1227 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1227 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
from abc import (
 | 
						|
    ABC,
 | 
						|
    abstractmethod,
 | 
						|
)
 | 
						|
from collections import abc
 | 
						|
import functools
 | 
						|
from io import StringIO
 | 
						|
from itertools import islice
 | 
						|
from typing import (
 | 
						|
    Any,
 | 
						|
    Callable,
 | 
						|
    Mapping,
 | 
						|
)
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import pandas._libs.json as json
 | 
						|
from pandas._libs.tslibs import iNaT
 | 
						|
from pandas._typing import (
 | 
						|
    CompressionOptions,
 | 
						|
    DtypeArg,
 | 
						|
    IndexLabel,
 | 
						|
    JSONSerializable,
 | 
						|
    StorageOptions,
 | 
						|
)
 | 
						|
from pandas.errors import AbstractMethodError
 | 
						|
from pandas.util._decorators import (
 | 
						|
    deprecate_kwarg,
 | 
						|
    deprecate_nonkeyword_arguments,
 | 
						|
    doc,
 | 
						|
)
 | 
						|
 | 
						|
from pandas.core.dtypes.common import (
 | 
						|
    ensure_str,
 | 
						|
    is_period_dtype,
 | 
						|
)
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    MultiIndex,
 | 
						|
    Series,
 | 
						|
    isna,
 | 
						|
    notna,
 | 
						|
    to_datetime,
 | 
						|
)
 | 
						|
from pandas.core.construction import create_series_with_explicit_dtype
 | 
						|
from pandas.core.generic import NDFrame
 | 
						|
from pandas.core.reshape.concat import concat
 | 
						|
from pandas.core.shared_docs import _shared_docs
 | 
						|
 | 
						|
from pandas.io.common import (
 | 
						|
    IOHandles,
 | 
						|
    file_exists,
 | 
						|
    get_handle,
 | 
						|
    is_fsspec_url,
 | 
						|
    is_url,
 | 
						|
    stringify_path,
 | 
						|
)
 | 
						|
from pandas.io.json._normalize import convert_to_line_delimits
 | 
						|
from pandas.io.json._table_schema import (
 | 
						|
    build_table_schema,
 | 
						|
    parse_table_schema,
 | 
						|
)
 | 
						|
from pandas.io.parsers.readers import validate_integer
 | 
						|
 | 
						|
loads = json.loads
 | 
						|
dumps = json.dumps
 | 
						|
 | 
						|
 | 
						|
# interface to/from
 | 
						|
def to_json(
 | 
						|
    path_or_buf,
 | 
						|
    obj: NDFrame,
 | 
						|
    orient: str | None = None,
 | 
						|
    date_format: str = "epoch",
 | 
						|
    double_precision: int = 10,
 | 
						|
    force_ascii: bool = True,
 | 
						|
    date_unit: str = "ms",
 | 
						|
    default_handler: Callable[[Any], JSONSerializable] | None = None,
 | 
						|
    lines: bool = False,
 | 
						|
    compression: CompressionOptions = "infer",
 | 
						|
    index: bool = True,
 | 
						|
    indent: int = 0,
 | 
						|
    storage_options: StorageOptions = None,
 | 
						|
):
 | 
						|
 | 
						|
    if not index and orient not in ["split", "table"]:
 | 
						|
        raise ValueError(
 | 
						|
            "'index=False' is only valid when 'orient' is 'split' or 'table'"
 | 
						|
        )
 | 
						|
 | 
						|
    if lines and orient != "records":
 | 
						|
        raise ValueError("'lines' keyword only valid when 'orient' is records")
 | 
						|
 | 
						|
    if orient == "table" and isinstance(obj, Series):
 | 
						|
        obj = obj.to_frame(name=obj.name or "values")
 | 
						|
 | 
						|
    writer: type[Writer]
 | 
						|
    if orient == "table" and isinstance(obj, DataFrame):
 | 
						|
        writer = JSONTableWriter
 | 
						|
    elif isinstance(obj, Series):
 | 
						|
        writer = SeriesWriter
 | 
						|
    elif isinstance(obj, DataFrame):
 | 
						|
        writer = FrameWriter
 | 
						|
    else:
 | 
						|
        raise NotImplementedError("'obj' should be a Series or a DataFrame")
 | 
						|
 | 
						|
    s = writer(
 | 
						|
        obj,
 | 
						|
        orient=orient,
 | 
						|
        date_format=date_format,
 | 
						|
        double_precision=double_precision,
 | 
						|
        ensure_ascii=force_ascii,
 | 
						|
        date_unit=date_unit,
 | 
						|
        default_handler=default_handler,
 | 
						|
        index=index,
 | 
						|
        indent=indent,
 | 
						|
    ).write()
 | 
						|
 | 
						|
    if lines:
 | 
						|
        s = convert_to_line_delimits(s)
 | 
						|
 | 
						|
    if path_or_buf is not None:
 | 
						|
        # apply compression and byte/text conversion
 | 
						|
        with get_handle(
 | 
						|
            path_or_buf, "w", compression=compression, storage_options=storage_options
 | 
						|
        ) as handles:
 | 
						|
            handles.handle.write(s)
 | 
						|
    else:
 | 
						|
        return s
 | 
						|
 | 
						|
 | 
						|
class Writer(ABC):
 | 
						|
    _default_orient: str
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        obj,
 | 
						|
        orient: str | None,
 | 
						|
        date_format: str,
 | 
						|
        double_precision: int,
 | 
						|
        ensure_ascii: bool,
 | 
						|
        date_unit: str,
 | 
						|
        index: bool,
 | 
						|
        default_handler: Callable[[Any], JSONSerializable] | None = None,
 | 
						|
        indent: int = 0,
 | 
						|
    ):
 | 
						|
        self.obj = obj
 | 
						|
 | 
						|
        if orient is None:
 | 
						|
            orient = self._default_orient
 | 
						|
 | 
						|
        self.orient = orient
 | 
						|
        self.date_format = date_format
 | 
						|
        self.double_precision = double_precision
 | 
						|
        self.ensure_ascii = ensure_ascii
 | 
						|
        self.date_unit = date_unit
 | 
						|
        self.default_handler = default_handler
 | 
						|
        self.index = index
 | 
						|
        self.indent = indent
 | 
						|
 | 
						|
        self.is_copy = None
 | 
						|
        self._format_axes()
 | 
						|
 | 
						|
    def _format_axes(self):
 | 
						|
        raise AbstractMethodError(self)
 | 
						|
 | 
						|
    def write(self):
 | 
						|
        iso_dates = self.date_format == "iso"
 | 
						|
        return dumps(
 | 
						|
            self.obj_to_write,
 | 
						|
            orient=self.orient,
 | 
						|
            double_precision=self.double_precision,
 | 
						|
            ensure_ascii=self.ensure_ascii,
 | 
						|
            date_unit=self.date_unit,
 | 
						|
            iso_dates=iso_dates,
 | 
						|
            default_handler=self.default_handler,
 | 
						|
            indent=self.indent,
 | 
						|
        )
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
 | 
						|
        """Object to write in JSON format."""
