index must be a MultiIndex to unstack.*"
 | 
						|
    with pytest.raises(ValueError, match=msg):
 | 
						|
        Series(dtype=np.int64).unstack()
 | 
						|
 | 
						|
 | 
						|
def test_unstacking_multi_index_df():
 | 
						|
    # see gh-30740
 | 
						|
    df = DataFrame(
 | 
						|
        {
 | 
						|
            "name": ["Alice", "Bob"],
 | 
						|
            "score": [9.5, 8],
 | 
						|
            "employed": [False, True],
 | 
						|
            "kids": [0, 0],
 | 
						|
            "gender": ["female", "male"],
 | 
						|
        }
 | 
						|
    )
 | 
						|
    df = df.set_index(["name", "employed", "kids", "gender"])
 | 
						|
    df = df.unstack(["gender"], fill_value=0)
 | 
						|
    expected = df.unstack("employed", fill_value=0).unstack("kids", fill_value=0)
 | 
						|
    result = df.unstack(["employed", "kids"], fill_value=0)
 | 
						|
    expected = DataFrame(
 | 
						|
        [[9.5, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 8.0]],
 | 
						|
        index=Index(["Alice", "Bob"], name="name"),
 | 
						|
        columns=MultiIndex.from_tuples(
 | 
						|
            [
 | 
						|
                ("score", "female", False, 0),
 | 
						|
                ("score", "female", True, 0),
 | 
						|
                ("score", "male", False, 0),
 | 
						|
                ("score", "male", True, 0),
 | 
						|
            ],
 | 
						|
            names=[None, "gender", "employed", "kids"],
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_stack_positional_level_duplicate_column_names():
 | 
						|
    # https://github.com/pandas-dev/pandas/issues/36353
 | 
						|
    columns = MultiIndex.from_product([("x", "y"), ("y", "z")], names=["a", "a"])
 | 
						|
    df = DataFrame([[1, 1, 1, 1]], columns=columns)
 | 
						|
    result = df.stack(0)
 | 
						|
 | 
						|
    new_columns = Index(["y", "z"], name="a")
 | 
						|
    new_index = MultiIndex.from_tuples([(0, "x"), (0, "y")], names=[None, "a"])
 | 
						|
    expected = DataFrame([[1, 1], [1, 1]], index=new_index, columns=new_columns)
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_unstack_non_slice_like_blocks(using_array_manager):
 | 
						|
    # Case where the mgr_locs of a DataFrame's underlying blocks are not slice-like
 | 
						|
 | 
						|
    mi = MultiIndex.from_product([range(5), ["A", "B", "C"]])
 | 
						|
    df = DataFrame(np.random.randn(15, 4), index=mi)
 | 
						|
    df[1] = df[1].astype(np.int64)
 | 
						|
    if not using_array_manager:
 | 
						|
        assert any(not x.mgr_locs.is_slice_like for x in df._mgr.blocks)
 | 
						|
 | 
						|
    res = df.unstack()
 | 
						|
 | 
						|
    expected = pd.concat([df[n].unstack() for n in range(4)], keys=range(4), axis=1)
 | 
						|
    tm.assert_frame_equal(res, expected)
 | 
						|
 | 
						|
 | 
						|
class TestStackUnstackMultiLevel:
 | 
						|
    def test_unstack(self, multiindex_year_month_day_dataframe_random_data):
 | 
						|
        # just check that it works for now
 | 
						|
        ymd = multiindex_year_month_day_dataframe_random_data
 | 
						|
 | 
						|
        unstacked = ymd.unstack()
 | 
						|
        unstacked.unstack()
 | 
						|
 | 
						|
        # test that ints work
 | 
						|
        ymd.astype(int).unstack()
 | 
						|
 | 
						|
        # test that int32 work
 | 
						|
        ymd.astype(np.int32).unstack()
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "result_rows,result_columns,index_product,expected_row",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                [[1, 1, None, None, 30.0, None], [2, 2, None, None, 30.0, None]],
 | 
						|
                ["ix1", "ix2", "col1", "col2", "col3", "col4"],
 | 
						|
                2,
 | 
						|
                [None, None, 30.0, None],
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                [[1, 1, None, None, 30.0], [2, 2, None, None, 30.0]],
 | 
						|
                ["ix1", "ix2", "col1", "col2", "col3"],
 | 
						|
                2,
 | 
						|
                [None, None, 30.0],
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                [[1, 1, None, None, 30.0], [2, None, None, None, 30.0]],
 | 
						|
                ["ix1", "ix2", "col1", "col2", "col3"],
 | 
						|
                None,
 | 
						|
                [None, None, 30.0],
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_unstack_partial(
 | 
						|
        self, result_rows, result_columns, index_product, expected_row
 | 
						|
    ):
 | 
						|
        # check for regressions on this issue:
 | 
						|
        # https://github.com/pandas-dev/pandas/issues/19351
 | 
						|
        # make sure DataFrame.unstack() works when its run on a subset of the DataFrame
 | 
						|
        # and the Index levels contain values that are not present in the subset
 | 
						|
        result = DataFrame(result_rows, columns=result_columns).set_index(
 | 
						|
            ["ix1", "ix2"]
 | 
						|
        )
 | 
						|
        result = result.iloc[1:2].unstack("ix2")
 | 
						|
        expected = DataFrame(
 | 
						|
            [expected_row],
 | 
						|
            columns=MultiIndex.from_product(
 | 
						|
                [result_columns[2:], [index_product]], names=[None, "ix2"]
 | 
						|
            ),
 | 
						|
