Files
Feature-Extraction/dist/client/mne/time_frequency/spectrum.py

1717 lines
54 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Container classes for spectral data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
from functools import partial
from inspect import signature
import numpy as np
from .._fiff.meas_info import ContainsMixin, Info
from .._fiff.pick import _pick_data_channels, _picks_to_idx, pick_info
from ..channels.channels import UpdateChannelsMixin
from ..channels.layout import _merge_ch_data, find_layout
from ..defaults import (
_BORDER_DEFAULT,
_EXTRAPOLATE_DEFAULT,
_INTERPOLATION_DEFAULT,
_handle_default,
)
from ..html_templates import _get_html_template
from ..utils import (
GetEpochsMixin,
_build_data_frame,
_check_method_kwargs,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_sphere,
_time_mask,
_validate_type,
fill_doc,
legacy,
logger,
object_diff,
repr_html,
verbose,
warn,
)
from ..utils.check import (
_check_fname,
_check_option,
_import_h5io_funcs,
_is_numeric,
check_fname,
)
from ..utils.misc import _pl
from ..utils.spectrum import _get_instance_type_string, _split_psd_kwargs
from ..viz.topo import _plot_timeseries, _plot_timeseries_unified, _plot_topo
from ..viz.topomap import _make_head_outlines, _prepare_topomap_plot, plot_psds_topomap
from ..viz.utils import (
_format_units_psd,
_get_plot_ch_type,
_make_combine_callable,
_plot_psd,
_prepare_sensor_names,
plt_show,
)
from .multitaper import _psd_from_mt, psd_array_multitaper
from .psd import _check_nfft, psd_array_welch
class SpectrumMixin:
"""Mixin providing spectral plotting methods to sensor-space containers."""
@legacy(alt=".compute_psd().plot()")
@verbose
def plot_psd(
self,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
reject_by_annotation=True,
*,
method="auto",
average=False,
dB=True,
estimate="power",
xscale="linear",
area_mode="std",
area_alpha=0.33,
color="black",
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
ax=None,
show=True,
n_jobs=1,
verbose=None,
**method_kw,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(reject_by_annotation_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot)
return self.compute_psd(**init_kw).plot(**plot_kw)
@legacy(alt=".compute_psd().plot_topo()")
@verbose
def plot_psd_topo(
self,
tmin=None,
tmax=None,
fmin=0,
fmax=100,
proj=False,
*,
method="auto",
dB=True,
layout=None,
color="w",
fig_facecolor="k",
axis_facecolor="k",
axes=None,
block=False,
show=True,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Plot power spectral density, separately for each channel.
Parameters
----------
%(tmin_tmax_psd)s
%(fmin_fmax_psd_topo)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(dB_spectrum_plot_topo)s
%(layout_spectrum_plot_topo)s
%(color_spectrum_plot_topo)s
%(fig_facecolor)s
%(axis_facecolor)s
%(axes_spectrum_plot_topo)s
%(block)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s Defaults to ``dict(n_fft=2048)``.
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure distributing one image per channel across sensor topography.
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topo)
return self.compute_psd(**init_kw).plot_topo(**plot_kw)
@legacy(alt=".compute_psd().plot_topomap()")
@verbose
def plot_psd_topomap(
self,
bands=None,
tmin=None,
tmax=None,
ch_type=None,
*,
proj=False,
method="auto",
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Plot scalp topography of PSD for chosen frequency bands.
Parameters
----------
%(bands_psd_topo)s
%(tmin_tmax_psd)s
%(ch_type_topomap_psd)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
%(border_topomap)s
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topomap)
return self.compute_psd(**init_kw).plot_topomap(**plot_kw)
def _set_legacy_nfft_default(self, tmin, tmax, method, method_kw):
"""Update method_kw with legacy n_fft default for plot_psd[_topo]().
This method returns ``None`` and has a side effect of (maybe) updating
the ``method_kw`` dict.
