366 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
import pandas.core.common as com
 | 
						|
 | 
						|
 | 
						|
class TestSample:
 | 
						|
    @pytest.fixture(params=[Series, DataFrame])
 | 
						|
    def obj(self, request):
 | 
						|
        klass = request.param
 | 
						|
        if klass is Series:
 | 
						|
            arr = np.random.randn(10)
 | 
						|
        else:
 | 
						|
            arr = np.random.randn(10, 10)
 | 
						|
        return klass(arr, dtype=None)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("test", list(range(10)))
 | 
						|
    def test_sample(self, test, obj):
 | 
						|
        # Fixes issue: 2419
 | 
						|
        # Check behavior of random_state argument
 | 
						|
        # Check for stability when receives seed or random state -- run 10
 | 
						|
        # times.
 | 
						|
 | 
						|
        seed = np.random.randint(0, 100)
 | 
						|
        tm.assert_equal(
 | 
						|
            obj.sample(n=4, random_state=seed), obj.sample(n=4, random_state=seed)
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_equal(
 | 
						|
            obj.sample(frac=0.7, random_state=seed),
 | 
						|
            obj.sample(frac=0.7, random_state=seed),
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_equal(
 | 
						|
            obj.sample(n=4, random_state=np.random.RandomState(test)),
 | 
						|
            obj.sample(n=4, random_state=np.random.RandomState(test)),
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_equal(
 | 
						|
            obj.sample(frac=0.7, random_state=np.random.RandomState(test)),
 | 
						|
            obj.sample(frac=0.7, random_state=np.random.RandomState(test)),
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_equal(
 | 
						|
            obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)),
 | 
						|
            obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)),
 | 
						|
        )
 | 
						|
 | 
						|
        os1, os2 = [], []
 | 
						|
        for _ in range(2):
 | 
						|
            np.random.seed(test)
 | 
						|
            os1.append(obj.sample(n=4))
 | 
						|
            os2.append(obj.sample(frac=0.7))
 | 
						|
        tm.assert_equal(*os1)
 | 
						|
        tm.assert_equal(*os2)
 | 
						|
 | 
						|
    def test_sample_lengths(self, obj):
 | 
						|
        # Check lengths are right
 | 
						|
        assert len(obj.sample(n=4) == 4)
 | 
						|
        assert len(obj.sample(frac=0.34) == 3)
 | 
						|
        assert len(obj.sample(frac=0.36) == 4)
 | 
						|
 | 
						|
    def test_sample_invalid_random_state(self, obj):
 | 
						|
        # Check for error when random_state argument invalid.
 | 
						|
        msg = (
 | 
						|
            "random_state must be an integer, array-like, a BitGenerator, Generator, "
 | 
						|
            "a numpy RandomState, or None"
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(random_state="a_string")
 | 
						|
 | 
						|
    def test_sample_wont_accept_n_and_frac(self, obj):
 | 
						|
        # Giving both frac and N throws error
 | 
						|
        msg = "Please enter a value for `frac` OR `n`, not both"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(n=3, frac=0.3)
 | 
						|
 | 
						|
    def test_sample_requires_positive_n_frac(self, obj):
 | 
						|
        with pytest.raises(
 | 
						|
            ValueError,
 | 
						|
            match="A negative number of rows requested. Please provide `n` >= 0",
 | 
						|
        ):
 | 
						|
            obj.sample(n=-3)
 | 
						|
        with pytest.raises(
 | 
						|
            ValueError,
 | 
						|
            match="A negative number of rows requested. Please provide `frac` >= 0",
 | 
						|
        ):
 | 
						|
            obj.sample(frac=-0.3)
 | 
						|
 | 
						|
    def test_sample_requires_integer_n(self, obj):
 | 
						|
        # Make sure float values of `n` give error
 | 
						|
        with pytest.raises(ValueError, match="Only integers accepted as `n` values"):
 | 
						|
            obj.sample(n=3.2)
 | 
						|
 | 
						|
    def test_sample_invalid_weight_lengths(self, obj):
 | 
						|
        # Weight length must be right
 | 
						|
        msg = "Weights and axis to be sampled must be of same length"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(n=3, weights=[0, 1])
