255 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import operator
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.arrays import BooleanArray
 | 
						|
from pandas.core.ops.mask_ops import (
 | 
						|
    kleene_and,
 | 
						|
    kleene_or,
 | 
						|
    kleene_xor,
 | 
						|
)
 | 
						|
from pandas.tests.extension.base import BaseOpsUtil
 | 
						|
 | 
						|
 | 
						|
class TestLogicalOps(BaseOpsUtil):
 | 
						|
    def test_numpy_scalars_ok(self, all_logical_operators):
 | 
						|
        a = pd.array([True, False, None], dtype="boolean")
 | 
						|
        op = getattr(a, all_logical_operators)
 | 
						|
 | 
						|
        tm.assert_extension_array_equal(op(True), op(np.bool_(True)))
 | 
						|
        tm.assert_extension_array_equal(op(False), op(np.bool_(False)))
 | 
						|
 | 
						|
    def get_op_from_name(self, op_name):
 | 
						|
        short_opname = op_name.strip("_")
 | 
						|
        short_opname = short_opname if "xor" in short_opname else short_opname + "_"
 | 
						|
        try:
 | 
						|
            op = getattr(operator, short_opname)
 | 
						|
        except AttributeError:
 | 
						|
            # Assume it is the reverse operator
 | 
						|
            rop = getattr(operator, short_opname[1:])
 | 
						|
            op = lambda x, y: rop(y, x)
 | 
						|
 | 
						|
        return op
 | 
						|
 | 
						|
    def test_empty_ok(self, all_logical_operators):
 | 
						|
        a = pd.array([], dtype="boolean")
 | 
						|
        op_name = all_logical_operators
 | 
						|
        result = getattr(a, op_name)(True)
 | 
						|
        tm.assert_extension_array_equal(a, result)
 | 
						|
 | 
						|
        result = getattr(a, op_name)(False)
 | 
						|
        tm.assert_extension_array_equal(a, result)
 | 
						|
 | 
						|
        result = getattr(a, op_name)(pd.NA)
 | 
						|
        tm.assert_extension_array_equal(a, result)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other", ["a", pd.Timestamp(2017, 1, 1, 12), np.timedelta64(4)]
 | 
						|
    )
 | 
						|
    def test_eq_mismatched_type(self, other):
 | 
						|
        # GH-44499
 | 
						|
        arr = pd.array([True, False])
 | 
						|
        result = arr == other
 | 
						|
        expected = pd.array([False, False])
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = arr != other
 | 
						|
        expected = pd.array([True, True])
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
    def test_logical_length_mismatch_raises(self, all_logical_operators):
 | 
						|
        op_name = all_logical_operators
 | 
						|
        a = pd.array([True, False, None], dtype="boolean")
 | 
						|
        msg = "Lengths must match to compare"
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            getattr(a, op_name)([True, False])
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            getattr(a, op_name)(np.array([True, False]))
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            getattr(a, op_name)(pd.array([True, False], dtype="boolean"))
 | 
						|
 | 
						|
    def test_logical_nan_raises(self, all_logical_operators):
 | 
						|
        op_name = all_logical_operators
 | 
						|
        a = pd.array([True, False, None], dtype="boolean")
 | 
						|
        msg = "Got float instead"
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            getattr(a, op_name)(np.nan)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("other", ["a", 1])
 | 
						|
    def test_non_bool_or_na_other_raises(self, other, all_logical_operators):
 | 
						|
        a = pd.array([True, False], dtype="boolean")
 | 
						|
        with pytest.raises(TypeError, match=str(type(other).__name__)):
 | 
						|
            getattr(a, all_logical_operators)(other)
 | 
						|
 | 
						|
    def test_kleene_or(self):
 | 
						|
        # A clear test of behavior.
 | 
						|
        a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        b = pd.array([True, False, None] * 3, dtype="boolean")
 | 
						|
        result = a | b
 | 
						|
        expected = pd.array(
 | 
						|
            [True, True, True, True, False, None, True, None, None], dtype="boolean"
 | 
						|
        )
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = b | a
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        # ensure we haven't mutated anything inplace
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        )
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            b, pd.array([True, False, None] * 3, dtype="boolean")
 | 
						|
        )
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other, expected",
 | 
						|
        [
 | 
						|
            (pd.NA, [True, None, None]),
 | 
						|
            (True, [True, True, True]),
 | 
						|
            (np.bool_(True), [True, True, True]),
 | 
						|
            (False, [True, False, None]),
 | 
						|
            (np.bool_(False), [True, False, None]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_kleene_or_scalar(self, other, expected):
 | 
						|
        # TODO: test True & False
 | 
						|
        a = pd.array([True, False, None], dtype="boolean")
 | 
						|
        result = a | other
 | 
						|
        expected = pd.array(expected, dtype="boolean")
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = other | a
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        # ensure we haven't mutated anything inplace
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            a, pd.array([True, False, None], dtype="boolean")
 | 
						|
        )
 | 
						|
 | 
						|
    def test_kleene_and(self):