"""
if method == "welch" and method_kw.get("n_fft") is None:
tm = _time_mask(self.times, tmin, tmax, sfreq=self.info["sfreq"])
method_kw["n_fft"] = min(np.sum(tm), 2048)
class BaseSpectrum(ContainsMixin, UpdateChannelsMixin):
"""Base class for Spectrum and EpochsSpectrum."""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
*,
n_jobs,
verbose=None,
**method_kw,
):
# arg checking
self._sfreq = inst.info["sfreq"]
if np.isfinite(fmax) and (fmax > self.sfreq / 2):
raise ValueError(
f"Requested fmax ({fmax} Hz) must not exceed ½ the sampling "
f'frequency of the data ({0.5 * inst.info["sfreq"]} Hz).'
)
# method
self._inst_type = type(inst)
method = _validate_method(method, _get_instance_type_string(self))
psd_funcs = dict(welch=psd_array_welch, multitaper=psd_array_multitaper)
# triage method and kwargs. partial() doesn't check validity of kwargs,
# so we do it manually to save compute time if any are invalid.
psd_funcs = dict(welch=psd_array_welch, multitaper=psd_array_multitaper)
_check_method_kwargs(psd_funcs[method], method_kw, msg=f'PSD method "{method}"')
self._psd_func = partial(psd_funcs[method], remove_dc=remove_dc, **method_kw)
# apply proj if desired
if proj:
inst = inst.copy().apply_proj()
self.inst = inst
# prep times and picks
self._time_mask = _time_mask(inst.times, tmin, tmax, sfreq=self.sfreq)
self._picks = _picks_to_idx(
inst.info, picks, "data", exclude, with_ref_meg=False
)
# add the info object. bads and non-data channels were dropped by
# _picks_to_idx() so we update the info accordingly:
self.info = pick_info(inst.info, sel=self._picks, copy=True)
# assign some attributes
self.preload = True # needed for __getitem__, never False
self._method = method
# self._dims may also get updated by child classes
self._dims = (
"channel",
"freq",
)
if method_kw.get("average", "") in (None, False):
self._dims += ("segment",)
if self._returns_complex_tapers(**method_kw):
self._dims = self._dims[:-1] + ("taper",) + self._dims[-1:]
# record data type (for repr and html_repr)
self._data_type = (
"Fourier Coefficients"
if method_kw.get("output") == "complex"
else "Power Spectrum"
)
# set nave (child constructor overrides this for Evoked input)
self._nave = None
def __eq__(self, other):
"""Test equivalence of two Spectrum instances."""
return object_diff(vars(self), vars(other)) == ""
def __getstate__(self):
"""Prepare object for serialization."""
inst_type_str = _get_instance_type_string(self)
out = dict(
method=self.method,
data=self._data,
sfreq=self.sfreq,
dims=self._dims,
freqs=self.freqs,
inst_type_str=inst_type_str,
data_type=self._data_type,
info=self.info,
nave=self.nave,
weights=self.weights,
)
return out
def __setstate__(self, state):
"""Unpack from serialized format."""
from ..epochs import Epochs
from ..evoked import Evoked
from ..io import Raw
self._method = state["method"]
self._data = state["data"]
self._freqs = state["freqs"]
self._dims = state["dims"]
self._sfreq = state["sfreq"]
self.info = Info(**state["info"])
self._data_type = state["data_type"]
self._nave = state.get("nave") # objs saved before #11282 won't have `nave`
self._weights = state.get("weights") # objs saved before #12747 won't have
self.preload = True
# instance type
inst_types = dict(Raw=Raw, Epochs=Epochs, Evoked=Evoked, Array=np.ndarray)
self._inst_type = inst_types[state["inst_type_str"]]
def __repr__(self):
"""Build string representation of the Spectrum object."""
inst_type_str = _get_instance_type_string(self)
# shape & dimension names
dims = " × ".join(
[f"{dim[0]} {dim[1]}s" for dim in zip(self.shape, self._dims)]
)
freq_range = f"{self.freqs[0]:0.1f}-{self.freqs[-1]:0.1f} Hz"
return (
f"<{self._data_type} (from {inst_type_str}, "
f"{self.method} method) | {dims}, {freq_range}>"
)
@repr_html
def _repr_html_(self, caption=None):
"""Build HTML representation of the Spectrum object."""
inst_type_str = _get_instance_type_string(self)
units = [f"{ch_type}: {unit}" for ch_type, unit in self.units().items()]
t = _get_html_template("repr", "spectrum.html.jinja")
t = t.render(spectrum=self, inst_type=inst_type_str, units=units)
return t
def _check_values(self):
"""Check PSD results for correct shape and bad values."""
