372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import datetime
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    MultiIndex,
 | 
						|
    date_range,
 | 
						|
    period_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def frame_with_period_index():
 | 
						|
    return DataFrame(
 | 
						|
        data=np.arange(20).reshape(4, 5),
 | 
						|
        columns=list("abcde"),
 | 
						|
        index=period_range(start="2000", freq="A", periods=4),
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def left():
 | 
						|
    return DataFrame({"a": [20, 10, 0]}, index=[2, 1, 0])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def right():
 | 
						|
    return DataFrame({"b": [300, 100, 200]}, index=[3, 1, 2])
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "how, sort, expected",
 | 
						|
    [
 | 
						|
        ("inner", False, DataFrame({"a": [20, 10], "b": [200, 100]}, index=[2, 1])),
 | 
						|
        ("inner", True, DataFrame({"a": [10, 20], "b": [100, 200]}, index=[1, 2])),
 | 
						|
        (
 | 
						|
            "left",
 | 
						|
            False,
 | 
						|
            DataFrame({"a": [20, 10, 0], "b": [200, 100, np.nan]}, index=[2, 1, 0]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "left",
 | 
						|
            True,
 | 
						|
            DataFrame({"a": [0, 10, 20], "b": [np.nan, 100, 200]}, index=[0, 1, 2]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "right",
 | 
						|
            False,
 | 
						|
            DataFrame({"a": [np.nan, 10, 20], "b": [300, 100, 200]}, index=[3, 1, 2]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "right",
 | 
						|
            True,
 | 
						|
            DataFrame({"a": [10, 20, np.nan], "b": [100, 200, 300]}, index=[1, 2, 3]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "outer",
 | 
						|
            False,
 | 
						|
            DataFrame(
 | 
						|
                {"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
 | 
						|
                index=[0, 1, 2, 3],
 | 
						|
            ),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "outer",
 | 
						|
            True,
 | 
						|
            DataFrame(
 | 
						|
                {"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
 | 
						|
                index=[0, 1, 2, 3],
 | 
						|
            ),
 | 
						|
        ),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_join(left, right, how, sort, expected):
 | 
						|
 | 
						|
    result = left.join(right, how=how, sort=sort)
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_join_index(float_frame):
 | 
						|
    # left / right
 | 
						|
 | 
						|
    f = float_frame.loc[float_frame.index[:10], ["A", "B"]]
 | 
						|
    f2 = float_frame.loc[float_frame.index[5:], ["C", "D"]].iloc[::-1]
 | 
						|
 | 
						|
    joined = f.join(f2)
 | 
						|
    tm.assert_index_equal(f.index, joined.index)
 | 
						|
    expected_columns = Index(["A", "B", "C", "D"])
 | 
						|
    tm.assert_index_equal(joined.columns, expected_columns)
 | 
						|
 | 
						|
    joined = f.join(f2, how="left")
 | 
						|
    tm.assert_index_equal(joined.index, f.index)
 | 
						|
    tm.assert_index_equal(joined.columns, expected_columns)
 | 
						|
 | 
						|
    joined = f.join(f2, how="right")
 | 
						|
    tm.assert_index_equal(joined.index, f2.index)
 | 
						|
    tm.assert_index_equal(joined.columns, expected_columns)
 | 
						|
 | 
						|
    # inner
 | 
						|
 | 
						|
    joined = f.join(f2, how="inner")
 | 
						|
    tm.assert_index_equal(joined.index, f.index[5:10])
 | 
						|
    tm.assert_index_equal(joined.columns, expected_columns)
 | 
						|
 | 
						|
    # outer
 | 
						|
 | 
						|
    joined = f.join(f2, how="outer")