            index=Index([2], name="ix1"),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_multiple_no_empty_columns(self):
 | 
						|
        index = MultiIndex.from_tuples(
 | 
						|
            [(0, "foo", 0), (0, "bar", 0), (1, "baz", 1), (1, "qux", 1)]
 | 
						|
        )
 | 
						|
 | 
						|
        s = Series(np.random.randn(4), index=index)
 | 
						|
 | 
						|
        unstacked = s.unstack([1, 2])
 | 
						|
        expected = unstacked.dropna(axis=1, how="all")
 | 
						|
        tm.assert_frame_equal(unstacked, expected)
 | 
						|
 | 
						|
    def test_stack(self, multiindex_year_month_day_dataframe_random_data):
 | 
						|
        ymd = multiindex_year_month_day_dataframe_random_data
 | 
						|
 | 
						|
        # regular roundtrip
 | 
						|
        unstacked = ymd.unstack()
 | 
						|
        restacked = unstacked.stack()
 | 
						|
        tm.assert_frame_equal(restacked, ymd)
 | 
						|
 | 
						|
        unlexsorted = ymd.sort_index(level=2)
 | 
						|
 | 
						|
        unstacked = unlexsorted.unstack(2)
 | 
						|
        restacked = unstacked.stack()
 | 
						|
        tm.assert_frame_equal(restacked.sort_index(level=0), ymd)
 | 
						|
 | 
						|
        unlexsorted = unlexsorted[::-1]
 | 
						|
        unstacked = unlexsorted.unstack(1)
 | 
						|
        restacked = unstacked.stack().swaplevel(1, 2)
 | 
						|
        tm.assert_frame_equal(restacked.sort_index(level=0), ymd)
 | 
						|
 | 
						|
        unlexsorted = unlexsorted.swaplevel(0, 1)
 | 
						|
        unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
 | 
						|
        restacked = unstacked.stack(0).swaplevel(1, 2)
 | 
						|
        tm.assert_frame_equal(restacked.sort_index(level=0), ymd)
 | 
						|
 | 
						|
        # columns unsorted
 | 
						|
        unstacked = ymd.unstack()
 | 
						|
        unstacked = unstacked.sort_index(axis=1, ascending=False)
 | 
						|
        restacked = unstacked.stack()
 | 
						|
        tm.assert_frame_equal(restacked, ymd)
 | 
						|
 | 
						|
        # more than 2 levels in the columns
 | 
						|
        unstacked = ymd.unstack(1).unstack(1)
 | 
						|
 | 
						|
        result = unstacked.stack(1)
 | 
						|
        expected = ymd.unstack()
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = unstacked.stack(2)
 | 
						|
        expected = ymd.unstack(1)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = unstacked.stack(0)
 | 
						|
        expected = ymd.stack().unstack(1).unstack(1)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # not all levels present in each echelon
 | 
						|
        unstacked = ymd.unstack(2).loc[:, ::3]
 | 
						|
        stacked = unstacked.stack().stack()
 | 
						|
        ymd_stacked = ymd.stack()
 | 
						|
        tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))
 | 
						|
 | 
						|
        # stack with negative number
 | 
						|
        result = ymd.unstack(0).stack(-2)
 | 
						|
        expected = ymd.unstack(0).stack(0)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "idx, columns, exp_idx",
 | 
						|
        [
 | 
						|
            [
 | 
						|
                list("abab"),
 | 
						|
                ["1st", "2nd", "3rd"],
 | 
						|
                MultiIndex(
 | 
						|
                    levels=[["a", "b"], ["1st", "2nd", "3rd"]],
 | 
						|
                    codes=[
 | 
						|
                        np.tile(np.arange(2).repeat(3), 2),
 | 
						|
                        np.tile(np.arange(3), 4),
 | 
						|
                    ],
 | 
						|
                ),
 | 
						|
            ],
 | 
						|
            [
 | 
						|
                list("abab"),
 | 
						|
                ["1st", "2nd", "1st"],
 | 
						|
                MultiIndex(
 | 
						|
                    levels=[["a", "b"], ["1st", "2nd"]],
 | 
						|
                    codes=[np.tile(np.arange(2).repeat(3), 2), np.tile([0, 1, 0], 4)],
 | 
						|
                ),
 | 
						|
            ],
 | 
						|
            [
 | 
						|
                MultiIndex.from_tuples((("a", 2), ("b", 1), ("a", 1), ("b", 2))),
 | 
						|
                ["1st", "2nd", "1st"],
 | 
						|
                MultiIndex(
 | 
						|
                    levels=[["a", "b"], [1, 2], ["1st", "2nd"]],
 | 
						|
                    codes=[
 | 
						|
                        np.tile(np.arange(2).repeat(3), 2),
 | 
						|
                        np.repeat([1, 0, 1], [3, 6, 3]),
 | 
						|
                        np.tile([0, 1, 0], 4),
 | 
						|
                    ],
 | 
						|
                ),
 | 
						|
            ],
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_stack_duplicate_index(self, idx, columns, exp_idx):
 | 
						|
        # GH10417
 | 
						|
        df = DataFrame(
 | 
						|
            np.arange(12).reshape(4, 3),
 | 
						|
            index=idx,
 | 
						|
            columns=columns,
 | 
						|
        )
 | 
						|
        result = df.stack()
 | 
						|
        expected = Series(np.arange(12), index=exp_idx)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        assert result.index.is_unique is False
 | 
						|
        li, ri = result.index, expected.index
 | 
						|
        tm.assert_index_equal(li, ri)
 | 
						|
 | 
						|
    def test_unstack_odd_failure(self):
 | 
						|
        data = """day,time,smoker,sum,len
 | 
						|
Fri,Dinner,No,8.25,3.