assert len(self._dims) == self._data.ndim, (self._dims, self._data.ndim)
assert self._data.shape == self._shape
# TODO: should this be more fine-grained (report "chan X in epoch Y")?
ch_dim = self._dims.index("channel")
dims = list(range(self._data.ndim))
dims.pop(ch_dim)
# take min() across all but the channel axis
# (if the abs becomes memory intensive we could iterate over channels)
use_data = self._data
if use_data.dtype.kind == "c":
use_data = np.abs(use_data)
bad_value = use_data.min(axis=tuple(dims)) == 0
bad_value &= ~np.isin(self.ch_names, self.info["bads"])
if bad_value.any():
chs = np.array(self.ch_names)[bad_value].tolist()
s = _pl(bad_value.sum())
warn(f'Zero value in spectrum for channel{s} {", ".join(chs)}', UserWarning)
def _returns_complex_tapers(self, **method_kw):
return self.method == "multitaper" and method_kw.get("output") == "complex"
def _compute_spectra(self, data, fmin, fmax, n_jobs, method_kw, verbose):
# make the spectra
result = self._psd_func(
data, self.sfreq, fmin=fmin, fmax=fmax, n_jobs=n_jobs, verbose=verbose
)
# assign ._data (handling unaggregated multitaper output)
if self._returns_complex_tapers(**method_kw):
fourier_coefs, freqs, weights = result
self._data = fourier_coefs
self._weights = weights
else:
psds, freqs = result
self._data = psds
self._weights = None
# assign properties (._data already assigned above)
self._freqs = freqs
# this is *expected* shape, it gets asserted later in _check_values()
# (and then deleted afterwards)
self._shape = (len(self.ch_names), len(self.freqs))
# append n_welch_segments (use "" as .get() default since None considered valid)
if method_kw.get("average", "") in (None, False):
n_welch_segments = _compute_n_welch_segments(data.shape[-1], method_kw)
self._shape += (n_welch_segments,)
# insert n_tapers
if self._returns_complex_tapers(**method_kw):
self._shape = self._shape[:-1] + (self._weights.size,) + self._shape[-1:]
# we don't need these anymore, and they make save/load harder
del self._picks
del self._psd_func
del self._time_mask
@property
def _detrend_picks(self):
"""Provide compatibility with __iter__."""
return list()
@property
def ch_names(self):
return self.info["ch_names"]
@property
def data(self):
return self._data
@property
def freqs(self):
return self._freqs
@property
def method(self):
return self._method
@property
def nave(self):
return self._nave
@property
def weights(self):
return self._weights
@property
def sfreq(self):
return self._sfreq
@property
def shape(self):
return self._data.shape
def copy(self):
"""Return copy of the Spectrum instance.
Returns
-------
spectrum : instance of Spectrum
A copy of the object.
"""
return deepcopy(self)
@fill_doc
def get_data(
self, picks=None, exclude="bads", fmin=0, fmax=np.inf, return_freqs=False
):
"""Get spectrum data in NumPy array format.
Parameters
----------
%(picks_good_data_noref)s
%(exclude_spectrum_get_data)s
%(fmin_fmax_psd)s
return_freqs : bool
Whether to return the frequency bin values for the requested
frequency range. Default is ``False``.
Returns
-------
data : array
The requested data in a NumPy array.
freqs : array
The frequency values for the requested range. Only returned if
``return_freqs`` is ``True``.
"""
picks = _picks_to_idx(
self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
)
fmin_idx = np.searchsorted(self.freqs, fmin)
fmax_idx = np.searchsorted(self.freqs, fmax, side="right")
freq_picks = np.arange(fmin_idx, fmax_idx)
freq_axis = self._dims.index("freq")
chan_axis = self._dims.index("channel")
# normally there's a risk of np.take reducing array dimension if there
# were only one channel or frequency selected, but `_picks_to_idx`
# always returns an array of picks, and np.arange always returns an
# array of freq bin indices, so we're safe; the result will always be
# 2D.
data = self._data.take(picks, chan_axis).take(freq_picks, freq_axis)
if return_freqs:
freqs = self._freqs[fmin_idx:fmax_idx]
return (data, freqs)
return data
@fill_doc
def plot(
self,
*,
picks=None,
average=False,
dB=True,
amplitude=False,
xscale="linear",
ci="sd",
ci_alpha=0.3,
color="black",
alpha=None,
spatial_colors=True,
sphere=None,
exclude=(),
axes=None,
show=True,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(picks_all_data_noref)s
.. versionchanged:: 1.5
In version 1.5, the default behavior changed so that all
:term:`data channels` (not just "good" data channels) are shown by
default.