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
class SeriesWriter(Writer):
 | 
						|
    _default_orient = "index"
 | 
						|
 | 
						|
    @property
 | 
						|
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
 | 
						|
        if not self.index and self.orient == "split":
 | 
						|
            return {"name": self.obj.name, "data": self.obj.values}
 | 
						|
        else:
 | 
						|
            return self.obj
 | 
						|
 | 
						|
    def _format_axes(self):
 | 
						|
        if not self.obj.index.is_unique and self.orient == "index":
 | 
						|
            raise ValueError(f"Series index must be unique for orient='{self.orient}'")
 | 
						|
 | 
						|
 | 
						|
class FrameWriter(Writer):
 | 
						|
    _default_orient = "columns"
 | 
						|
 | 
						|
    @property
 | 
						|
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
 | 
						|
        if not self.index and self.orient == "split":
 | 
						|
            obj_to_write = self.obj.to_dict(orient="split")
 | 
						|
            del obj_to_write["index"]
 | 
						|
        else:
 | 
						|
            obj_to_write = self.obj
 | 
						|
        return obj_to_write
 | 
						|
 | 
						|
    def _format_axes(self):
 | 
						|
        """
 | 
						|
        Try to format axes if they are datelike.
 | 
						|
        """
 | 
						|
        if not self.obj.index.is_unique and self.orient in ("index", "columns"):
 | 
						|
            raise ValueError(
 | 
						|
                f"DataFrame index must be unique for orient='{self.orient}'."
 | 
						|
            )
 | 
						|
        if not self.obj.columns.is_unique and self.orient in (
 | 
						|
            "index",
 | 
						|
            "columns",
 | 
						|
            "records",
 | 
						|
        ):
 | 
						|
            raise ValueError(
 | 
						|
                f"DataFrame columns must be unique for orient='{self.orient}'."
 | 
						|
            )
 | 
						|
 | 
						|
 | 
						|
class JSONTableWriter(FrameWriter):
 | 
						|
    _default_orient = "records"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        obj,
 | 
						|
        orient: str | None,
 | 
						|
        date_format: str,
 | 
						|
        double_precision: int,
 | 
						|
        ensure_ascii: bool,
 | 
						|
        date_unit: str,
 | 
						|
        index: bool,
 | 
						|
        default_handler: Callable[[Any], JSONSerializable] | None = None,
 | 
						|
        indent: int = 0,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Adds a `schema` attribute with the Table Schema, resets
 | 
						|
        the index (can't do in caller, because the schema inference needs
 | 
						|
        to know what the index is, forces orient to records, and forces
 | 
						|
        date_format to 'iso'.
 | 
						|
        """
 | 
						|
        super().__init__(
 | 
						|
            obj,
 | 
						|
            orient,
 | 
						|
            date_format,
 | 
						|
            double_precision,
 | 
						|
            ensure_ascii,
 | 
						|
            date_unit,
 | 
						|
            index,
 | 
						|
            default_handler=default_handler,
 | 
						|
            indent=indent,
 | 
						|
        )
 | 
						|
 | 
						|
        if date_format != "iso":
 | 
						|
            msg = (
 | 
						|
                "Trying to write with `orient='table'` and "
 | 
						|
                f"`date_format='{date_format}'`. Table Schema requires dates "
 | 
						|
                "to be formatted with `date_format='iso'`"
 | 
						|
            )
 | 
						|
            raise ValueError(msg)
 | 
						|
 | 
						|
        self.schema = build_table_schema(obj, index=self.index)
 | 
						|
 | 
						|
        # NotImplemented on a column MultiIndex
 | 
						|
        if obj.ndim == 2 and isinstance(obj.columns, MultiIndex):
 | 
						|
            raise NotImplementedError(
 | 
						|
                "orient='table' is not supported for MultiIndex columns"
 | 
						|
            )
 | 
						|
 | 
						|
        # TODO: Do this timedelta properly in objToJSON.c See GH #15137
 | 
						|
        if (
 | 
						|
            (obj.ndim == 1)
 | 
						|
            and (obj.name in set(obj.index.names))
 | 
						|
            or len(obj.columns.intersection(obj.index.names))
 | 
						|
        ):
 | 
						|
            msg = "Overlapping names between the index and columns"
 | 
						|
            raise ValueError(msg)
 | 
						|
 | 
						|
        obj = obj.copy()
 | 
						|
        timedeltas = obj.select_dtypes(include=["timedelta"]).columns
 | 
						|
        if len(timedeltas):
 | 
						|
            obj[timedeltas] = obj[timedeltas].applymap(lambda x: x.isoformat())
 | 
						|
        # Convert PeriodIndex to datetimes before serializing
 | 
						|
        if is_period_dtype(obj.index.dtype):
 | 
						|
            obj.index = obj.index.to_timestamp()
 | 
						|
 | 
						|
        # exclude index from obj if index=False
 | 
						|
        if not self.index:
 | 
						|
            self.obj = obj.reset_index(drop=True)
 | 
						|
        else:
 | 
						|
            self.obj = obj.reset_index(drop=False)
 | 
						|
        self.date_format = "iso"
 | 
						|
        self.orient = "records"
 | 
						|
        self.index = index
 | 
						|
 | 
						|
    @property
 | 
						|
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
 | 
						|
        return {"schema": self.schema, "data": self.obj}
 | 
						|
 | 
						|
 | 
						|
@doc(
 | 
						|
    storage_options=_shared_docs["storage_options"],
 | 
						|
    decompression_options=_shared_docs["decompression_options"] % "path_or_buf",
 | 
						|
)
 | 
						|
@deprecate_kwarg(old_arg_name="numpy", new_arg_name=None)
 | 
						|
@deprecate_nonkeyword_arguments(
 | 
						|
    version="2.0", allowed_args=["path_or_buf"], stacklevel=3
 | 
						|
)
 | 
						|
def read_json(
 | 
						|
    path_or_buf=None,
 | 
						|
    orient=None,
 | 
						|
    typ="frame",
 | 
						|
    dtype: DtypeArg | None = None,
 | 
						|
    convert_axes=None,
 | 
						|
    convert_dates=True,
 | 
						|
    keep_default_dates: bool = True,
 | 
						|
    numpy: bool = False,
 | 
						|
    precise_float: bool = False,
 | 
						|
    date_unit=None,
 | 
						|
    encoding=None,
 | 
						|
    encoding_errors: str | None = "strict",
 | 
						|
    lines: bool = False,
 | 
						|
    chunksize: int | None = None,
 | 
						|
    compression: CompressionOptions = "infer",
 | 
						|
    nrows: int | None = None,
 | 
						|
    storage_options: StorageOptions = None,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Convert a JSON string to pandas object.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    path_or_buf : a valid JSON str, path object or file-like object
 | 
						|
        Any valid string path is acceptable. The string could be a URL. Valid
 | 
						|
        URL schemes include http, ftp, s3, and file. For file URLs, a host is
 | 
						|
        expected. A local file could be:
 | 
						|
        ``file://localhost/path/to/table.json``.
