189 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
This file contains a minimal set of tests for compliance with the extension
 | 
						|
array interface test suite, and should contain no other tests.
 | 
						|
The test suite for the full functionality of the array is located in
 | 
						|
`pandas/tests/arrays/`.
 | 
						|
 | 
						|
The tests in this file are inherited from the BaseExtensionTests, and only
 | 
						|
minimal tweaks should be applied to get the tests passing (by overwriting a
 | 
						|
parent method).
 | 
						|
 | 
						|
Additional tests should either be added to one of the BaseExtensionTests
 | 
						|
classes (if they are relevant for the extension interface for all dtypes), or
 | 
						|
be added to the array-specific tests in `pandas/tests/arrays/`.
 | 
						|
 | 
						|
"""
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.core.dtypes.dtypes import IntervalDtype
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    Interval,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
from pandas.core.arrays import IntervalArray
 | 
						|
from pandas.tests.extension import base
 | 
						|
 | 
						|
 | 
						|
def make_data():
 | 
						|
    N = 100
 | 
						|
    left_array = np.random.uniform(size=N).cumsum()
 | 
						|
    right_array = left_array + np.random.uniform(size=N)
 | 
						|
    return [Interval(left, right) for left, right in zip(left_array, right_array)]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def dtype():
 | 
						|
    return IntervalDtype()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def data():
 | 
						|
    """Length-100 PeriodArray for semantics test."""
 | 
						|
    return IntervalArray(make_data())
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def data_missing():
 | 
						|
    """Length 2 array with [NA, Valid]"""
 | 
						|
    return IntervalArray.from_tuples([None, (0, 1)])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def data_for_sorting():
 | 
						|
    return IntervalArray.from_tuples([(1, 2), (2, 3), (0, 1)])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def data_missing_for_sorting():
 | 
						|
    return IntervalArray.from_tuples([(1, 2), None, (0, 1)])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def na_value():
 | 
						|
    return np.nan
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def data_for_grouping():
 | 
						|
    a = (0, 1)
 | 
						|
    b = (1, 2)
 | 
						|
    c = (2, 3)
 | 
						|
    return IntervalArray.from_tuples([b, b, None, None, a, a, b, c])
 | 
						|
 | 
						|
 | 
						|
class BaseInterval:
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestDtype(BaseInterval, base.BaseDtypeTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestCasting(BaseInterval, base.BaseCastingTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestConstructors(BaseInterval, base.BaseConstructorsTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestGetitem(BaseInterval, base.BaseGetitemTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestIndex(base.BaseIndexTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestGrouping(BaseInterval, base.BaseGroupbyTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestInterface(BaseInterval, base.BaseInterfaceTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestReduce(base.BaseNoReduceTests):
 | 
						|
    @pytest.mark.parametrize("skipna", [True, False])
 | 
						|
    def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
 | 
						|
        op_name = all_numeric_reductions
 | 
						|
        ser = Series(data)
 | 
						|
 | 
						|
        if op_name in ["min", "max"]:
 | 
						|
            # IntervalArray *does* implement these
 | 
						|
            assert getattr(ser, op_name)(skipna=skipna) in data
 | 
						|
            assert getattr(data, op_name)(skipna=skipna) in data
 | 
						|
            return
 | 
						|
 | 
						|
        super().test_reduce_series_numeric(data, all_numeric_reductions, skipna)
 | 
						|
 | 
						|
 | 
						|
class TestMethods(BaseInterval, base.BaseMethodsTests):
 | 
						|
    @pytest.mark.xfail(reason="addition is not defined for intervals")
 | 
						|
    def test_combine_add(self, data_repeated):
 | 
						|
        super().test_combine_add(data_repeated)
 | 
						|
 | 
						|
    @pytest.mark.xfail(
 | 
						|
        reason="Raises with incorrect message bc it disallows *all* listlikes "
 | 
						|
        "instead of just wrong-length listlikes"
 | 
						|
    )
 | 
						|
    def test_fillna_length_mismatch(self, data_missing):
 | 
						|
        super().test_fillna_length_mismatch(data_missing)
 | 
						|
 | 
						|
 | 
						|
class TestMissing(BaseInterval, base.BaseMissingTests):
 | 
						|
    # Index.fillna only accepts scalar `value`, so we have to xfail all
 | 
						|
    # non-scalar fill tests.
 | 
						|
    unsupported_fill = pytest.mark.xfail(
 | 
						|
        reason="Unsupported fillna option for Interval."
 | 
						|
    )
 | 
						|
 | 
						|
    @unsupported_fill
 | 
						|
    def test_fillna_limit_pad(self):
 | 
						|
        super().test_fillna_limit_pad()
 | 
						|
 | 
						|
    @unsupported_fill
 | 
						|
    def test_fillna_series_method(self):
 | 
						|
        super().test_fillna_series_method()
 | 
						|
 | 
						|
    @unsupported_fill
 | 
						|
    def test_fillna_limit_backfill(self):
 | 
						|
        super().test_fillna_limit_backfill()
 | 
						|
 | 
						|
    @unsupported_fill
 | 
						|
    def test_fillna_no_op_returns_copy(self):
 | 
						|
        super().test_fillna_no_op_returns_copy()
 | 
						|
 | 
						|
    @unsupported_fill
 | 
						|
    def test_fillna_series(self):
 | 
						|
        super().test_fillna_series()
 | 
						|
 | 
						|
    def test_fillna_non_scalar_raises(self, data_missing):
 | 
						|
        msg = "can only insert Interval objects and NA into an IntervalArray"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            data_missing.fillna([1, 1])
 | 
						|
 | 
						|
 | 
						|
class TestReshaping(BaseInterval, base.BaseReshapingTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestSetitem(BaseInterval, base.BaseSetitemTests):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class TestPrinting(BaseInterval, base.BasePrintingTests):
 | 
						|
    @pytest.mark.xfail(reason="Interval has custom repr")
 | 
						|
    def test_array_repr(self, data, size):
 | 
						|
        super().test_array_repr()
 | 
						|
 | 
						|
 | 
						|
class TestParsing(BaseInterval, base.BaseParsingTests):
 | 
						|
    @pytest.mark.parametrize("engine", ["c", "python"])
 | 
						|
    def test_EA_types(self, engine, data):
 | 
						|
        expected_msg = r".*must implement _from_sequence_of_strings.*"
 | 
						|
        with pytest.raises(NotImplementedError, match=expected_msg):
 | 
						|
            super().test_EA_types(engine, data)
 |