average : bool
Whether to average across channels before plotting. If ``True``, interactive
plotting of scalp topography is disabled, and parameters ``ci`` and
``ci_alpha`` control the style of the confidence band around the mean.
Default is ``False``.
%(dB_spectrum_plot)s
amplitude : bool
Whether to plot an amplitude spectrum (``True``) or power spectrum
(``False``).
.. versionchanged:: 1.8
In version 1.8, the default changed to ``amplitude=False``.
%(xscale_plot_psd)s
ci : float | 'sd' | 'range' | None
Type of confidence band drawn around the mean when ``average=True``. If
``'sd'`` the band spans ±1 standard deviation across channels. If
``'range'`` the band spans the range across channels at each frequency. If a
:class:`float`, it indicates the (bootstrapped) confidence interval to
display, and must satisfy ``0 < ci <= 100``. If ``None``, no band is drawn.
Default is ``sd``.
ci_alpha : float
Opacity of the confidence band. Must satisfy ``0 <= ci_alpha <= 1``. Default
is 0.3.
%(color_plot_psd)s
alpha : float | None
Opacity of the spectrum line(s). If :class:`float`, must satisfy
``0 <= alpha <= 1``. If ``None``, opacity will be ``1`` when
``average=True`` and ``0.1`` when ``average=False``. Default is ``None``.
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
%(exclude_spectrum_plot)s
.. versionchanged:: 1.5
In version 1.5, the default behavior changed from ``exclude='bads'`` to
``exclude=()``.
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with spectra plotted in separate subplots for each channel type.
"""
# Must nest this _mpl_figure import because of the BACKEND global
# stuff
from ..viz._mpl_figure import _line_figure, _split_picks_by_type
# arg checking
ci = _check_ci(ci)
_check_option("xscale", xscale, ("log", "linear"))
sphere = _check_sphere(sphere, self.info)
# defaults
scalings = _handle_default("scalings", None)
titles = _handle_default("titles", None)
units = _handle_default("units", None)
_validate_type(amplitude, bool, "amplitude")
estimate = "amplitude" if amplitude else "power"
logger.info(f"Plotting {estimate} spectral density ({dB=}).")
# split picks by channel type
picks = _picks_to_idx(
self.info, picks, "data", exclude=exclude, with_ref_meg=False
)
(picks_list, units_list, scalings_list, titles_list) = _split_picks_by_type(
self, picks, units, scalings, titles
)
# prepare data (e.g. aggregate across dims, convert complex to power)
psd_list = [
self._prepare_data_for_plot(
self._data.take(_p, axis=self._dims.index("channel"))
)
for _p in picks_list
]
# initialize figure
fig, axes = _line_figure(self, axes, picks=picks)
# don't add ylabels & titles if figure has unexpected number of axes
make_label = len(axes) == len(fig.axes)
# Plot Frequency [Hz] xlabel only on the last axis
xlabels_list = [False] * (len(axes) - 1) + [True]
# plot
_plot_psd(
self,
fig,
self.freqs,
psd_list,
picks_list,
titles_list,
units_list,
scalings_list,
axes,
make_label,
color,
area_mode=ci,
area_alpha=ci_alpha,
dB=dB,
estimate=estimate,
average=average,
spatial_colors=spatial_colors,
xscale=xscale,
line_alpha=alpha,
sphere=sphere,
xlabels_list=xlabels_list,
)
plt_show(show, fig)
return fig
@fill_doc
def plot_topo(
self,
*,
dB=True,
layout=None,
color="w",
fig_facecolor="k",
axis_facecolor="k",
axes=None,
block=False,
show=True,
):
"""Plot power spectral density, separately for each channel.