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            bad_weights = [0.5] * 11
 | 
						|
            obj.sample(n=3, weights=bad_weights)
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match="Fewer non-zero entries in p than size"):
 | 
						|
            bad_weight_series = Series([0, 0, 0.2])
 | 
						|
            obj.sample(n=4, weights=bad_weight_series)
 | 
						|
 | 
						|
    def test_sample_negative_weights(self, obj):
 | 
						|
        # Check won't accept negative weights
 | 
						|
        bad_weights = [-0.1] * 10
 | 
						|
        msg = "weight vector many not include negative values"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(n=3, weights=bad_weights)
 | 
						|
 | 
						|
    def test_sample_inf_weights(self, obj):
 | 
						|
        # Check inf and -inf throw errors:
 | 
						|
 | 
						|
        weights_with_inf = [0.1] * 10
 | 
						|
        weights_with_inf[0] = np.inf
 | 
						|
        msg = "weight vector may not include `inf` values"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(n=3, weights=weights_with_inf)
 | 
						|
 | 
						|
        weights_with_ninf = [0.1] * 10
 | 
						|
        weights_with_ninf[0] = -np.inf
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(n=3, weights=weights_with_ninf)
 | 
						|
 | 
						|
    def test_sample_zero_weights(self, obj):
 | 
						|
        # All zeros raises errors
 | 
						|
 | 
						|
        zero_weights = [0] * 10
 | 
						|
        with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"):
 | 
						|
            obj.sample(n=3, weights=zero_weights)
 | 
						|
 | 
						|
    def test_sample_missing_weights(self, obj):
 | 
						|
        # All missing weights
 | 
						|
 | 
						|
        nan_weights = [np.nan] * 10
 | 
						|
        with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"):
 | 
						|
            obj.sample(n=3, weights=nan_weights)
 | 
						|
 | 
						|
    def test_sample_none_weights(self, obj):
 | 
						|
        # Check None are also replaced by zeros.
 | 
						|
        weights_with_None = [None] * 10
 | 
						|
        weights_with_None[5] = 0.5
 | 
						|
        tm.assert_equal(
 | 
						|
            obj.sample(n=1, axis=0, weights=weights_with_None), obj.iloc[5:6]
 | 
						|
        )
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "func_str,arg",
 | 
						|
        [
 | 
						|
            ("np.array", [2, 3, 1, 0]),
 | 
						|
            ("np.random.MT19937", 3),
 | 
						|
            ("np.random.PCG64", 11),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_sample_random_state(self, func_str, arg, frame_or_series):
 | 
						|
        # GH#32503
 | 
						|
        obj = DataFrame({"col1": range(10, 20), "col2": range(20, 30)})
 | 
						|
        obj = tm.get_obj(obj, frame_or_series)
 | 
						|
        result = obj.sample(n=3, random_state=eval(func_str)(arg))
 | 
						|
        expected = obj.sample(n=3, random_state=com.random_state(eval(func_str)(arg)))
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_sample_generator(self, frame_or_series):
 | 
						|
        # GH#38100
 | 
						|
        obj = frame_or_series(np.arange(100))
 | 
						|
        rng = np.random.default_rng()
 | 
						|
 | 
						|
        # Consecutive calls should advance the seed
 | 
						|
        result1 = obj.sample(n=50, random_state=rng)
 | 
						|
        result2 = obj.sample(n=50, random_state=rng)
 | 
						|
        assert not (result1.index.values == result2.index.values).all()
 | 
						|
 | 
						|
        # Matching generator initialization must give same result
 | 
						|
        # Consecutive calls should advance the seed
 | 
						|
        result1 = obj.sample(n=50, random_state=np.random.default_rng(11))
 | 
						|
        result2 = obj.sample(n=50, random_state=np.random.default_rng(11))
 | 
						|
        tm.assert_equal(result1, result2)
 | 
						|
 | 
						|
    def test_sample_upsampling_without_replacement(self, frame_or_series):
 | 
						|
        # GH#27451
 | 
						|
 | 
						|
        obj = DataFrame({"A": list("abc")})
 | 
						|
        obj = tm.get_obj(obj, frame_or_series)
 | 
						|
 | 
						|
        msg = (
 | 
						|
            "Replace has to be set to `True` when "
 | 
						|
            "upsampling the population `frac` > 1."