 | 
						|
        # A clear test of behavior.
 | 
						|
        a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        b = pd.array([True, False, None] * 3, dtype="boolean")
 | 
						|
        result = a & b
 | 
						|
        expected = pd.array(
 | 
						|
            [True, False, None, False, False, False, None, False, None], dtype="boolean"
 | 
						|
        )
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = b & a
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        # ensure we haven't mutated anything inplace
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        )
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            b, pd.array([True, False, None] * 3, dtype="boolean")
 | 
						|
        )
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other, expected",
 | 
						|
        [
 | 
						|
            (pd.NA, [None, False, None]),
 | 
						|
            (True, [True, False, None]),
 | 
						|
            (False, [False, False, False]),
 | 
						|
            (np.bool_(True), [True, False, None]),
 | 
						|
            (np.bool_(False), [False, False, False]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_kleene_and_scalar(self, other, expected):
 | 
						|
        a = pd.array([True, False, None], dtype="boolean")
 | 
						|
        result = a & other
 | 
						|
        expected = pd.array(expected, dtype="boolean")
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = other & a
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        # ensure we haven't mutated anything inplace
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            a, pd.array([True, False, None], dtype="boolean")
 | 
						|
        )
 | 
						|
 | 
						|
    def test_kleene_xor(self):
 | 
						|
        a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        b = pd.array([True, False, None] * 3, dtype="boolean")
 | 
						|
        result = a ^ b
 | 
						|
        expected = pd.array(
 | 
						|
            [False, True, None, True, False, None, None, None, None], dtype="boolean"
 | 
						|
        )
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = b ^ a
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        # ensure we haven't mutated anything inplace
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        )
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            b, pd.array([True, False, None] * 3, dtype="boolean")
 | 
						|
        )
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other, expected",
 | 
						|
        [
 | 
						|
            (pd.NA, [None, None, None]),
 | 
						|
            (True, [False, True, None]),
 | 
						|
            (np.bool_(True), [False, True, None]),
 | 
						|
            (np.bool_(False), [True, False, None]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_kleene_xor_scalar(self, other, expected):
 | 
						|
        a = pd.array([True, False, None], dtype="boolean")
 | 
						|
        result = a ^ other
 | 
						|
        expected = pd.array(expected, dtype="boolean")
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        result = other ^ a
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        # ensure we haven't mutated anything inplace
 | 
						|
        tm.assert_extension_array_equal(
 | 
						|
            a, pd.array([True, False, None], dtype="boolean")
 | 
						|
        )
 | 
						|
 | 
						|
    @pytest.mark.parametrize("other", [True, False, pd.NA, [True, False, None] * 3])
 | 
						|
    def test_no_masked_assumptions(self, other, all_logical_operators):
 | 
						|
        # The logical operations should not assume that masked values are False!
 | 
						|
        a = pd.arrays.BooleanArray(
 | 
						|
            np.array([True, True, True, False, False, False, True, False, True]),
 | 
						|
            np.array([False] * 6 + [True, True, True]),
 | 
						|
        )
 | 
						|
        b = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
 | 
						|
        if isinstance(other, list):
 | 
						|
            other = pd.array(other, dtype="boolean")
 | 
						|
 | 
						|
        result = getattr(a, all_logical_operators)(other)
 | 
						|
        expected = getattr(b, all_logical_operators)(other)
 | 
						|
        tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
        if isinstance(other, BooleanArray):
 | 
						|
            other._data[other._mask] = True
 | 
						|
            a._data[a._mask] = False
 | 
						|
 | 
						|
            result = getattr(a, all_logical_operators)(other)
 | 
						|
            expected = getattr(b, all_logical_operators)(other)
 | 
						|
            tm.assert_extension_array_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("operation", [kleene_or, kleene_xor, kleene_and])
 | 
						|
def test_error_both_scalar(operation):
 | 
						|
    msg = r"Either `left` or `right` need to be a np\.ndarray."
 | 
						|
    with pytest.raises(TypeError, match=msg):
 | 
						|
        # masks need to be non-None, otherwise it ends up in an infinite recursion
 | 
						|
        operation(True, True, np.zeros(1), np.zeros(1))
 |