Parameters
----------
%(dB_spectrum_plot_topo)s
%(layout_spectrum_plot_topo)s
%(color_spectrum_plot_topo)s
%(fig_facecolor)s
%(axis_facecolor)s
%(axes_spectrum_plot_topo)s
%(block)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure distributing one image per channel across sensor topography.
"""
if layout is None:
layout = find_layout(self.info)
psds, freqs = self.get_data(return_freqs=True)
# prepare data (e.g. aggregate across dims, convert complex to power)
psds = self._prepare_data_for_plot(psds)
if dB:
psds = 10 * np.log10(psds)
y_label = "dB"
else:
y_label = "Power"
show_func = partial(
_plot_timeseries_unified, data=[psds], color=color, times=[freqs]
)
click_func = partial(_plot_timeseries, data=[psds], color=color, times=[freqs])
picks = _pick_data_channels(self.info)
info = pick_info(self.info, picks)
fig = _plot_topo(
info,
times=freqs,
show_func=show_func,
click_func=click_func,
layout=layout,
axis_facecolor=axis_facecolor,
fig_facecolor=fig_facecolor,
x_label="Frequency (Hz)",
unified=True,
y_label=y_label,
axes=axes,
)
plt_show(show, block=block)
return fig
@fill_doc
def plot_topomap(
self,
bands=None,
ch_type=None,
*,
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
):
"""Plot scalp topography of PSD for chosen frequency bands.
Parameters
----------
%(bands_psd_topo)s
%(ch_type_topomap_psd)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
%(border_topomap)s
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
%(cnorm)s
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
ch_type = _get_plot_ch_type(self, ch_type)
if units is None:
units = _handle_default("units", None)
unit = units[ch_type] if hasattr(units, "keys") else units
scalings = _handle_default("scalings", None)
scaling = scalings[ch_type]
(
picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(self, ch_type, sphere=sphere)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
psds, freqs = self.get_data(picks=picks, return_freqs=True)
# prepare data (e.g. aggregate across dims, convert complex to power)
psds = self._prepare_data_for_plot(psds)
psds *= scaling**2
if merge_channels:
psds, names = _merge_ch_data(psds, ch_type, names, method="mean")
names = _prepare_sensor_names(names, show_names)
return plot_psds_topomap(
psds=psds,
freqs=freqs,
pos=pos,
bands=bands,
ch_type=ch_type,
normalize=normalize,
agg_fun=agg_fun,
dB=dB,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
unit=unit,
axes=axes,
show=show,
)
def _prepare_data_for_plot(self, data):
# handle unaggregated Welch
if "segment" in self._dims:
logger.info("Aggregating Welch estimates (median) before plotting...")
data = np.nanmedian(data, axis=self._dims.index("segment"))
# handle unaggregated multitaper (also handles complex -> power)
elif "taper" in self._dims:
logger.info("Aggregating multitaper estimates before plotting...")
data = _psd_from_mt(data, self.weights)
# handle complex data (should only be Welch remaining)
if np.iscomplexobj(data):
data = (data * data.conj()).real # Scaling may be slightly off
# handle epochs
if "epoch" in self._dims:
# XXX TODO FIXME decide how to properly aggregate across repeated
# measures (epochs) and non-repeated but correlated measures
# (channels) when calculating stddev or a CI. For across-channel
# aggregation, doi:10.1007/s10162-012-0321-8 used hotellings T**2
# with a correction factor that estimated data rank using monte
# carlo simulations; seems like we could use our own data rank
# estimation methods to similar effect. Their exact approach used
# complex spectra though, here we've already converted to power;
# not sure if that makes an important difference? Anyway that
# aggregation would need to happen in the _plot_psd function
# though, not here... for now we just average like we always did.
# only log message if averaging will actually have an effect
if data.shape[0] > 1:
logger.info("Averaging across epochs before plotting...")
# epoch axis should always be the first axis
data = data.mean(axis=0)
return data
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save spectrum data to disk (in HDF5 format).
Parameters
----------
fname : path-like
Path of file to save to.
%(overwrite)s
%(verbose)s
See Also
--------
mne.time_frequency.read_spectrum
"""
_, write_hdf5 = _import_h5io_funcs()
check_fname(fname, "spectrum", (".h5", ".hdf5"))
fname = _check_fname(fname, overwrite=overwrite, verbose=verbose)
out = self.__getstate__()
write_hdf5(fname, out, overwrite=overwrite, title="mnepython")
@verbose
def to_data_frame(
self, picks=None, index=None, copy=True, long_format=False, *, verbose=None
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
an additional column "freq" is added, unless ``index='freq'``
(in which case frequency values form the DataFrame's index).
