232 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.api.types import is_integer
 | 
						|
from pandas.core.arrays import IntegerArray
 | 
						|
from pandas.core.arrays.integer import (
 | 
						|
    Int8Dtype,
 | 
						|
    Int32Dtype,
 | 
						|
    Int64Dtype,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(params=[pd.array, IntegerArray._from_sequence])
 | 
						|
def constructor(request):
 | 
						|
    return request.param
 | 
						|
 | 
						|
 | 
						|
def test_uses_pandas_na():
 | 
						|
    a = pd.array([1, None], dtype=Int64Dtype())
 | 
						|
    assert a[1] is pd.NA
 | 
						|
 | 
						|
 | 
						|
def test_from_dtype_from_float(data):
 | 
						|
    # construct from our dtype & string dtype
 | 
						|
    dtype = data.dtype
 | 
						|
 | 
						|
    # from float
 | 
						|
    expected = pd.Series(data)
 | 
						|
    result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # from int / list
 | 
						|
    expected = pd.Series(data)
 | 
						|
    result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # from int / array
 | 
						|
    expected = pd.Series(data).dropna().reset_index(drop=True)
 | 
						|
    dropped = np.array(data.dropna()).astype(np.dtype(dtype.type))
 | 
						|
    result = pd.Series(dropped, dtype=str(dtype))
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_conversions(data_missing):
 | 
						|
    # astype to object series
 | 
						|
    df = pd.DataFrame({"A": data_missing})
 | 
						|
    result = df["A"].astype("object")
 | 
						|
    expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A")
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # convert to object ndarray
 | 
						|
    # we assert that we are exactly equal
 | 
						|
    # including type conversions of scalars
 | 
						|
    result = df["A"].astype("object").values
 | 
						|
    expected = np.array([pd.NA, 1], dtype=object)
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    for r, e in zip(result, expected):
 | 
						|
        if pd.isnull(r):
 | 
						|
            assert pd.isnull(e)
 | 
						|
        elif is_integer(r):
 | 
						|
            assert r == e
 | 
						|
            assert is_integer(e)
 | 
						|
        else:
 | 
						|
            assert r == e
 | 
						|
            assert type(r) == type(e)
 | 
						|
 | 
						|
 | 
						|
def test_integer_array_constructor():
 | 
						|
    values = np.array([1, 2, 3, 4], dtype="int64")
 | 
						|
    mask = np.array([False, False, False, True], dtype="bool")
 | 
						|
 | 
						|
    result = IntegerArray(values, mask)
 | 
						|
    expected = pd.array([1, 2, 3, np.nan], dtype="Int64")
 | 
						|
    tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
    msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
 | 
						|
    with pytest.raises(TypeError, match=msg):
 | 
						|
        IntegerArray(values.tolist(), mask)
 | 
						|
 | 
						|
    with pytest.raises(TypeError, match=msg):
 | 
						|
        IntegerArray(values, mask.tolist())
 | 
						|
 | 
						|
    with pytest.raises(TypeError, match=msg):
 | 
						|
        IntegerArray(values.astype(float), mask)
 | 
						|
    msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
 | 
						|
    with pytest.raises(TypeError, match=msg):
 | 
						|
        IntegerArray(values)
 | 
						|
 | 
						|
 | 
						|
def test_integer_array_constructor_copy():
 | 
						|
    values = np.array([1, 2, 3, 4], dtype="int64")
 | 
						|
    mask = np.array([False, False, False, True], dtype="bool")
 | 
						|
 | 
						|
    result = IntegerArray(values, mask)
 | 
						|
    assert result._data is values
 | 
						|
    assert result._mask is mask
 | 
						|
 | 
						|
    result = IntegerArray(values, mask, copy=True)
 | 
						|
    assert result._data is not values
 | 
						|
    assert result._mask is not mask
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "a, b",
 | 
						|
    [
 | 
						|
        ([1, None], [1, np.nan]),
 | 
						|
        ([None], [np.nan]),
 | 
						|
        ([None, np.nan], [np.nan, np.nan]),
 | 
						|
        ([np.nan, np.nan], [np.nan, np.nan]),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_to_integer_array_none_is_nan(a, b):
 | 
						|
    result = pd.array(a, dtype="Int64")
 | 
						|
    expected = pd.array(b, dtype="Int64")
 | 
						|
    tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "values",
 | 
						|
    [
 | 
						|
        ["foo", "bar"],
 | 
						|
        "foo",
 | 
						|
        1,
 | 