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            obj.sample(frac=2, replace=False)
 | 
						|
 | 
						|
 | 
						|
class TestSampleDataFrame:
 | 
						|
    # Tests which are relevant only for DataFrame, so these are
 | 
						|
    #  as fully parametrized as they can get.
 | 
						|
 | 
						|
    def test_sample(self):
 | 
						|
        # GH#2419
 | 
						|
        # additional specific object based tests
 | 
						|
 | 
						|
        # A few dataframe test with degenerate weights.
 | 
						|
        easy_weight_list = [0] * 10
 | 
						|
        easy_weight_list[5] = 1
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "col1": range(10, 20),
 | 
						|
                "col2": range(20, 30),
 | 
						|
                "colString": ["a"] * 10,
 | 
						|
                "easyweights": easy_weight_list,
 | 
						|
            }
 | 
						|
        )
 | 
						|
        sample1 = df.sample(n=1, weights="easyweights")
 | 
						|
        tm.assert_frame_equal(sample1, df.iloc[5:6])
 | 
						|
 | 
						|
        # Ensure proper error if string given as weight for Series or
 | 
						|
        # DataFrame with axis = 1.
 | 
						|
        ser = Series(range(10))
 | 
						|
        msg = "Strings cannot be passed as weights when sampling from a Series."
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            ser.sample(n=3, weights="weight_column")
 | 
						|
 | 
						|
        msg = (
 | 
						|
            "Strings can only be passed to weights when sampling from rows on a "
 | 
						|
            "DataFrame"
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.sample(n=1, weights="weight_column", axis=1)
 | 
						|
 | 
						|
        # Check weighting key error
 | 
						|
        with pytest.raises(
 | 
						|
            KeyError, match="'String passed to weights not a valid column'"
 | 
						|
        ):
 | 
						|
            df.sample(n=3, weights="not_a_real_column_name")
 | 
						|
 | 
						|
        # Check that re-normalizes weights that don't sum to one.
 | 
						|
        weights_less_than_1 = [0] * 10
 | 
						|
        weights_less_than_1[0] = 0.5
 | 
						|
        tm.assert_frame_equal(df.sample(n=1, weights=weights_less_than_1), df.iloc[:1])
 | 
						|
 | 
						|
        ###
 | 
						|
        # Test axis argument
 | 
						|
        ###
 | 
						|
 | 
						|
        # Test axis argument
 | 
						|
        df = DataFrame({"col1": range(10), "col2": ["a"] * 10})
 | 
						|
        second_column_weight = [0, 1]
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df.sample(n=1, axis=1, weights=second_column_weight), df[["col2"]]
 | 
						|
        )
 | 
						|
 | 
						|
        # Different axis arg types
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df.sample(n=1, axis="columns", weights=second_column_weight), df[["col2"]]
 | 
						|
        )
 | 
						|
 | 
						|
        weight = [0] * 10
 | 
						|
        weight[5] = 0.5
 | 
						|
        tm.assert_frame_equal(df.sample(n=1, axis="rows", weights=weight), df.iloc[5:6])
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df.sample(n=1, axis="index", weights=weight), df.iloc[5:6]
 | 
						|
        )
 | 
						|
 | 
						|
        # Check out of range axis values
 | 
						|
        msg = "No axis named 2 for object type DataFrame"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.sample(n=1, axis=2)
 | 
						|
 | 
						|
        msg = "No axis named not_a_name for object type DataFrame"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.sample(n=1, axis="not_a_name")
 | 
						|
 | 
						|
        ser = Series(range(10))
 | 
						|
        with pytest.raises(ValueError, match="No axis named 1 for object type Series"):
 | 