 | 
						|
 | 
						|
        If you want to pass in a path object, pandas accepts any
 | 
						|
        ``os.PathLike``.
 | 
						|
 | 
						|
        By file-like object, we refer to objects with a ``read()`` method,
 | 
						|
        such as a file handle (e.g. via builtin ``open`` function)
 | 
						|
        or ``StringIO``.
 | 
						|
    orient : str
 | 
						|
        Indication of expected JSON string format.
 | 
						|
        Compatible JSON strings can be produced by ``to_json()`` with a
 | 
						|
        corresponding orient value.
 | 
						|
        The set of possible orients is:
 | 
						|
 | 
						|
        - ``'split'`` : dict like
 | 
						|
          ``{{index -> [index], columns -> [columns], data -> [values]}}``
 | 
						|
        - ``'records'`` : list like
 | 
						|
          ``[{{column -> value}}, ... , {{column -> value}}]``
 | 
						|
        - ``'index'`` : dict like ``{{index -> {{column -> value}}}}``
 | 
						|
        - ``'columns'`` : dict like ``{{column -> {{index -> value}}}}``
 | 
						|
        - ``'values'`` : just the values array
 | 
						|
 | 
						|
        The allowed and default values depend on the value
 | 
						|
        of the `typ` parameter.
 | 
						|
 | 
						|
        * when ``typ == 'series'``,
 | 
						|
 | 
						|
          - allowed orients are ``{{'split','records','index'}}``
 | 
						|
          - default is ``'index'``
 | 
						|
          - The Series index must be unique for orient ``'index'``.
 | 
						|
 | 
						|
        * when ``typ == 'frame'``,
 | 
						|
 | 
						|
          - allowed orients are ``{{'split','records','index',
 | 
						|
            'columns','values', 'table'}}``
 | 
						|
          - default is ``'columns'``
 | 
						|
          - The DataFrame index must be unique for orients ``'index'`` and
 | 
						|
            ``'columns'``.
 | 
						|
          - The DataFrame columns must be unique for orients ``'index'``,
 | 
						|
            ``'columns'``, and ``'records'``.
 | 
						|
 | 
						|
    typ : {{'frame', 'series'}}, default 'frame'
 | 
						|
        The type of object to recover.
 | 
						|
 | 
						|
    dtype : bool or dict, default None
 | 
						|
        If True, infer dtypes; if a dict of column to dtype, then use those;
 | 
						|
        if False, then don't infer dtypes at all, applies only to the data.
 | 
						|
 | 
						|
        For all ``orient`` values except ``'table'``, default is True.
 | 
						|
 | 
						|
        .. versionchanged:: 0.25.0
 | 
						|
 | 
						|
           Not applicable for ``orient='table'``.
 | 
						|
 | 
						|
    convert_axes : bool, default None
 | 
						|
        Try to convert the axes to the proper dtypes.
 | 
						|
 | 
						|
        For all ``orient`` values except ``'table'``, default is True.
 | 
						|
 | 
						|
        .. versionchanged:: 0.25.0
 | 
						|
 | 
						|
           Not applicable for ``orient='table'``.
 | 
						|
 | 
						|
    convert_dates : bool or list of str, default True
 | 
						|
        If True then default datelike columns may be converted (depending on
 | 
						|
        keep_default_dates).
 | 
						|
        If False, no dates will be converted.
 | 
						|
        If a list of column names, then those columns will be converted and
 | 
						|
        default datelike columns may also be converted (depending on
 | 
						|
        keep_default_dates).
 | 
						|
 | 
						|
    keep_default_dates : bool, default True
 | 
						|
        If parsing dates (convert_dates is not False), then try to parse the
 | 
						|
        default datelike columns.
 | 
						|
        A column label is datelike if
 | 
						|
 | 
						|
        * it ends with ``'_at'``,
 | 
						|
 | 
						|
        * it ends with ``'_time'``,
 | 
						|
 | 
						|
        * it begins with ``'timestamp'``,
 | 
						|
 | 
						|
        * it is ``'modified'``, or
 | 
						|
 | 
						|
        * it is ``'date'``.
 | 
						|
 | 
						|
    numpy : bool, default False
 | 
						|
        Direct decoding to numpy arrays. Supports numeric data only, but
 | 
						|
        non-numeric column and index labels are supported. Note also that the
 | 
						|
        JSON ordering MUST be the same for each term if numpy=True.
 | 
						|
 | 
						|
        .. deprecated:: 1.0.0
 | 
						|
 | 
						|
    precise_float : bool, default False
 | 
						|
        Set to enable usage of higher precision (strtod) function when
 | 
						|
        decoding string to double values. Default (False) is to use fast but
 | 
						|
        less precise builtin functionality.
 | 
						|
 | 
						|
    date_unit : str, default None
 | 
						|
        The timestamp unit to detect if converting dates. The default behaviour
 | 
						|
        is to try and detect the correct precision, but if this is not desired
 | 
						|
        then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds,
 | 
						|
        milliseconds, microseconds or nanoseconds respectively.
 | 
						|
 | 
						|
    encoding : str, default is 'utf-8'
 | 
						|
        The encoding to use to decode py3 bytes.
 | 
						|
 | 
						|
    encoding_errors : str, optional, default "strict"
 | 
						|
        How encoding errors are treated. `List of possible values
 | 
						|
        <https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
 | 
						|
 | 
						|
        .. versionadded:: 1.3.0
 | 
						|
 | 
						|
    lines : bool, default False
 | 
						|
        Read the file as a json object per line.
 | 
						|
 | 
						|
    chunksize : int, optional
 | 
						|
        Return JsonReader object for iteration.