 | 
						|
Fri,Dinner,Yes,27.03,9
 | 
						|
Fri,Lunch,No,3.0,1
 | 
						|
Fri,Lunch,Yes,13.68,6
 | 
						|
Sat,Dinner,No,139.63,45
 | 
						|
Sat,Dinner,Yes,120.77,42
 | 
						|
Sun,Dinner,No,180.57,57
 | 
						|
Sun,Dinner,Yes,66.82,19
 | 
						|
Thu,Dinner,No,3.0,1
 | 
						|
Thu,Lunch,No,117.32,44
 | 
						|
Thu,Lunch,Yes,51.51,17"""
 | 
						|
 | 
						|
        df = pd.read_csv(StringIO(data)).set_index(["day", "time", "smoker"])
 | 
						|
 | 
						|
        # it works, #2100
 | 
						|
        result = df.unstack(2)
 | 
						|
 | 
						|
        recons = result.stack()
 | 
						|
        tm.assert_frame_equal(recons, df)
 | 
						|
 | 
						|
    def test_stack_mixed_dtype(self, multiindex_dataframe_random_data):
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
 | 
						|
        df = frame.T
 | 
						|
        df["foo", "four"] = "foo"
 | 
						|
        df = df.sort_index(level=1, axis=1)
 | 
						|
 | 
						|
        stacked = df.stack()
 | 
						|
        result = df["foo"].stack().sort_index()
 | 
						|
        tm.assert_series_equal(stacked["foo"], result, check_names=False)
 | 
						|
        assert result.name is None
 | 
						|
        assert stacked["bar"].dtype == np.float_
 | 
						|
 | 
						|
    def test_unstack_bug(self):
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "state": ["naive", "naive", "naive", "active", "active", "active"],
 | 
						|
                "exp": ["a", "b", "b", "b", "a", "a"],
 | 
						|
                "barcode": [1, 2, 3, 4, 1, 3],
 | 
						|
                "v": ["hi", "hi", "bye", "bye", "bye", "peace"],
 | 
						|
                "extra": np.arange(6.0),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        result = df.groupby(["state", "exp", "barcode", "v"]).apply(len)
 | 
						|
 | 
						|
        unstacked = result.unstack()
 | 
						|
        restacked = unstacked.stack()
 | 
						|
        tm.assert_series_equal(restacked, result.reindex(restacked.index).astype(float))
 | 
						|
 | 
						|
    def test_stack_unstack_preserve_names(self, multiindex_dataframe_random_data):
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
 | 
						|
        unstacked = frame.unstack()
 | 
						|
        assert unstacked.index.name == "first"
 | 
						|
        assert unstacked.columns.names == ["exp", "second"]
 | 
						|
 | 
						|
        restacked = unstacked.stack()
 | 
						|
        assert restacked.index.names == frame.index.names
 | 
						|
 | 
						|
    @pytest.mark.parametrize("method", ["stack", "unstack"])
 | 
						|
    def test_stack_unstack_wrong_level_name(
 | 
						|
        self, method, multiindex_dataframe_random_data
 | 
						|
    ):
 | 
						|
        # GH 18303 - wrong level name should raise
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
 | 
						|
        # A DataFrame with flat axes:
 | 
						|
        df = frame.loc["foo"]
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match="does not match index name"):
 | 
						|
            getattr(df, method)("mistake")
 | 
						|
 | 
						|
        if method == "unstack":
 | 
						|
            # Same on a Series:
 | 
						|
            s = df.iloc[:, 0]
 | 
						|
            with pytest.raises(KeyError, match="does not match index name"):
 | 
						|
                getattr(s, method)("mistake")
 | 
						|
 | 
						|
    def test_unstack_level_name(self, multiindex_dataframe_random_data):
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
 | 
						|
        result = frame.unstack("second")
 | 
						|
        expected = frame.unstack(level=1)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_level_name(self, multiindex_dataframe_random_data):
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
 | 
						|
        unstacked = frame.unstack("second")
 | 
						|
        result = unstacked.stack("exp")
 | 
						|
        expected = frame.unstack().stack(0)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = frame.stack("exp")
 | 
						|
        expected = frame.stack()
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_unstack_multiple(
 | 
						|
        self, multiindex_year_month_day_dataframe_random_data
 | 
						|
    ):
 | 
						|
        ymd = multiindex_year_month_day_dataframe_random_data
 | 
						|
 | 
						|
        unstacked = ymd.unstack(["year", "month"])
 | 
						|
        expected = ymd.unstack("year").unstack("month")
 | 
						|
        tm.assert_frame_equal(unstacked, expected)
 | 
						|
        assert unstacked.columns.names == expected.columns.names
 | 
						|
 | 