						|
        1.0,
 | 
						|
        pd.date_range("20130101", periods=2),
 | 
						|
        np.array(["foo"]),
 | 
						|
        [[1, 2], [3, 4]],
 | 
						|
        [np.nan, {"a": 1}],
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_to_integer_array_error(values):
 | 
						|
    # error in converting existing arrays to IntegerArrays
 | 
						|
    msg = "|".join(
 | 
						|
        [
 | 
						|
            r"cannot be converted to an IntegerDtype",
 | 
						|
            r"invalid literal for int\(\) with base 10:",
 | 
						|
            r"values must be a 1D list-like",
 | 
						|
            r"Cannot pass scalar",
 | 
						|
        ]
 | 
						|
    )
 | 
						|
    with pytest.raises((ValueError, TypeError), match=msg):
 | 
						|
        pd.array(values, dtype="Int64")
 | 
						|
 | 
						|
    with pytest.raises((ValueError, TypeError), match=msg):
 | 
						|
        IntegerArray._from_sequence(values)
 | 
						|
 | 
						|
 | 
						|
def test_to_integer_array_inferred_dtype(constructor):
 | 
						|
    # if values has dtype -> respect it
 | 
						|
    result = constructor(np.array([1, 2], dtype="int8"))
 | 
						|
    assert result.dtype == Int8Dtype()
 | 
						|
    result = constructor(np.array([1, 2], dtype="int32"))
 | 
						|
    assert result.dtype == Int32Dtype()
 | 
						|
 | 
						|
    # if values have no dtype -> always int64
 | 
						|
    result = constructor([1, 2])
 | 
						|
    assert result.dtype == Int64Dtype()
 | 
						|
 | 
						|
 | 
						|
def test_to_integer_array_dtype_keyword(constructor):
 | 
						|
    result = constructor([1, 2], dtype="Int8")
 | 
						|
    assert result.dtype == Int8Dtype()
 | 
						|
 | 
						|
    # if values has dtype -> override it
 | 
						|
    result = constructor(np.array([1, 2], dtype="int8"), dtype="Int32")
 | 
						|
    assert result.dtype == Int32Dtype()
 | 
						|
 | 
						|
 | 
						|
def test_to_integer_array_float():
 | 
						|
    result = IntegerArray._from_sequence([1.0, 2.0])
 | 
						|
    expected = pd.array([1, 2], dtype="Int64")
 | 
						|
    tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
    with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
 | 
						|
        IntegerArray._from_sequence([1.5, 2.0])
 | 
						|
 | 
						|
    # for float dtypes, the itemsize is not preserved
 | 
						|
    result = IntegerArray._from_sequence(np.array([1.0, 2.0], dtype="float32"))
 | 
						|
    assert result.dtype == Int64Dtype()
 | 
						|
 | 
						|
 | 
						|
def test_to_integer_array_str():
 | 
						|
    result = IntegerArray._from_sequence(["1", "2", None])
 | 
						|
    expected = pd.array([1, 2, np.nan], dtype="Int64")
 | 
						|
    tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        ValueError, match=r"invalid literal for int\(\) with base 10: .*"
 | 
						|
    ):
 | 
						|
        IntegerArray._from_sequence(["1", "2", ""])
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        ValueError, match=r"invalid literal for int\(\) with base 10: .*"
 | 
						|
    ):
 | 
						|
        IntegerArray._from_sequence(["1.5", "2.0"])
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "bool_values, int_values, target_dtype, expected_dtype",
 | 
						|
    [
 | 
						|
        ([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
 | 
						|
        ([False, True], [0, 1], "Int64", Int64Dtype()),
 | 
						|
        ([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_to_integer_array_bool(
 | 
						|
    constructor, bool_values, int_values, target_dtype, expected_dtype
 | 
						|
):
 | 
						|
    result = constructor(bool_values, dtype=target_dtype)
 | 
						|
    assert result.dtype == expected_dtype
 | 
						|
    expected = pd.array(int_values, dtype=target_dtype)
 | 
						|
    tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "values, to_dtype, result_dtype",
 | 
						|
    [
 | 
						|
        (np.array([1], dtype="int64"), None, Int64Dtype),
 | 
						|
        (np.array([1, np.nan]), None, Int64Dtype),
 | 
						|
        (np.array([1, np.nan]), "int8", Int8Dtype),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_to_integer_array(values, to_dtype, result_dtype):
 | 
						|
    # convert existing arrays to IntegerArrays
 | 
						|
    result = IntegerArray._from_sequence(values, dtype=to_dtype)
 | 
						|
    assert result.dtype == result_dtype()
 | 
						|
    expected = pd.array(values, dtype=result_dtype())
 | 
						|
    tm.assert_extension_array_equal(result, expected)
 |