 | 
						|
        See the `line-delimited json docs
 | 
						|
        <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#line-delimited-json>`_
 | 
						|
        for more information on ``chunksize``.
 | 
						|
        This can only be passed if `lines=True`.
 | 
						|
        If this is None, the file will be read into memory all at once.
 | 
						|
 | 
						|
        .. versionchanged:: 1.2
 | 
						|
 | 
						|
           ``JsonReader`` is a context manager.
 | 
						|
 | 
						|
    {decompression_options}
 | 
						|
 | 
						|
        .. versionchanged:: 1.4.0 Zstandard support.
 | 
						|
 | 
						|
    nrows : int, optional
 | 
						|
        The number of lines from the line-delimited jsonfile that has to be read.
 | 
						|
        This can only be passed if `lines=True`.
 | 
						|
        If this is None, all the rows will be returned.
 | 
						|
 | 
						|
        .. versionadded:: 1.1
 | 
						|
 | 
						|
    {storage_options}
 | 
						|
 | 
						|
        .. versionadded:: 1.2.0
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    Series or DataFrame
 | 
						|
        The type returned depends on the value of `typ`.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    DataFrame.to_json : Convert a DataFrame to a JSON string.
 | 
						|
    Series.to_json : Convert a Series to a JSON string.
 | 
						|
    json_normalize : Normalize semi-structured JSON data into a flat table.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Specific to ``orient='table'``, if a :class:`DataFrame` with a literal
 | 
						|
    :class:`Index` name of `index` gets written with :func:`to_json`, the
 | 
						|
    subsequent read operation will incorrectly set the :class:`Index` name to
 | 
						|
    ``None``. This is because `index` is also used by :func:`DataFrame.to_json`
 | 
						|
    to denote a missing :class:`Index` name, and the subsequent
 | 
						|
    :func:`read_json` operation cannot distinguish between the two. The same
 | 
						|
    limitation is encountered with a :class:`MultiIndex` and any names
 | 
						|
    beginning with ``'level_'``.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
 | 
						|
    ...                   index=['row 1', 'row 2'],
 | 
						|
    ...                   columns=['col 1', 'col 2'])
 | 
						|
 | 
						|
    Encoding/decoding a Dataframe using ``'split'`` formatted JSON:
 | 
						|
 | 
						|
    >>> df.to_json(orient='split')
 | 
						|
        '\
 | 
						|
{{\
 | 
						|
"columns":["col 1","col 2"],\
 | 
						|
"index":["row 1","row 2"],\
 | 
						|
"data":[["a","b"],["c","d"]]\
 | 
						|
}}\
 | 
						|
'
 | 
						|
    >>> pd.read_json(_, orient='split')
 | 
						|
          col 1 col 2
 | 
						|
    row 1     a     b
 | 
						|
    row 2     c     d
 | 
						|
 | 
						|
    Encoding/decoding a Dataframe using ``'index'`` formatted JSON:
 | 
						|
 | 
						|
    >>> df.to_json(orient='index')
 | 
						|
    '{{"row 1":{{"col 1":"a","col 2":"b"}},"row 2":{{"col 1":"c","col 2":"d"}}}}'
 | 
						|
 | 
						|
    >>> pd.read_json(_, orient='index')
 | 
						|
          col 1 col 2
 | 
						|
    row 1     a     b
 | 
						|
    row 2     c     d
 | 
						|
 | 
						|
    Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
 | 
						|
    Note that index labels are not preserved with this encoding.
 | 
						|
 | 
						|
    >>> df.to_json(orient='records')
 | 
						|
    '[{{"col 1":"a","col 2":"b"}},{{"col 1":"c","col 2":"d"}}]'
 | 
						|
    >>> pd.read_json(_, orient='records')
 | 
						|
      col 1 col 2
 | 
						|
    0     a     b
 | 
						|
    1     c     d
 | 
						|
 | 
						|
    Encoding with Table Schema
 | 
						|
 | 
						|
    >>> df.to_json(orient='table')
 | 
						|
        '\
 | 
						|
{{"schema":{{"fields":[\
 | 
						|
{{"name":"index","type":"string"}},\
 | 
						|
{{"name":"col 1","type":"string"}},\
 | 
						|
{{"name":"col 2","type":"string"}}],\
 | 
						|
"primaryKey":["index"],\
 | 
						|
"pandas_version":"1.4.0"}},\
 | 
						|
"data":[\
 | 
						|
{{"index":"row 1","col 1":"a","col 2":"b"}},\
 | 
						|
{{"index":"row 2","col 1":"c","col 2":"d"}}]\
 | 
						|
}}\
 | 
						|
'
 | 
						|
    """
 | 
						|
    if orient == "table" and dtype:
 | 
						|
        raise ValueError("cannot pass both dtype and orient='table'")
 | 
						|
    if orient == "table" and convert_axes:
 | 
						|
        raise ValueError("cannot pass both convert_axes and orient='table'")
 | 
						|
 | 
						|
    if dtype is None and orient != "table":
 | 
						|
        # error: Incompatible types in assignment (expression has type "bool", variable
 | 
						|
        # has type "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float],
 | 
						|
        # Type[int], Type[complex], Type[bool], Type[object], Dict[Hashable,
 | 
						|
        # Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float],
 | 
						|
        # Type[int], Type[complex], Type[bool], Type[object]]], None]")
 | 
						|
        dtype = True  # type: ignore[assignment]
 | 
						|
    if convert_axes is None and orient != "table":
 | 
						|
        convert_axes = True
 | 
						|
 | 
						|
    json_reader = JsonReader(
 | 
						|
        path_or_buf,
 | 
						|
        orient=orient,
 | 
						|
        typ=typ,
 | 
						|
        dtype=dtype,
 | 
						|
        convert_axes=convert_axes,
 | 
						|
        convert_dates=convert_dates,
 | 
						|
        keep_default_dates=keep_default_dates,
 | 
						|
        numpy=numpy,
 | 
						|
        precise_float=precise_float,
 | 
						|
        date_unit=date_unit,
 | 
						|
        encoding=encoding,
 | 
						|
        lines=lines,
 | 
						|
        chunksize=chunksize,
 | 
						|
        compression=compression,
 | 
						|
        nrows=nrows,
 | 
						|
        storage_options=storage_options,
 | 
						|
        encoding_errors=encoding_errors,
 | 
						|
    )
 | 
						|
 | 
						|
    if chunksize:
 | 
						|
        return json_reader
 | 
						|
 | 
						|
    with json_reader:
 | 
						|
        return json_reader.read()
 | 
						|
 | 
						|
 | 
						|
class JsonReader(abc.Iterator):
 | 
						|
    """
 | 
						|
    JsonReader provides an interface for reading in a JSON file.