						|
        # series
 | 
						|
        s = ymd["A"]
 | 
						|
        s_unstacked = s.unstack(["year", "month"])
 | 
						|
        tm.assert_frame_equal(s_unstacked, expected["A"])
 | 
						|
 | 
						|
        restacked = unstacked.stack(["year", "month"])
 | 
						|
        restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
 | 
						|
        restacked = restacked.sort_index(level=0)
 | 
						|
 | 
						|
        tm.assert_frame_equal(restacked, ymd)
 | 
						|
        assert restacked.index.names == ymd.index.names
 | 
						|
 | 
						|
        # GH #451
 | 
						|
        unstacked = ymd.unstack([1, 2])
 | 
						|
        expected = ymd.unstack(1).unstack(1).dropna(axis=1, how="all")
 | 
						|
        tm.assert_frame_equal(unstacked, expected)
 | 
						|
 | 
						|
        unstacked = ymd.unstack([2, 1])
 | 
						|
        expected = ymd.unstack(2).unstack(1).dropna(axis=1, how="all")
 | 
						|
        tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns])
 | 
						|
 | 
						|
    def test_stack_names_and_numbers(
 | 
						|
        self, multiindex_year_month_day_dataframe_random_data
 | 
						|
    ):
 | 
						|
        ymd = multiindex_year_month_day_dataframe_random_data
 | 
						|
 | 
						|
        unstacked = ymd.unstack(["year", "month"])
 | 
						|
 | 
						|
        # Can't use mixture of names and numbers to stack
 | 
						|
        with pytest.raises(ValueError, match="level should contain"):
 | 
						|
            unstacked.stack([0, "month"])
 | 
						|
 | 
						|
    def test_stack_multiple_out_of_bounds(
 | 
						|
        self, multiindex_year_month_day_dataframe_random_data
 | 
						|
    ):
 | 
						|
        # nlevels == 3
 | 
						|
        ymd = multiindex_year_month_day_dataframe_random_data
 | 
						|
 | 
						|
        unstacked = ymd.unstack(["year", "month"])
 | 
						|
 | 
						|
        with pytest.raises(IndexError, match="Too many levels"):
 | 
						|
            unstacked.stack([2, 3])
 | 
						|
        with pytest.raises(IndexError, match="not a valid level number"):
 | 
						|
            unstacked.stack([-4, -3])
 | 
						|
 | 
						|
    def test_unstack_period_series(self):
 | 
						|
        # GH4342
 | 
						|
        idx1 = pd.PeriodIndex(
 | 
						|
            ["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
 | 
						|
            freq="M",
 | 
						|
            name="period",
 | 
						|
        )
 | 
						|
        idx2 = Index(["A", "B"] * 3, name="str")
 | 
						|
        value = [1, 2, 3, 4, 5, 6]
 | 
						|
 | 
						|
        idx = MultiIndex.from_arrays([idx1, idx2])
 | 
						|
        s = Series(value, index=idx)
 | 
						|
 | 
						|
        result1 = s.unstack()
 | 
						|
        result2 = s.unstack(level=1)
 | 
						|
        result3 = s.unstack(level=0)
 | 
						|
 | 
						|
        e_idx = pd.PeriodIndex(
 | 
						|
            ["2013-01", "2013-02", "2013-03"], freq="M", name="period"
 | 
						|
        )
 | 
						|
        expected = DataFrame(
 | 
						|
            {"A": [1, 3, 5], "B": [2, 4, 6]}, index=e_idx, columns=["A", "B"]
 | 
						|
        )
 | 
						|
        expected.columns.name = "str"
 | 
						|
 | 
						|
        tm.assert_frame_equal(result1, expected)
 | 
						|
        tm.assert_frame_equal(result2, expected)
 | 
						|
        tm.assert_frame_equal(result3, expected.T)
 | 
						|
 | 
						|
        idx1 = pd.PeriodIndex(
 | 
						|
            ["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
 | 
						|
            freq="M",
 | 
						|
            name="period1",
 | 
						|
        )
 | 
						|
 | 
						|
        idx2 = pd.PeriodIndex(
 | 
						|
            ["2013-12", "2013-11", "2013-10", "2013-09", "2013-08", "2013-07"],
 | 
						|
            freq="M",
 | 
						|
            name="period2",
 | 
						|
        )
 | 
						|
        idx = MultiIndex.from_arrays([idx1, idx2])
 | 
						|
        s = Series(value, index=idx)
 | 
						|
 | 
						|
        result1 = s.unstack()
 | 
						|
        result2 = s.unstack(level=1)
 | 
						|
        result3 = s.unstack(level=0)
 | 
						|
 | 
						|
        e_idx = pd.PeriodIndex(
 | 
						|
            ["2013-01", "2013-02", "2013-03"], freq="M", name="period1"
 | 
						|
        )
 | 
						|
        e_cols = pd.PeriodIndex(
 | 
						|
            ["2013-07", "2013-08", "2013-09", "2013-10", "2013-11", "2013-12"],
 | 
						|
            freq="M",
 | 
						|
            name="period2",
 | 
						|
        )
 | 
						|
        expected = DataFrame(
 | 
						|