						|
            ser.sample(n=1, axis=1)
 | 
						|
 | 
						|
        # Test weight length compared to correct axis
 | 
						|
        msg = "Weights and axis to be sampled must be of same length"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.sample(n=1, axis=1, weights=[0.5] * 10)
 | 
						|
 | 
						|
    def test_sample_axis1(self):
 | 
						|
        # Check weights with axis = 1
 | 
						|
        easy_weight_list = [0] * 3
 | 
						|
        easy_weight_list[2] = 1
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            {"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10}
 | 
						|
        )
 | 
						|
        sample1 = df.sample(n=1, axis=1, weights=easy_weight_list)
 | 
						|
        tm.assert_frame_equal(sample1, df[["colString"]])
 | 
						|
 | 
						|
        # Test default axes
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42)
 | 
						|
        )
 | 
						|
 | 
						|
    def test_sample_aligns_weights_with_frame(self):
 | 
						|
 | 
						|
        # Test that function aligns weights with frame
 | 
						|
        df = DataFrame({"col1": [5, 6, 7], "col2": ["a", "b", "c"]}, index=[9, 5, 3])
 | 
						|
        ser = Series([1, 0, 0], index=[3, 5, 9])
 | 
						|
        tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser))
 | 
						|
 | 
						|
        # Weights have index values to be dropped because not in
 | 
						|
        # sampled DataFrame
 | 
						|
        ser2 = Series([0.001, 0, 10000], index=[3, 5, 10])
 | 
						|
        tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser2))
 | 
						|
 | 
						|
        # Weights have empty values to be filed with zeros
 | 
						|
        ser3 = Series([0.01, 0], index=[3, 5])
 | 
						|
        tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser3))
 | 
						|
 | 
						|
        # No overlap in weight and sampled DataFrame indices
 | 
						|
        ser4 = Series([1, 0], index=[1, 2])
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"):
 | 
						|
            df.sample(1, weights=ser4)
 | 
						|
 | 
						|
    def test_sample_is_copy(self):
 | 
						|
        # GH#27357, GH#30784: ensure the result of sample is an actual copy and
 | 
						|
        # doesn't track the parent dataframe / doesn't give SettingWithCopy warnings
 | 
						|
        df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"])
 | 
						|
        df2 = df.sample(3)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(None):
 | 
						|
            df2["d"] = 1
 | 
						|
 | 
						|
    def test_sample_does_not_modify_weights(self):
 | 
						|
        # GH-42843
 | 
						|
        result = np.array([np.nan, 1, np.nan])
 | 
						|
        expected = result.copy()
 | 
						|
        ser = Series([1, 2, 3])
 | 
						|
 | 
						|
        # Test numpy array weights won't be modified in place
 | 
						|
        ser.sample(weights=result)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        # Test DataFrame column won't be modified in place
 | 
						|
        df = DataFrame({"values": [1, 1, 1], "weights": [1, np.nan, np.nan]})
 | 
						|
        expected = df["weights"].copy()
 | 
						|
 | 
						|
        df.sample(frac=1.0, replace=True, weights="weights")
 | 
						|
        result = df["weights"]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_sample_ignore_index(self):
 | 
						|
        # GH 38581
 | 
						|
        df = DataFrame(
 | 
						|
            {"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10}
 | 
						|
        )
 | 
						|
        result = df.sample(3, ignore_index=True)
 | 
						|
        expected_index = Index(range(3))
 | 
						|
        tm.assert_index_equal(result.index, expected_index, exact=True)
 |