 | 
						|
    tm.assert_index_equal(joined.index, float_frame.index.sort_values())
 | 
						|
    tm.assert_index_equal(joined.columns, expected_columns)
 | 
						|
 | 
						|
    with pytest.raises(ValueError, match="join method"):
 | 
						|
        f.join(f2, how="foo")
 | 
						|
 | 
						|
    # corner case - overlapping columns
 | 
						|
    msg = "columns overlap but no suffix"
 | 
						|
    for how in ("outer", "left", "inner"):
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            float_frame.join(float_frame, how=how)
 | 
						|
 | 
						|
 | 
						|
def test_join_index_more(float_frame):
 | 
						|
    af = float_frame.loc[:, ["A", "B"]]
 | 
						|
    bf = float_frame.loc[::2, ["C", "D"]]
 | 
						|
 | 
						|
    expected = af.copy()
 | 
						|
    expected["C"] = float_frame["C"][::2]
 | 
						|
    expected["D"] = float_frame["D"][::2]
 | 
						|
 | 
						|
    result = af.join(bf)
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    result = af.join(bf, how="right")
 | 
						|
    tm.assert_frame_equal(result, expected[::2])
 | 
						|
 | 
						|
    result = bf.join(af, how="right")
 | 
						|
    tm.assert_frame_equal(result, expected.loc[:, result.columns])
 | 
						|
 | 
						|
 | 
						|
def test_join_index_series(float_frame):
 | 
						|
    df = float_frame.copy()
 | 
						|
    ser = df.pop(float_frame.columns[-1])
 | 
						|
    joined = df.join(ser)
 | 
						|
 | 
						|
    tm.assert_frame_equal(joined, float_frame)
 | 
						|
 | 
						|
    ser.name = None
 | 
						|
    with pytest.raises(ValueError, match="must have a name"):
 | 
						|
        df.join(ser)
 | 
						|
 | 
						|
 | 
						|
def test_join_overlap(float_frame):
 | 
						|
    df1 = float_frame.loc[:, ["A", "B", "C"]]
 | 
						|
    df2 = float_frame.loc[:, ["B", "C", "D"]]
 | 
						|
 | 
						|
    joined = df1.join(df2, lsuffix="_df1", rsuffix="_df2")
 | 
						|
    df1_suf = df1.loc[:, ["B", "C"]].add_suffix("_df1")
 | 
						|
    df2_suf = df2.loc[:, ["B", "C"]].add_suffix("_df2")
 | 
						|
 | 
						|
    no_overlap = float_frame.loc[:, ["A", "D"]]
 | 
						|
    expected = df1_suf.join(df2_suf).join(no_overlap)
 | 
						|
 | 
						|
    # column order not necessarily sorted
 | 
						|
    tm.assert_frame_equal(joined, expected.loc[:, joined.columns])
 | 
						|
 | 
						|
 | 
						|
def test_join_period_index(frame_with_period_index):
 | 
						|
    other = frame_with_period_index.rename(columns=lambda key: f"{key}{key}")
 | 
						|
 | 
						|
    joined_values = np.concatenate([frame_with_period_index.values] * 2, axis=1)
 | 
						|
 | 
						|
    joined_cols = frame_with_period_index.columns.append(other.columns)
 | 
						|
 | 
						|
    joined = frame_with_period_index.join(other)
 | 
						|
    expected = DataFrame(
 | 
						|
        data=joined_values, columns=joined_cols, index=frame_with_period_index.index
 | 
						|
    )
 | 
						|
 | 
						|
    tm.assert_frame_equal(joined, expected)
 | 
						|
 | 
						|
 | 
						|
def test_join_left_sequence_non_unique_index():
 | 
						|
    # https://github.com/pandas-dev/pandas/issues/19607
 | 
						|
    df1 = DataFrame({"a": [0, 10, 20]}, index=[1, 2, 3])
 | 
						|
    df2 = DataFrame({"b": [100, 200, 300]}, index=[4, 3, 2])
 | 
						|
    df3 = DataFrame({"c": [400, 500, 600]}, index=[2, 2, 4])
 | 
						|
 | 
						|
    joined = df1.join([df2, df3], how="left")
 | 
						|
 | 
						|
    expected = DataFrame(
 | 
						|
        {
 | 
						|
            "a": [0, 10, 10, 20],
 | 
						|
            "b": [np.nan, 300, 300, 200],
 | 
						|
            "c": [np.nan, 400, 500, np.nan],
 | 
						|
        },
 | 
						|
        index=[1, 2, 2, 3],