Parameters
----------
%(picks_all)s
index : str | list of str | None
Kind of index to use for the DataFrame. If ``None``, a sequential
integer index (:class:`pandas.RangeIndex`) will be used. If a
:class:`str`, a :class:`pandas.Index` will be used (see Notes). If
a list of two or more string values, a :class:`pandas.MultiIndex`
will be used. Defaults to ``None``.
%(copy_df)s
%(long_format_df_spe)s
%(verbose)s
Returns
-------
%(df_return)s
Notes
-----
Valid values for ``index`` depend on whether the Spectrum was created
from continuous data (:class:`~mne.io.Raw`, :class:`~mne.Evoked`) or
discontinuous data (:class:`~mne.Epochs`). For continuous data, only
``None`` or ``'freq'`` is supported. For discontinuous data, additional
valid values are ``'epoch'`` and ``'condition'``, or a :class:`list`
comprising some of the valid string values (e.g.,
``['freq', 'epoch']``).
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# triage for Epoch-derived or unaggregated spectra
from_epo = _get_instance_type_string(self) == "Epochs"
unagg_welch = "segment" in self._dims
unagg_mt = "taper" in self._dims
# arg checking
valid_index_args = ["freq"]
if from_epo:
valid_index_args += ["epoch", "condition"]
index = _check_pandas_index_arguments(index, valid_index_args)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data = self.get_data(picks)
if copy:
data = data.copy()
# reshape
if unagg_mt:
data = np.moveaxis(data, self._dims.index("freq"), -2)
if from_epo:
n_epochs, n_picks, n_freqs = data.shape[:3]
else:
n_epochs, n_picks, n_freqs = (1,) + data.shape[:2]
n_segs = data.shape[-1] if unagg_mt or unagg_welch else 1
data = np.moveaxis(data, self._dims.index("channel"), -1)
# at this point, should be ([epoch], freq, [segment/taper], channel)
data = data.reshape(n_epochs * n_freqs * n_segs, n_picks)
# prepare extra columns / multiindex
mindex = list()
default_index = list()
if from_epo:
rev_event_id = {v: k for k, v in self.event_id.items()}
_conds = [rev_event_id[k] for k in self.events[:, 2]]
conditions = np.repeat(_conds, n_freqs * n_segs)
epoch_nums = np.repeat(self.selection, n_freqs * n_segs)
mindex.extend([("condition", conditions), ("epoch", epoch_nums)])
default_index.extend(["condition", "epoch"])
freqs = np.tile(np.repeat(self.freqs, n_segs), n_epochs)
mindex.append(("freq", freqs))
default_index.append("freq")
if unagg_mt or unagg_welch:
name = "taper" if unagg_mt else "segment"
seg_nums = np.tile(np.arange(n_segs), n_epochs * n_freqs)
mindex.append((name, seg_nums))
default_index.append(name)
# build DataFrame
df = _build_data_frame(
self, data, picks, long_format, mindex, index, default_index=default_index
)
return df
def units(self, latex=False):
"""Get the spectrum units for each channel type.
Parameters
----------
latex : bool
Whether to format the unit strings as LaTeX. Default is ``False``.
Returns
-------
units : dict
Mapping from channel type to a string representation of the units
for that channel type.
"""
units = _handle_default("si_units", None)
return {
ch_type: _format_units_psd(units[ch_type], power=True, latex=latex)
for ch_type in sorted(self.get_channel_types(unique=True))
}
@fill_doc
class Spectrum(BaseSpectrum):
"""Data object for spectral representations of continuous data.
.. warning:: The preferred means of creating Spectrum objects from
continuous or averaged data is via the instance methods
:meth:`mne.io.Raw.compute_psd` or
:meth:`mne.Evoked.compute_psd`. Direct class instantiation
is not supported.
Parameters
----------
inst : instance of Raw or Evoked
The data from which to compute the frequency spectrum.