            [
 | 
						|
                [np.nan, np.nan, np.nan, np.nan, 2, 1],
 | 
						|
                [np.nan, np.nan, 4, 3, np.nan, np.nan],
 | 
						|
                [6, 5, np.nan, np.nan, np.nan, np.nan],
 | 
						|
            ],
 | 
						|
            index=e_idx,
 | 
						|
            columns=e_cols,
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_frame_equal(result1, expected)
 | 
						|
        tm.assert_frame_equal(result2, expected)
 | 
						|
        tm.assert_frame_equal(result3, expected.T)
 | 
						|
 | 
						|
    def test_unstack_period_frame(self):
 | 
						|
        # GH4342
 | 
						|
        idx1 = pd.PeriodIndex(
 | 
						|
            ["2014-01", "2014-02", "2014-02", "2014-02", "2014-01", "2014-01"],
 | 
						|
            freq="M",
 | 
						|
            name="period1",
 | 
						|
        )
 | 
						|
        idx2 = pd.PeriodIndex(
 | 
						|
            ["2013-12", "2013-12", "2014-02", "2013-10", "2013-10", "2014-02"],
 | 
						|
            freq="M",
 | 
						|
            name="period2",
 | 
						|
        )
 | 
						|
        value = {"A": [1, 2, 3, 4, 5, 6], "B": [6, 5, 4, 3, 2, 1]}
 | 
						|
        idx = MultiIndex.from_arrays([idx1, idx2])
 | 
						|
        df = DataFrame(value, index=idx)
 | 
						|
 | 
						|
        result1 = df.unstack()
 | 
						|
        result2 = df.unstack(level=1)
 | 
						|
        result3 = df.unstack(level=0)
 | 
						|
 | 
						|
        e_1 = pd.PeriodIndex(["2014-01", "2014-02"], freq="M", name="period1")
 | 
						|
        e_2 = pd.PeriodIndex(
 | 
						|
            ["2013-10", "2013-12", "2014-02", "2013-10", "2013-12", "2014-02"],
 | 
						|
            freq="M",
 | 
						|
            name="period2",
 | 
						|
        )
 | 
						|
        e_cols = MultiIndex.from_arrays(["A A A B B B".split(), e_2])
 | 
						|
        expected = DataFrame(
 | 
						|
            [[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_frame_equal(result1, expected)
 | 
						|
        tm.assert_frame_equal(result2, expected)
 | 
						|
 | 
						|
        e_1 = pd.PeriodIndex(
 | 
						|
            ["2014-01", "2014-02", "2014-01", "2014-02"], freq="M", name="period1"
 | 
						|
        )
 | 
						|
        e_2 = pd.PeriodIndex(
 | 
						|
            ["2013-10", "2013-12", "2014-02"], freq="M", name="period2"
 | 
						|
        )
 | 
						|
        e_cols = MultiIndex.from_arrays(["A A B B".split(), e_1])
 | 
						|
        expected = DataFrame(
 | 
						|
            [[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_frame_equal(result3, expected)
 | 
						|
 | 
						|
    def test_stack_multiple_bug(self):
 | 
						|
        # bug when some uniques are not present in the data GH#3170
 | 
						|
        id_col = ([1] * 3) + ([2] * 3)
 | 
						|
        name = (["a"] * 3) + (["b"] * 3)
 | 
						|
        date = pd.to_datetime(["2013-01-03", "2013-01-04", "2013-01-05"] * 2)
 | 
						|
        var1 = np.random.randint(0, 100, 6)
 | 
						|
        df = DataFrame({"ID": id_col, "NAME": name, "DATE": date, "VAR1": var1})
 | 
						|
 | 
						|
        multi = df.set_index(["DATE", "ID"])
 | 
						|
        multi.columns.name = "Params"
 | 
						|
        unst = multi.unstack("ID")
 | 
						|
        down = unst.resample("W-THU").mean()
 | 
						|
 | 
						|
        rs = down.stack("ID")
 | 
						|
        xp = unst.loc[:, ["VAR1"]].resample("W-THU").mean().stack("ID")
 | 
						|
        xp.columns.name = "Params"
 | 
						|
        tm.assert_frame_equal(rs, xp)
 | 
						|
 | 
						|
    def test_stack_dropna(self):
 | 
						|
        # GH#3997
 | 
						|
        df = DataFrame({"A": ["a1", "a2"], "B": ["b1", "b2"], "C": [1, 1]})
 | 
						|
        df = df.set_index(["A", "B"])
 | 
						|
 | 
						|
        stacked = df.unstack().stack(dropna=False)
 | 
						|
        assert len(stacked) > len(stacked.dropna())
 | 
						|
 | 
						|
        stacked = df.unstack().stack(dropna=True)
 | 
						|
        tm.assert_frame_equal(stacked, stacked.dropna())
 | 
						|
 | 
						|
    def test_unstack_multiple_hierarchical(self):
 | 
						|
        df = DataFrame(
 | 
						|
            index=[
 | 
						|
                [0, 0, 0, 0, 1, 1, 1, 1],
 | 
						|
                [0, 0, 1, 1, 0, 0, 1, 1],
 | 
						|
                [0, 1, 0, 1, 0, 1, 0, 1],
 | 
						|
            ],
 | 
						|
            columns=[[0, 0, 1, 1], [0, 1, 0, 1]],
 | 
						|
        )
 | 
						|
 | 
						|
        df.index.names = ["a", "b", "c"]
 | 
						|
        df.columns.names = ["d", "e"]