 | 
						|
 | 
						|
    If initialized with ``lines=True`` and ``chunksize``, can be iterated over
 | 
						|
    ``chunksize`` lines at a time. Otherwise, calling ``read`` reads in the
 | 
						|
    whole document.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        filepath_or_buffer,
 | 
						|
        orient,
 | 
						|
        typ,
 | 
						|
        dtype,
 | 
						|
        convert_axes,
 | 
						|
        convert_dates,
 | 
						|
        keep_default_dates: bool,
 | 
						|
        numpy: bool,
 | 
						|
        precise_float: bool,
 | 
						|
        date_unit,
 | 
						|
        encoding,
 | 
						|
        lines: bool,
 | 
						|
        chunksize: int | None,
 | 
						|
        compression: CompressionOptions,
 | 
						|
        nrows: int | None,
 | 
						|
        storage_options: StorageOptions = None,
 | 
						|
        encoding_errors: str | None = "strict",
 | 
						|
    ):
 | 
						|
 | 
						|
        self.orient = orient
 | 
						|
        self.typ = typ
 | 
						|
        self.dtype = dtype
 | 
						|
        self.convert_axes = convert_axes
 | 
						|
        self.convert_dates = convert_dates
 | 
						|
        self.keep_default_dates = keep_default_dates
 | 
						|
        self.numpy = numpy
 | 
						|
        self.precise_float = precise_float
 | 
						|
        self.date_unit = date_unit
 | 
						|
        self.encoding = encoding
 | 
						|
        self.compression = compression
 | 
						|
        self.storage_options = storage_options
 | 
						|
        self.lines = lines
 | 
						|
        self.chunksize = chunksize
 | 
						|
        self.nrows_seen = 0
 | 
						|
        self.nrows = nrows
 | 
						|
        self.encoding_errors = encoding_errors
 | 
						|
        self.handles: IOHandles[str] | None = None
 | 
						|
 | 
						|
        if self.chunksize is not None:
 | 
						|
            self.chunksize = validate_integer("chunksize", self.chunksize, 1)
 | 
						|
            if not self.lines:
 | 
						|
                raise ValueError("chunksize can only be passed if lines=True")
 | 
						|
        if self.nrows is not None:
 | 
						|
            self.nrows = validate_integer("nrows", self.nrows, 0)
 | 
						|
            if not self.lines:
 | 
						|
                raise ValueError("nrows can only be passed if lines=True")
 | 
						|
 | 
						|
        data = self._get_data_from_filepath(filepath_or_buffer)
 | 
						|
        self.data = self._preprocess_data(data)
 | 
						|
 | 
						|
    def _preprocess_data(self, data):
 | 
						|
        """
 | 
						|
        At this point, the data either has a `read` attribute (e.g. a file
 | 
						|
        object or a StringIO) or is a string that is a JSON document.
 | 
						|
 | 
						|
        If self.chunksize, we prepare the data for the `__next__` method.
 | 
						|
        Otherwise, we read it into memory for the `read` method.
 | 
						|
        """
 | 
						|
        if hasattr(data, "read") and not (self.chunksize or self.nrows):
 | 
						|
            with self:
 | 
						|
                data = data.read()
 | 
						|
        if not hasattr(data, "read") and (self.chunksize or self.nrows):
 | 
						|
            data = StringIO(data)
 | 
						|
 | 
						|
        return data
 | 
						|
 | 
						|
    def _get_data_from_filepath(self, filepath_or_buffer):
 | 
						|
        """
 | 
						|
        The function read_json accepts three input types:
 | 
						|
            1. filepath (string-like)
 | 
						|
            2. file-like object (e.g. open file object, StringIO)
 | 
						|
            3. JSON string
 | 
						|
 | 
						|
        This method turns (1) into (2) to simplify the rest of the processing.
 | 
						|
        It returns input types (2) and (3) unchanged.
 | 
						|
        """
 | 
						|
        # if it is a string but the file does not exist, it might be a JSON string
 | 
						|
        filepath_or_buffer = stringify_path(filepath_or_buffer)
 | 
						|
        if (
 | 
						|
            not isinstance(filepath_or_buffer, str)
 | 
						|
            or is_url(filepath_or_buffer)
 | 
						|
            or is_fsspec_url(filepath_or_buffer)
 | 
						|
            or file_exists(filepath_or_buffer)
 | 
						|
        ):
 | 
						|
            self.handles = get_handle(
 | 
						|
                filepath_or_buffer,
 | 
						|
                "r",
 | 
						|
                encoding=self.encoding,
 | 
						|
                compression=self.compression,
 | 
						|
                storage_options=self.storage_options,
 | 
						|
                errors=self.encoding_errors,
 | 
						|
            )
 | 
						|
            filepath_or_buffer = self.handles.handle
 | 
						|
 | 
						|
        return filepath_or_buffer
 | 
						|
 | 
						|
    def _combine_lines(self, lines) -> str:
 | 
						|
        """
 | 
						|
        Combines a list of JSON objects into one JSON object.
 | 
						|
        """
 | 
						|
        return (
 | 
						|
            f'[{",".join([line for line in (line.strip() for line in lines) if line])}]'
 | 
						|
        )
 | 
						|
 | 
						|
    def read(self):
 | 
						|
        """
 | 
						|
        Read the whole JSON input into a pandas object.
 | 
						|
        """
 | 
						|
        if self.lines:
 | 
						|
            if self.chunksize:
 | 
						|
                obj = concat(self)
 | 
						|
            elif self.nrows:
 | 
						|
                lines = list(islice(self.data, self.nrows))
 | 
						|
                lines_json = self._combine_lines(lines)
 | 
						|
                obj = self._get_object_parser(lines_json)
 | 
						|
            else:
 | 
						|
                data = ensure_str(self.data)
 | 
						|
                data_lines = data.split("\n")
 | 
						|
                obj = self._get_object_parser(self._combine_lines(data_lines))
 | 
						|
        else:
 | 
						|
            obj = self._get_object_parser(self.data)
 | 
						|
        self.close()
 | 
						|
        return obj
 | 
						|
 | 
						|
    def _get_object_parser(self, json):
 | 
						|
        """
 | 
						|
        Parses a json document into a pandas object.