 | 
						|
    )
 | 
						|
 | 
						|
    tm.assert_frame_equal(joined, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("sort_kw", [True, False])
 | 
						|
def test_suppress_future_warning_with_sort_kw(sort_kw):
 | 
						|
    a = DataFrame({"col1": [1, 2]}, index=["c", "a"])
 | 
						|
 | 
						|
    b = DataFrame({"col2": [4, 5]}, index=["b", "a"])
 | 
						|
 | 
						|
    c = DataFrame({"col3": [7, 8]}, index=["a", "b"])
 | 
						|
 | 
						|
    expected = DataFrame(
 | 
						|
        {
 | 
						|
            "col1": {"a": 2.0, "b": float("nan"), "c": 1.0},
 | 
						|
            "col2": {"a": 5.0, "b": 4.0, "c": float("nan")},
 | 
						|
            "col3": {"a": 7.0, "b": 8.0, "c": float("nan")},
 | 
						|
        }
 | 
						|
    )
 | 
						|
    if sort_kw is False:
 | 
						|
        expected = expected.reindex(index=["c", "a", "b"])
 | 
						|
 | 
						|
    with tm.assert_produces_warning(None):
 | 
						|
        result = a.join([b, c], how="outer", sort=sort_kw)
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
class TestDataFrameJoin:
 | 
						|
    def test_join(self, multiindex_dataframe_random_data):
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
 | 
						|
        a = frame.loc[frame.index[:5], ["A"]]
 | 
						|
        b = frame.loc[frame.index[2:], ["B", "C"]]
 | 
						|
 | 
						|
        joined = a.join(b, how="outer").reindex(frame.index)
 | 
						|
        expected = frame.copy().values
 | 
						|
        expected[np.isnan(joined.values)] = np.nan
 | 
						|
        expected = DataFrame(expected, index=frame.index, columns=frame.columns)
 | 
						|
 | 
						|
        assert not np.isnan(joined.values).all()
 | 
						|
 | 
						|
        tm.assert_frame_equal(joined, expected)
 | 
						|
 | 
						|
    def test_join_segfault(self):
 | 
						|
        # GH#1532
 | 
						|
        df1 = DataFrame({"a": [1, 1], "b": [1, 2], "x": [1, 2]})
 | 
						|
        df2 = DataFrame({"a": [2, 2], "b": [1, 2], "y": [1, 2]})
 | 
						|
        df1 = df1.set_index(["a", "b"])
 | 
						|
        df2 = df2.set_index(["a", "b"])
 | 
						|
        # it works!
 | 
						|
        for how in ["left", "right", "outer"]:
 | 
						|
            df1.join(df2, how=how)
 | 
						|
 | 
						|
    def test_join_str_datetime(self):
 | 
						|
        str_dates = ["20120209", "20120222"]
 | 
						|
        dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
 | 
						|
 | 
						|
        A = DataFrame(str_dates, index=range(2), columns=["aa"])
 | 
						|
        C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates)
 | 
						|
 | 
						|
        tst = A.join(C, on="aa")
 | 
						|
 | 
						|
        assert len(tst.columns) == 3
 | 
						|
 | 
						|
    def test_join_multiindex_leftright(self):
 | 
						|
        # GH 10741
 | 
						|
        df1 = DataFrame(
 | 
						|
            [
 | 
						|
                ["a", "x", 0.471780],
 | 
						|
                ["a", "y", 0.774908],
 | 
						|
                ["a", "z", 0.563634],
 | 
						|
                ["b", "x", -0.353756],
 | 
						|
                ["b", "y", 0.368062],
 | 
						|
                ["b", "z", -1.721840],
 | 
						|
                ["c", "x", 1],
 | 
						|
                ["c", "y", 2],
 | 
						|
                ["c", "z", 3],
 | 
						|
            ],
 | 
						|
            columns=["first", "second", "value1"],
 | 
						|
        ).set_index(["first", "second"])
 | 
						|
 | 
						|
        df2 = DataFrame([["a", 10], ["b", 20]], columns=["first", "value2"]).set_index(
 | 
						|
            ["first"]
 | 
						|
        )
 | 
						|
 | 
						|
        exp = DataFrame(
 | 
						|
            [
 | 
						|
                [0.471780, 10],