 | 
						|
 | 
						|
        # it works!
 | 
						|
        df.unstack(["b", "c"])
 | 
						|
 | 
						|
    def test_unstack_sparse_keyspace(self):
 | 
						|
        # memory problems with naive impl GH#2278
 | 
						|
        # Generate Long File & Test Pivot
 | 
						|
        NUM_ROWS = 1000
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": np.random.randint(100, size=NUM_ROWS),
 | 
						|
                "B": np.random.randint(300, size=NUM_ROWS),
 | 
						|
                "C": np.random.randint(-7, 7, size=NUM_ROWS),
 | 
						|
                "D": np.random.randint(-19, 19, size=NUM_ROWS),
 | 
						|
                "E": np.random.randint(3000, size=NUM_ROWS),
 | 
						|
                "F": np.random.randn(NUM_ROWS),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        idf = df.set_index(["A", "B", "C", "D", "E"])
 | 
						|
 | 
						|
        # it works! is sufficient
 | 
						|
        idf.unstack("E")
 | 
						|
 | 
						|
    def test_unstack_unobserved_keys(self):
 | 
						|
        # related to GH#2278 refactoring
 | 
						|
        levels = [[0, 1], [0, 1, 2, 3]]
 | 
						|
        codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
 | 
						|
 | 
						|
        index = MultiIndex(levels, codes)
 | 
						|
 | 
						|
        df = DataFrame(np.random.randn(4, 2), index=index)
 | 
						|
 | 
						|
        result = df.unstack()
 | 
						|
        assert len(result.columns) == 4
 | 
						|
 | 
						|
        recons = result.stack()
 | 
						|
        tm.assert_frame_equal(recons, df)
 | 
						|
 | 
						|
    @pytest.mark.slow
 | 
						|
    def test_unstack_number_of_levels_larger_than_int32(self, monkeypatch):
 | 
						|
        # GH#20601
 | 
						|
        # GH 26314: Change ValueError to PerformanceWarning
 | 
						|
 | 
						|
        class MockUnstacker(reshape_lib._Unstacker):
 | 
						|
            def __init__(self, *args, **kwargs):
 | 
						|
                # __init__ will raise the warning
 | 
						|
                super().__init__(*args, **kwargs)
 | 
						|
                raise Exception("Don't compute final result.")
 | 
						|
 | 
						|
        with monkeypatch.context() as m:
 | 
						|
            m.setattr(reshape_lib, "_Unstacker", MockUnstacker)
 | 
						|
            df = DataFrame(
 | 
						|
                np.random.randn(2**16, 2),
 | 
						|
                index=[np.arange(2**16), np.arange(2**16)],
 | 
						|
            )
 | 
						|
            msg = "The following operation may generate"
 | 
						|
            with tm.assert_produces_warning(PerformanceWarning, match=msg):
 | 
						|
                with pytest.raises(Exception, match="Don't compute final result."):
 | 
						|
                    df.unstack()
 | 
						|
 | 
						|
    def test_stack_order_with_unsorted_levels(self):
 | 
						|
        # GH#16323
 | 
						|
 | 
						|
        def manual_compare_stacked(df, df_stacked, lev0, lev1):
 | 
						|
            assert all(
 | 
						|
                df.loc[row, col] == df_stacked.loc[(row, col[lev0]), col[lev1]]
 | 
						|
                for row in df.index
 | 
						|
                for col in df.columns
 | 
						|
            )
 | 
						|
 | 
						|
        # deep check for 1-row case
 | 
						|
        for width in [2, 3]:
 | 
						|
            levels_poss = itertools.product(
 | 
						|
                itertools.permutations([0, 1, 2], width), repeat=2
 | 
						|
            )
 | 
						|
 | 
						|
            for levels in levels_poss:
 | 
						|
                columns = MultiIndex(levels=levels, codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
 | 
						|
                df = DataFrame(columns=columns, data=[range(4)])
 | 
						|
                for stack_lev in range(2):
 | 
						|
                    df_stacked = df.stack(stack_lev)
 | 
						|
                    manual_compare_stacked(df, df_stacked, stack_lev, 1 - stack_lev)
 | 
						|
 | 
						|
        # check multi-row case
 | 
						|
        mi = MultiIndex(
 | 
						|
            levels=[["A", "C", "B"], ["B", "A", "C"]],
 | 
						|
            codes=[np.repeat(range(3), 3), np.tile(range(3), 3)],
 | 
						|
        )
 | 
						|
        df = DataFrame(
 | 
						|
            columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1)
 | 
						|
        )
 | 
						|
        manual_compare_stacked(df, df.stack(0), 0, 1)
 | 
						|
 | 
						|
    def test_stack_unstack_unordered_multiindex(self):
 | 
						|
        # GH# 18265
 | 
						|
        values = np.arange(5)
 | 
						|
        data = np.vstack(
 | 
						|
            [
 | 
						|
                [f"b{x}" for x in values],  # b0, b1, ..
 | 
						|
                [f"a{x}" for x in values],  # a0, a1, ..