%(method_psd_auto)s
``'auto'`` (default) uses Welch's method for continuous data
and multitaper for :class:`~mne.Evoked` data.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(reject_by_annotation_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : ``'welch'``| ``'multitaper'``
The method used to compute the spectrum.
nave : int | None
The number of trials averaged together when generating the spectrum. ``None``
indicates no averaging is known to have occurred.
weights : array | None
The weights for each taper. Only present if spectra computed with
``method='multitaper'`` and ``output='complex'``.
.. versionadded:: 1.8
See Also
--------
EpochsSpectrum
SpectrumArray
mne.io.Raw.compute_psd
mne.Epochs.compute_psd
mne.Evoked.compute_psd
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
reject_by_annotation,
*,
n_jobs,
verbose=None,
**method_kw,
):
from ..io import BaseRaw
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
# do the basic setup
super().__init__(
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# get just the data we want
if isinstance(self.inst, BaseRaw):
start, stop = np.where(self._time_mask)[0][[0, -1]]
rba = "NaN" if reject_by_annotation else None
data = self.inst.get_data(
self._picks, start, stop + 1, reject_by_annotation=rba
)
if np.any(np.isnan(data)) and method == "multitaper":
raise NotImplementedError(
'Cannot use method="multitaper" when reject_by_annotation=True. '
'Please use method="welch" instead.'
)
else: # Evoked
data = self.inst.data[self._picks][:, self._time_mask]
# set nave
self._nave = getattr(inst, "nave", None)
# compute the spectra
self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
# check for correct shape and bad values
self._check_values()
del self._shape # calculated from self._data henceforth
# save memory
del self.inst
def __getitem__(self, item):
"""Get Spectrum data.
Parameters
----------
item : int | slice | array-like
Indexing is similar to a :class:`NumPy array<numpy.ndarray>`; see
Notes.
Returns
-------
%(getitem_spectrum_return)s
Notes
-----
Integer-, list-, and slice-based indexing is possible:
- ``spectrum[0]`` gives all frequency bins in the first channel
- ``spectrum[:3]`` gives all frequency bins in the first 3 channels
- ``spectrum[[0, 2], 5]`` gives the value in the sixth frequency bin of
the first and third channels
- ``spectrum[(4, 7)]`` is the same as ``spectrum[4, 7]``.
.. note::
Unlike :class:`~mne.io.Raw` objects (which returns a tuple of the
requested data values and the corresponding times), accessing
:class:`~mne.time_frequency.Spectrum` values via subscript does
**not** return the corresponding frequency bin values. If you need
them, use ``spectrum.freqs[freq_indices]`` or
``spectrum.get_data(..., return_freqs=True)``.
"""
from ..io import BaseRaw
self._parse_get_set_params = partial(BaseRaw._parse_get_set_params, self)
return BaseRaw._getitem(self, item, return_times=False)
def _check_data_shape(data, info, freqs, dim_names, weights, is_epoched):
if data.ndim != len(dim_names):
raise ValueError(
f"Expected data to have {len(dim_names)} dimensions, got {data.ndim}."
)
allowed_dims = ["epoch", "channel", "freq", "segment", "taper"]
if not is_epoched:
allowed_dims.remove("epoch")
# TODO maybe we should be nice and allow plural versions of each dimname?
for dim in dim_names:
_check_option("dim_names", dim, allowed_dims)
if "channel" not in dim_names or "freq" not in dim_names:
raise ValueError("Both 'channel' and 'freq' must be present in `dim_names`.")
if list(dim_names).index("channel") != int(is_epoched):
raise ValueError(
f"'channel' must be the {'second' if is_epoched else 'first'} dimension of "
"the data."
)
want_n_chan = _pick_data_channels(info).size
got_n_chan = data.shape[list(dim_names).index("channel")]
if got_n_chan != want_n_chan:
raise ValueError(
f"The number of channels in `data` ({got_n_chan}) must match the number of "
f"good data channels in `info` ({want_n_chan})."
)
# given we limit max array size and ensure channel & freq dims present, only one of
# taper or segment can be present
if "taper" in dim_names:
if dim_names[-2] != "taper": # _psd_from_mt assumes this (called when plotting)
raise ValueError(
"'taper' must be the second to last dimension of the data."