 | 
						|
        """
 | 
						|
        typ = self.typ
 | 
						|
        dtype = self.dtype
 | 
						|
        kwargs = {
 | 
						|
            "orient": self.orient,
 | 
						|
            "dtype": self.dtype,
 | 
						|
            "convert_axes": self.convert_axes,
 | 
						|
            "convert_dates": self.convert_dates,
 | 
						|
            "keep_default_dates": self.keep_default_dates,
 | 
						|
            "numpy": self.numpy,
 | 
						|
            "precise_float": self.precise_float,
 | 
						|
            "date_unit": self.date_unit,
 | 
						|
        }
 | 
						|
        obj = None
 | 
						|
        if typ == "frame":
 | 
						|
            obj = FrameParser(json, **kwargs).parse()
 | 
						|
 | 
						|
        if typ == "series" or obj is None:
 | 
						|
            if not isinstance(dtype, bool):
 | 
						|
                kwargs["dtype"] = dtype
 | 
						|
            obj = SeriesParser(json, **kwargs).parse()
 | 
						|
 | 
						|
        return obj
 | 
						|
 | 
						|
    def close(self):
 | 
						|
        """
 | 
						|
        If we opened a stream earlier, in _get_data_from_filepath, we should
 | 
						|
        close it.
 | 
						|
 | 
						|
        If an open stream or file was passed, we leave it open.
 | 
						|
        """
 | 
						|
        if self.handles is not None:
 | 
						|
            self.handles.close()
 | 
						|
 | 
						|
    def __next__(self):
 | 
						|
        if self.nrows:
 | 
						|
            if self.nrows_seen >= self.nrows:
 | 
						|
                self.close()
 | 
						|
                raise StopIteration
 | 
						|
 | 
						|
        lines = list(islice(self.data, self.chunksize))
 | 
						|
        if lines:
 | 
						|
            lines_json = self._combine_lines(lines)
 | 
						|
            obj = self._get_object_parser(lines_json)
 | 
						|
 | 
						|
            # Make sure that the returned objects have the right index.
 | 
						|
            obj.index = range(self.nrows_seen, self.nrows_seen + len(obj))
 | 
						|
            self.nrows_seen += len(obj)
 | 
						|
 | 
						|
            return obj
 | 
						|
 | 
						|
        self.close()
 | 
						|
        raise StopIteration
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        return self
 | 
						|
 | 
						|
    def __exit__(self, exc_type, exc_value, traceback):
 | 
						|
        self.close()
 | 
						|
 | 
						|
 | 
						|
class Parser:
 | 
						|
    _split_keys: tuple[str, ...]
 | 
						|
    _default_orient: str
 | 
						|
 | 
						|
    _STAMP_UNITS = ("s", "ms", "us", "ns")
 | 
						|
    _MIN_STAMPS = {
 | 
						|
        "s": 31536000,
 | 
						|
        "ms": 31536000000,
 | 
						|
        "us": 31536000000000,
 | 
						|
        "ns": 31536000000000000,
 | 
						|
    }
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        json,
 | 
						|
        orient,
 | 
						|
        dtype: DtypeArg | None = None,
 | 
						|
        convert_axes=True,
 | 
						|
        convert_dates=True,
 | 
						|
        keep_default_dates=False,
 | 
						|
        numpy=False,
 | 
						|
        precise_float=False,
 | 
						|
        date_unit=None,
 | 
						|
    ):
 | 
						|
        self.json = json
 | 
						|
 | 
						|
        if orient is None:
 | 
						|
            orient = self._default_orient
 | 
						|
 | 
						|
        self.orient = orient
 | 
						|
 | 
						|
        self.dtype = dtype
 | 
						|
 | 
						|
        if orient == "split":
 | 
						|
            numpy = False
 | 
						|
 | 
						|
        if date_unit is not None:
 | 
						|
            date_unit = date_unit.lower()
 | 
						|
            if date_unit not in self._STAMP_UNITS:
 | 
						|
                raise ValueError(f"date_unit must be one of {self._STAMP_UNITS}")
 | 
						|
            self.min_stamp = self._MIN_STAMPS[date_unit]
 | 
						|
        else:
 | 
						|
            self.min_stamp = self._MIN_STAMPS["s"]
 | 
						|
 | 
						|
        self.numpy = numpy
 | 
						|
        self.precise_float = precise_float
 | 
						|
        self.convert_axes = convert_axes
 | 
						|
        self.convert_dates = convert_dates
 | 
						|
        self.date_unit = date_unit
 | 
						|
        self.keep_default_dates = keep_default_dates
 | 
						|
        self.obj: DataFrame | Series | None = None
 | 
						|
 | 
						|
    def check_keys_split(self, decoded):
 | 
						|
        """
 | 
						|
        Checks that dict has only the appropriate keys for orient='split'.
 | 
						|
        """
 | 
						|
        bad_keys = set(decoded.keys()).difference(set(self._split_keys))
 | 
						|
        if bad_keys:
 | 
						|
            bad_keys_joined = ", ".join(bad_keys)
 | 
						|
            raise ValueError(f"JSON data had unexpected key(s): {bad_keys_joined}")
 | 
						|
 | 
						|
    def parse(self):
 | 
						|
 | 
						|
        if self.numpy:
 | 
						|
            self._parse_numpy()
 | 
						|
        else:
 | 
						|
            self._parse_no_numpy()
 | 
						|
 | 
						|
        if self.obj is None:
 | 
						|
            return None
 | 
						|
        if self.convert_axes:
 | 
						|
            self._convert_axes()
 | 
						|
        self._try_convert_types()
 | 
						|
        return self.obj
 | 
						|
 | 
						|
    def _parse_numpy(self):
 | 
						|
        raise AbstractMethodError(self)
 | 
						|
 | 
						|
    def _parse_no_numpy(self):
 | 
						|
        raise AbstractMethodError(self)
 | 
						|
 | 
						|
    def _convert_axes(self):
 | 
						|
        """
 | 
						|
        Try to convert axes.
 | 
						|
        """
 | 
						|
        obj = self.obj
 | 
						|
        assert obj is not None  # for mypy
 | 
						|
        for axis_name in obj._AXIS_ORDERS:
 | 
						|
            new_axis, result = self._try_convert_data(
 | 
						|
                name=axis_name,
 | 
						|
                data=obj._get_axis(axis_name),
 | 
						|
                use_dtypes=False,
 | 
						|
                convert_dates=True,
 | 
						|
            )
 | 
						|
            if result:
 | 
						|
                setattr(self.obj, axis_name, new_axis)
 | 
						|
 | 
						|
    def _try_convert_types(self):
 | 
						|
        raise AbstractMethodError(self)
 | 
						|
 | 
						|
    def _try_convert_data(
 | 
						|
        self, name, data, use_dtypes: bool = True, convert_dates: bool = True
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Try to parse a ndarray like into a column by inferring dtype.