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        df = DataFrame(data.T, columns=["b", "a"])
 | 
						|
        df.columns.name = "first"
 | 
						|
        second_level_dict = {"x": df}
 | 
						|
        multi_level_df = pd.concat(second_level_dict, axis=1)
 | 
						|
        multi_level_df.columns.names = ["second", "first"]
 | 
						|
        df = multi_level_df.reindex(sorted(multi_level_df.columns), axis=1)
 | 
						|
        result = df.stack(["first", "second"]).unstack(["first", "second"])
 | 
						|
        expected = DataFrame(
 | 
						|
            [["a0", "b0"], ["a1", "b1"], ["a2", "b2"], ["a3", "b3"], ["a4", "b4"]],
 | 
						|
            index=[0, 1, 2, 3, 4],
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [("a", "x"), ("b", "x")], names=["first", "second"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_preserve_types(
 | 
						|
        self, multiindex_year_month_day_dataframe_random_data
 | 
						|
    ):
 | 
						|
        # GH#403
 | 
						|
        ymd = multiindex_year_month_day_dataframe_random_data
 | 
						|
        ymd["E"] = "foo"
 | 
						|
        ymd["F"] = 2
 | 
						|
 | 
						|
        unstacked = ymd.unstack("month")
 | 
						|
        assert unstacked["A", 1].dtype == np.float64
 | 
						|
        assert unstacked["E", 1].dtype == np.object_
 | 
						|
        assert unstacked["F", 1].dtype == np.float64
 | 
						|
 | 
						|
    def test_unstack_group_index_overflow(self):
 | 
						|
        codes = np.tile(np.arange(500), 2)
 | 
						|
        level = np.arange(500)
 | 
						|
 | 
						|
        index = MultiIndex(
 | 
						|
            levels=[level] * 8 + [[0, 1]],
 | 
						|
            codes=[codes] * 8 + [np.arange(2).repeat(500)],
 | 
						|
        )
 | 
						|
 | 
						|
        s = Series(np.arange(1000), index=index)
 | 
						|
        result = s.unstack()
 | 
						|
        assert result.shape == (500, 2)
 | 
						|
 | 
						|
        # test roundtrip
 | 
						|
        stacked = result.stack()
 | 
						|
        tm.assert_series_equal(s, stacked.reindex(s.index))
 | 
						|
 | 
						|
        # put it at beginning
 | 
						|
        index = MultiIndex(
 | 
						|
            levels=[[0, 1]] + [level] * 8,
 | 
						|
            codes=[np.arange(2).repeat(500)] + [codes] * 8,
 | 
						|
        )
 | 
						|
 | 
						|
        s = Series(np.arange(1000), index=index)
 | 
						|
        result = s.unstack(0)
 | 
						|
        assert result.shape == (500, 2)
 | 
						|
 | 
						|
        # put it in middle
 | 
						|
        index = MultiIndex(
 | 
						|
            levels=[level] * 4 + [[0, 1]] + [level] * 4,
 | 
						|
            codes=([codes] * 4 + [np.arange(2).repeat(500)] + [codes] * 4),
 | 
						|
        )
 | 
						|
 | 
						|
        s = Series(np.arange(1000), index=index)
 | 
						|
        result = s.unstack(4)
 | 
						|
        assert result.shape == (500, 2)
 | 
						|
 | 
						|
    def test_unstack_with_missing_int_cast_to_float(self, using_array_manager):
 | 
						|
        # https://github.com/pandas-dev/pandas/issues/37115
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "a": ["A", "A", "B"],
 | 
						|
                "b": ["ca", "cb", "cb"],
 | 
						|
                "v": [10] * 3,
 | 
						|
            }
 | 
						|
        ).set_index(["a", "b"])
 | 
						|
 | 
						|
        # add another int column to get 2 blocks
 | 
						|
        df["is_"] = 1
 | 
						|
        if not using_array_manager:
 | 
						|
            assert len(df._mgr.blocks) == 2
 | 
						|
 | 
						|
        result = df.unstack("b")
 | 
						|
        result[("is_", "ca")] = result[("is_", "ca")].fillna(0)
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            [[10.0, 10.0, 1.0, 1.0], [np.nan, 10.0, 0.0, 1.0]],
 | 
						|
            index=Index(["A", "B"], dtype="object", name="a"),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [("v", "ca"), ("v", "cb"), ("is_", "ca"), ("is_", "cb")],
 | 
						|
                names=[None, "b"],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        if using_array_manager:
 | 
						|
            # INFO(ArrayManager) with ArrayManager preserve dtype where possible
 | 
						|
            expected[("v", "cb")] = expected[("v", "cb")].astype("int64")
 | 
						|
            expected[("is_", "cb")] = expected[("is_", "cb")].astype("int64")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_with_level_has_nan(self):
 | 
						|
        # GH 37510
 | 
						|
        df1 = DataFrame(
 | 
						|
            {
 | 
						|
                "L1": [1, 2, 3, 4],
 | 
						|
                "L2": [3, 4, 1, 2],
 | 
						|
                "L3": [1, 1, 1, 1],
 | 
						|
                "x": [1, 2, 3, 4],
 | 
						|
            }
 | 
						|
        )
 | 
						|
        df1 = df1.set_index(["L1", "L2", "L3"])
 | 
						|
        new_levels = ["n1", "n2", "n3", None]
 | 
						|
        df1.index = df1.index.set_levels(levels=new_levels, level="L1")
 | 
						|
        df1.index = df1.index.set_levels(levels=new_levels, level="L2")
 | 
						|
 | 
						|
        result = df1.unstack("L3")[("x", 1)].sort_index().index
 | 
						|
        expected = MultiIndex(
 | 
						|
            levels=[["n1", "n2", "n3", None], ["n1", "n2", "n3", None]],
 | 
						|
            codes=[[0, 1, 2, 3], [2, 3, 0, 1]],
 | 
						|
            names=["L1", "L2"],
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_nan_in_multiindex_columns(self):