 | 
						|
                [0.774908, 10],
 | 
						|
                [0.563634, 10],
 | 
						|
                [-0.353756, 20],
 | 
						|
                [0.368062, 20],
 | 
						|
                [-1.721840, 20],
 | 
						|
                [1.000000, np.nan],
 | 
						|
                [2.000000, np.nan],
 | 
						|
                [3.000000, np.nan],
 | 
						|
            ],
 | 
						|
            index=df1.index,
 | 
						|
            columns=["value1", "value2"],
 | 
						|
        )
 | 
						|
 | 
						|
        # these must be the same results (but columns are flipped)
 | 
						|
        tm.assert_frame_equal(df1.join(df2, how="left"), exp)
 | 
						|
        tm.assert_frame_equal(df2.join(df1, how="right"), exp[["value2", "value1"]])
 | 
						|
 | 
						|
        exp_idx = MultiIndex.from_product(
 | 
						|
            [["a", "b"], ["x", "y", "z"]], names=["first", "second"]
 | 
						|
        )
 | 
						|
        exp = DataFrame(
 | 
						|
            [
 | 
						|
                [0.471780, 10],
 | 
						|
                [0.774908, 10],
 | 
						|
                [0.563634, 10],
 | 
						|
                [-0.353756, 20],
 | 
						|
                [0.368062, 20],
 | 
						|
                [-1.721840, 20],
 | 
						|
            ],
 | 
						|
            index=exp_idx,
 | 
						|
            columns=["value1", "value2"],
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_frame_equal(df1.join(df2, how="right"), exp)
 | 
						|
        tm.assert_frame_equal(df2.join(df1, how="left"), exp[["value2", "value1"]])
 | 
						|
 | 
						|
    def test_merge_join_different_levels(self):
 | 
						|
        # GH#9455
 | 
						|
 | 
						|
        # first dataframe
 | 
						|
        df1 = DataFrame(columns=["a", "b"], data=[[1, 11], [0, 22]])
 | 
						|
 | 
						|
        # second dataframe
 | 
						|
        columns = MultiIndex.from_tuples([("a", ""), ("c", "c1")])
 | 
						|
        df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]])
 | 
						|
 | 
						|
        # merge
 | 
						|
        columns = ["a", "b", ("c", "c1")]
 | 
						|
        expected = DataFrame(columns=columns, data=[[1, 11, 33], [0, 22, 44]])
 | 
						|
        with tm.assert_produces_warning(FutureWarning):
 | 
						|
            result = pd.merge(df1, df2, on="a")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # join, see discussion in GH#12219
 | 
						|
        columns = ["a", "b", ("a", ""), ("c", "c1")]
 | 
						|
        expected = DataFrame(columns=columns, data=[[1, 11, 0, 44], [0, 22, 1, 33]])
 | 
						|
        msg = "merging between different levels is deprecated"
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            # stacklevel is chosen to be correct for pd.merge, not DataFrame.join
 | 
						|
            result = df1.join(df2, on="a")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_frame_join_tzaware(self):
 | 
						|
        test1 = DataFrame(
 | 
						|
            np.zeros((6, 3)),
 | 
						|
            index=date_range(
 | 
						|
                "2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central"
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        test2 = DataFrame(
 | 
						|
            np.zeros((3, 3)),
 | 
						|
            index=date_range(
 | 
						|
                "2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"
 | 
						|
            ),
 | 
						|
            columns=range(3, 6),
 | 
						|
        )
 | 
						|
 | 
						|
        result = test1.join(test2, how="outer")
 | 
						|
        expected = test1.index.union(test2.index)
 | 
						|
 | 
						|
        tm.assert_index_equal(result.index, expected)
 | 
						|
        assert result.index.tz.zone == "US/Central"
 |