 | 
						|
        """
 | 
						|
        # don't try to coerce, unless a force conversion
 | 
						|
        if use_dtypes:
 | 
						|
            if not self.dtype:
 | 
						|
                if all(notna(data)):
 | 
						|
                    return data, False
 | 
						|
                return data.fillna(np.nan), True
 | 
						|
 | 
						|
            # error: Non-overlapping identity check (left operand type:
 | 
						|
            # "Union[ExtensionDtype, str, dtype[Any], Type[object],
 | 
						|
            # Dict[Hashable, Union[ExtensionDtype, Union[str, dtype[Any]],
 | 
						|
            # Type[str], Type[float], Type[int], Type[complex], Type[bool],
 | 
						|
            # Type[object]]]]", right operand type: "Literal[True]")
 | 
						|
            elif self.dtype is True:  # type: ignore[comparison-overlap]
 | 
						|
                pass
 | 
						|
            else:
 | 
						|
                # dtype to force
 | 
						|
                dtype = (
 | 
						|
                    self.dtype.get(name) if isinstance(self.dtype, dict) else self.dtype
 | 
						|
                )
 | 
						|
                if dtype is not None:
 | 
						|
                    try:
 | 
						|
                        return data.astype(dtype), True
 | 
						|
                    except (TypeError, ValueError):
 | 
						|
                        return data, False
 | 
						|
 | 
						|
        if convert_dates:
 | 
						|
            new_data, result = self._try_convert_to_date(data)
 | 
						|
            if result:
 | 
						|
                return new_data, True
 | 
						|
 | 
						|
        if data.dtype == "object":
 | 
						|
 | 
						|
            # try float
 | 
						|
            try:
 | 
						|
                data = data.astype("float64")
 | 
						|
            except (TypeError, ValueError):
 | 
						|
                pass
 | 
						|
 | 
						|
        if data.dtype.kind == "f":
 | 
						|
 | 
						|
            if data.dtype != "float64":
 | 
						|
 | 
						|
                # coerce floats to 64
 | 
						|
                try:
 | 
						|
                    data = data.astype("float64")
 | 
						|
                except (TypeError, ValueError):
 | 
						|
                    pass
 | 
						|
 | 
						|
        # don't coerce 0-len data
 | 
						|
        if len(data) and (data.dtype == "float" or data.dtype == "object"):
 | 
						|
 | 
						|
            # coerce ints if we can
 | 
						|
            try:
 | 
						|
                new_data = data.astype("int64")
 | 
						|
                if (new_data == data).all():
 | 
						|
                    data = new_data
 | 
						|
            except (TypeError, ValueError, OverflowError):
 | 
						|
                pass
 | 
						|
 | 
						|
        # coerce ints to 64
 | 
						|
        if data.dtype == "int":
 | 
						|
 | 
						|
            # coerce floats to 64
 | 
						|
            try:
 | 
						|
                data = data.astype("int64")
 | 
						|
            except (TypeError, ValueError):
 | 
						|
                pass
 | 
						|
 | 
						|
        # if we have an index, we want to preserve dtypes
 | 
						|
        if name == "index" and len(data):
 | 
						|
            if self.orient == "split":
 | 
						|
                return data, False
 | 
						|
 | 
						|
        return data, True
 | 
						|
 | 
						|
    def _try_convert_to_date(self, data):
 | 
						|
        """
 | 
						|
        Try to parse a ndarray like into a date column.
 | 
						|
 | 
						|
        Try to coerce object in epoch/iso formats and integer/float in epoch
 | 
						|
        formats. Return a boolean if parsing was successful.
 | 
						|
        """
 | 
						|
        # no conversion on empty
 | 
						|
        if not len(data):
 | 
						|
            return data, False
 | 
						|
 | 
						|
        new_data = data
 | 
						|
        if new_data.dtype == "object":
 | 
						|
            try:
 | 
						|
                new_data = data.astype("int64")
 | 
						|
            except (TypeError, ValueError, OverflowError):
 | 
						|
                pass
 | 
						|
 | 
						|
        # ignore numbers that are out of range
 | 
						|
        if issubclass(new_data.dtype.type, np.number):
 | 
						|
            in_range = (
 | 
						|
                isna(new_data._values)
 | 
						|
                | (new_data > self.min_stamp)
 | 
						|
                | (new_data._values == iNaT)
 | 
						|
            )
 | 
						|
            if not in_range.all():
 | 
						|
                return data, False
 | 
						|
 | 
						|
        date_units = (self.date_unit,) if self.date_unit else self._STAMP_UNITS
 | 
						|
        for date_unit in date_units:
 | 
						|
            try:
 | 
						|
                new_data = to_datetime(new_data, errors="raise", unit=date_unit)
 | 
						|
            except (ValueError, OverflowError, TypeError):
 | 
						|
                continue
 | 
						|
            return new_data, True
 | 
						|
        return data, False
 | 
						|
 | 
						|
    def _try_convert_dates(self):
 | 
						|
        raise AbstractMethodError(self)
 | 
						|
 | 
						|
 | 
						|
class SeriesParser(Parser):
 | 
						|
    _default_orient = "index"
 | 
						|
    _split_keys = ("name", "index", "data")
 | 
						|
 | 
						|
    def _parse_no_numpy(self):
 | 
						|
        data = loads(self.json, precise_float=self.precise_float)
 | 
						|
 | 
						|
        if self.orient == "split":
 | 
						|
            decoded = {str(k): v for k, v in data.items()}
 | 
						|
            self.check_keys_split(decoded)
 | 
						|
            self.obj = create_series_with_explicit_dtype(**decoded)
 | 
						|
        else:
 | 
						|
            self.obj = create_series_with_explicit_dtype(data, dtype_if_empty=object)
 | 
						|
 | 
						|
    def _parse_numpy(self):
 | 
						|
        load_kwargs = {
 | 
						|
            "dtype": None,
 | 
						|
            "numpy": True,
 | 
						|
            "precise_float": self.precise_float,
 | 
						|
        }
 | 
						|
        if self.orient in ["columns", "index"]:
 | 
						|
            load_kwargs["labelled"] = True
 | 
						|
        loads_ = functools.partial(loads, **load_kwargs)
 | 
						|
        data = loads_(self.json)
 | 
						|
 | 
						|
        if self.orient == "split":
 | 
						|
            decoded = {str(k): v for k, v in data.items()}
 | 
						|
            self.check_keys_split(decoded)
 | 
						|
            self.obj = create_series_with_explicit_dtype(**decoded)
 | 
						|
        elif self.orient in ["columns", "index"]:
 | 
						|
            # error: "create_series_with_explicit_dtype"
 | 
						|