 | 
						|
        # GH#39481
 | 
						|
        df = DataFrame(
 | 
						|
            np.zeros([1, 5]),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [
 | 
						|
                    (0, None, None),
 | 
						|
                    (0, 2, 0),
 | 
						|
                    (0, 2, 1),
 | 
						|
                    (0, 3, 0),
 | 
						|
                    (0, 3, 1),
 | 
						|
                ],
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        result = df.stack(2)
 | 
						|
        expected = DataFrame(
 | 
						|
            [[0.0, np.nan, np.nan], [np.nan, 0.0, 0.0], [np.nan, 0.0, 0.0]],
 | 
						|
            index=Index([(0, None), (0, 0), (0, 1)]),
 | 
						|
            columns=Index([(0, None), (0, 2), (0, 3)]),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_multi_level_stack_categorical(self):
 | 
						|
        # GH 15239
 | 
						|
        midx = MultiIndex.from_arrays(
 | 
						|
            [
 | 
						|
                ["A"] * 2 + ["B"] * 2,
 | 
						|
                pd.Categorical(list("abab")),
 | 
						|
                pd.Categorical(list("ccdd")),
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        df = DataFrame(np.arange(8).reshape(2, 4), columns=midx)
 | 
						|
        result = df.stack([1, 2])
 | 
						|
        expected = DataFrame(
 | 
						|
            [
 | 
						|
                [0, np.nan],
 | 
						|
                [np.nan, 2],
 | 
						|
                [1, np.nan],
 | 
						|
                [np.nan, 3],
 | 
						|
                [4, np.nan],
 | 
						|
                [np.nan, 6],
 | 
						|
                [5, np.nan],
 | 
						|
                [np.nan, 7],
 | 
						|
            ],
 | 
						|
            columns=["A", "B"],
 | 
						|
            index=MultiIndex.from_arrays(
 | 
						|
                [
 | 
						|
                    [0] * 4 + [1] * 4,
 | 
						|
                    pd.Categorical(list("aabbaabb")),
 | 
						|
                    pd.Categorical(list("cdcdcdcd")),
 | 
						|
                ]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_nan_level(self):
 | 
						|
        # GH 9406
 | 
						|
        df_nan = DataFrame(
 | 
						|
            np.arange(4).reshape(2, 2),
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [("A", np.nan), ("B", "b")], names=["Upper", "Lower"]
 | 
						|
            ),
 | 
						|
            index=Index([0, 1], name="Num"),
 | 
						|
            dtype=np.float64,
 | 
						|
        )
 | 
						|
        result = df_nan.stack()
 | 
						|
        expected = DataFrame(
 | 
						|
            [[0.0, np.nan], [np.nan, 1], [2.0, np.nan], [np.nan, 3.0]],
 | 
						|
            columns=Index(["A", "B"], name="Upper"),
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                [(0, np.nan), (0, "b"), (1, np.nan), (1, "b")], names=["Num", "Lower"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_unstack_categorical_columns(self):
 | 
						|
        # GH 14018
 | 
						|
        idx = MultiIndex.from_product([["A"], [0, 1]])
 | 
						|
        df = DataFrame({"cat": pd.Categorical(["a", "b"])}, index=idx)
 | 
						|
        result = df.unstack()
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                0: pd.Categorical(["a"], categories=["a", "b"]),
 | 
						|
                1: pd.Categorical(["b"], categories=["a", "b"]),
 | 
						|
            },
 | 
						|
            index=["A"],
 | 
						|
        )
 | 
						|
        expected.columns = MultiIndex.from_tuples([("cat", 0), ("cat", 1)])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_unsorted(self):
 | 
						|
        # GH 16925
 | 
						|
        PAE = ["ITA", "FRA"]
 | 
						|
        VAR = ["A1", "A2"]
 | 
						|
        TYP = ["CRT", "DBT", "NET"]
 | 
						|
        MI = MultiIndex.from_product([PAE, VAR, TYP], names=["PAE", "VAR", "TYP"])
 | 
						|
 | 
						|
        V = list(range(len(MI)))
 | 
						|
        DF = DataFrame(data=V, index=MI, columns=["VALUE"])
 | 
						|
 | 
						|
        DF = DF.unstack(["VAR", "TYP"])
 | 
						|
        DF.columns = DF.columns.droplevel(0)
 | 
						|
        DF.loc[:, ("A0", "NET")] = 9999
 | 
						|
 | 
						|
        result = DF.stack(["VAR", "TYP"]).sort_index()
 | 
						|
        expected = DF.sort_index(axis=1).stack(["VAR", "TYP"]).sort_index()
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_stack_nullable_dtype(self):
 | 
						|
        # GH#43561
 | 
						|
        columns = MultiIndex.from_product(
 | 
						|
            [["54511", "54515"], ["r", "t_mean"]], names=["station", "element"]
 | 
						|
        )
 | 
						|
        index = Index([1, 2, 3], name="time")
 | 
						|
 | 
						|
        arr = np.array([[50, 226, 10, 215], [10, 215, 9, 220], [305, 232, 111, 220]])
 | 
						|
        df = DataFrame(arr, columns=columns, index=index, dtype=pd.Int64Dtype())
 | 
						|
 | 
						|
        result = df.stack("station")
 | 
						|
 | 
						|
        expected = df.astype(np.int64).stack("station").astype(pd.Int64Dtype())
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # non-homogeneous case
 | 
						|
        df[df.columns[0]] = df[df.columns[0]].astype(pd.Float64Dtype())
 | 
						|
        result = df.stack("station")
 | 
						|
 | 
						|
        # TODO(EA2D): we get object dtype because DataFrame.values can't
 | 
						|
        #  be an EA
 | 
						|
        expected = df.astype(object).stack("station")
 | 
						|
        tm.assert_frame_equal(result, expected)
 |