            #  gets multiple values for keyword argument "dtype_if_empty
 | 
						|
            self.obj = create_series_with_explicit_dtype(
 | 
						|
                *data, dtype_if_empty=object
 | 
						|
            )  # type:ignore[misc]
 | 
						|
        else:
 | 
						|
            self.obj = create_series_with_explicit_dtype(data, dtype_if_empty=object)
 | 
						|
 | 
						|
    def _try_convert_types(self):
 | 
						|
        if self.obj is None:
 | 
						|
            return
 | 
						|
        obj, result = self._try_convert_data(
 | 
						|
            "data", self.obj, convert_dates=self.convert_dates
 | 
						|
        )
 | 
						|
        if result:
 | 
						|
            self.obj = obj
 | 
						|
 | 
						|
 | 
						|
class FrameParser(Parser):
 | 
						|
    _default_orient = "columns"
 | 
						|
    _split_keys = ("columns", "index", "data")
 | 
						|
 | 
						|
    def _parse_numpy(self):
 | 
						|
 | 
						|
        json = self.json
 | 
						|
        orient = self.orient
 | 
						|
 | 
						|
        if orient == "columns":
 | 
						|
            args = loads(
 | 
						|
                json,
 | 
						|
                dtype=None,
 | 
						|
                numpy=True,
 | 
						|
                labelled=True,
 | 
						|
                precise_float=self.precise_float,
 | 
						|
            )
 | 
						|
            if len(args):
 | 
						|
                args = (args[0].T, args[2], args[1])
 | 
						|
            self.obj = DataFrame(*args)
 | 
						|
        elif orient == "split":
 | 
						|
            decoded = loads(
 | 
						|
                json, dtype=None, numpy=True, precise_float=self.precise_float
 | 
						|
            )
 | 
						|
            decoded = {str(k): v for k, v in decoded.items()}
 | 
						|
            self.check_keys_split(decoded)
 | 
						|
            self.obj = DataFrame(**decoded)
 | 
						|
        elif orient == "values":
 | 
						|
            self.obj = DataFrame(
 | 
						|
                loads(json, dtype=None, numpy=True, precise_float=self.precise_float)
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            self.obj = DataFrame(
 | 
						|
                *loads(
 | 
						|
                    json,
 | 
						|
                    dtype=None,
 | 
						|
                    numpy=True,
 | 
						|
                    labelled=True,
 | 
						|
                    precise_float=self.precise_float,
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
    def _parse_no_numpy(self):
 | 
						|
 | 
						|
        json = self.json
 | 
						|
        orient = self.orient
 | 
						|
 | 
						|
        if orient == "columns":
 | 
						|
            self.obj = DataFrame(
 | 
						|
                loads(json, precise_float=self.precise_float), dtype=None
 | 
						|
            )
 | 
						|
        elif orient == "split":
 | 
						|
            decoded = {
 | 
						|
                str(k): v
 | 
						|
                for k, v in loads(json, precise_float=self.precise_float).items()
 | 
						|
            }
 | 
						|
            self.check_keys_split(decoded)
 | 
						|
            self.obj = DataFrame(dtype=None, **decoded)
 | 
						|
        elif orient == "index":
 | 
						|
            self.obj = DataFrame.from_dict(
 | 
						|
                loads(json, precise_float=self.precise_float),
 | 
						|
                dtype=None,
 | 
						|
                orient="index",
 | 
						|
            )
 | 
						|
        elif orient == "table":
 | 
						|
            self.obj = parse_table_schema(json, precise_float=self.precise_float)
 | 
						|
        else:
 | 
						|
            self.obj = DataFrame(
 | 
						|
                loads(json, precise_float=self.precise_float), dtype=None
 | 
						|
            )
 | 
						|
 | 
						|
    def _process_converter(self, f, filt=None):
 | 
						|
        """
 | 
						|
        Take a conversion function and possibly recreate the frame.
 | 
						|
        """
 | 
						|
        if filt is None:
 | 
						|
            filt = lambda col, c: True
 | 
						|
 | 
						|
        obj = self.obj
 | 
						|
        assert obj is not None  # for mypy
 | 
						|
 | 
						|
        needs_new_obj = False
 | 
						|
        new_obj = {}
 | 
						|
        for i, (col, c) in enumerate(obj.items()):
 | 
						|
            if filt(col, c):
 | 
						|
                new_data, result = f(col, c)
 | 
						|
                if result:
 | 
						|
                    c = new_data
 | 
						|
                    needs_new_obj = True
 | 
						|
            new_obj[i] = c
 | 
						|
 | 
						|
        if needs_new_obj:
 | 
						|
 | 
						|
            # possibly handle dup columns
 | 
						|
            new_frame = DataFrame(new_obj, index=obj.index)
 | 
						|
            new_frame.columns = obj.columns
 | 
						|
            self.obj = new_frame
 | 
						|
 | 
						|
    def _try_convert_types(self):
 | 
						|
        if self.obj is None:
 | 
						|
            return
 | 
						|
        if self.convert_dates:
 | 
						|
            self._try_convert_dates()
 | 
						|
 | 
						|
        self._process_converter(
 | 
						|
            lambda col, c: self._try_convert_data(col, c, convert_dates=False)
 | 
						|
        )
 | 
						|
 | 
						|
    def _try_convert_dates(self):
 | 
						|
        if self.obj is None:
 | 
						|
            return
 | 
						|
 | 
						|
        # our columns to parse
 | 
						|
        convert_dates = self.convert_dates
 | 
						|
        if convert_dates is True:
 | 
						|
            convert_dates = []
 | 
						|
        convert_dates = set(convert_dates)
 | 
						|
 | 
						|
        def is_ok(col) -> bool:
 | 
						|
            """
 | 
						|
            Return if this col is ok to try for a date parse.
 | 
						|
            """
 | 
						|
            if not isinstance(col, str):
 | 
						|
                return False
 | 
						|
 | 
						|
            col_lower = col.lower()
 | 
						|
            if (
 | 
						|
                col_lower.endswith("_at")
 | 
						|
                or col_lower.endswith("_time")
 | 
						|
                or col_lower == "modified"
 | 
						|
                or col_lower == "date"
 | 
						|
                or col_lower == "datetime"
 | 
						|
                or col_lower.startswith("timestamp")
 | 
						|
            ):
 | 
						|
                return True
 | 
						|
            return False
 | 
						|
 | 
						|
        self._process_converter(
 | 
						|
            lambda col, c: self._try_convert_to_date(c),
 | 
						|
            lambda col, c: (
 | 
						|
                (self.keep_default_dates and is_ok(col)) or col in convert_dates
 | 
						|
            ),
 | 
						|
        )
 |