)
# expect weights for each taper
actual = None if weights is None else weights.size
expected = data.shape[list(dim_names).index("taper")]
if actual != expected:
raise ValueError(
f"Expected size of `weights` to be {expected} to match 'n_tapers' in "
f"`data`, got {actual}."
)
elif "segment" in dim_names and dim_names[-1] != "segment":
raise ValueError("'segment' must be the last dimension of the data.")
# freq being in wrong position ruled out by above checks
want_n_freq = freqs.size
got_n_freq = data.shape[list(dim_names).index("freq")]
if got_n_freq != want_n_freq:
raise ValueError(
f"The number of frequencies in `data` ({got_n_freq}) must match the number "
f"of elements in `freqs` ({want_n_freq})."
)
@fill_doc
class SpectrumArray(Spectrum):
"""Data object for precomputed spectral data (in NumPy array format).
Parameters
----------
data : ndarray, shape (n_channels, [n_tapers], n_freqs, [n_segments])
The spectra for each channel.
%(info_not_none)s
%(freqs_tfr_array)s
dim_names : tuple of str
The name of the dimensions in the data, in the order they occur. Must contain
``'channel'`` and ``'freq'``; if data are unaggregated estimates, also include
either a ``'segment'`` (e.g., Welch-like algorithms) or ``'taper'`` (e.g.,
multitaper algorithms) dimension. If including ``'taper'``, you should also pass
a ``weights`` parameter.
.. versionadded:: 1.8
weights : ndarray | None
Weights for the ``'taper'`` dimension, if present (see ``dim_names``).
.. versionadded:: 1.8
%(verbose)s
See Also
--------
mne.create_info
mne.EvokedArray
mne.io.RawArray
EpochsSpectrumArray
Notes
-----
%(notes_spectrum_array)s
.. versionadded:: 1.6
"""
@verbose
def __init__(
self,
data,
info,
freqs,
dim_names=("channel", "freq"),
weights=None,
*,
verbose=None,
):
# (channel, [taper], freq, [segment])
_check_option("data.ndim", data.ndim, (2, 3)) # only allow one extra dimension
_check_data_shape(data, info, freqs, dim_names, weights, is_epoched=False)
self.__setstate__(
dict(
method="unknown",
data=data,
sfreq=info["sfreq"],
dims=dim_names,
freqs=freqs,
inst_type_str="Array",
data_type=(
"Fourier Coefficients"
if np.iscomplexobj(data)
else "Power Spectrum"
),
info=info,
weights=weights,
)
)
@fill_doc
class EpochsSpectrum(BaseSpectrum, GetEpochsMixin):
"""Data object for spectral representations of epoched data.
.. warning:: The preferred means of creating Spectrum objects from Epochs
is via the instance method :meth:`mne.Epochs.compute_psd`.
Direct class instantiation is not supported.
Parameters
----------
inst : instance of Epochs
The data from which to compute the frequency spectrum.
%(method_psd)s
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : ``'welch'``| ``'multitaper'``
The method used to compute the spectrum.
weights : array | None
The weights for each taper. Only present if spectra computed with
``method='multitaper'`` and ``output='complex'``.
.. versionadded:: 1.8
See Also
--------
EpochsSpectrumArray
Spectrum
mne.Epochs.compute_psd
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
*,
n_jobs,
verbose=None,
**method_kw,
):
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
# do the basic setup
super().__init__(
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# get just the data we want
data = self.inst._get_data(picks=self._picks, on_empty="raise")[
:, :, self._time_mask
]
# compute the spectra
self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
self._dims = ("epoch",) + self._dims
self._shape = (len(self.inst),) + self._shape
# check for correct shape and bad values
self._check_values()
del self._shape
# we need these for to_data_frame()
self.event_id = self.inst.event_id.copy()
self.events = self.inst.events.copy()
self.selection = self.inst.selection.copy()
# we need these for __getitem__()
self.drop_log = deepcopy(self.inst.drop_log)
self._metadata = self.inst.metadata
# save memory
del self.inst
def __getitem__(self, item):
"""Subselect epochs from an EpochsSpectrum.
Parameters
----------
item : int | slice | array-like | str
Access options are the same as for :class:`~mne.Epochs` objects,
see the docstring of :meth:`mne.Epochs.__getitem__` for
explanation.
Returns
-------
%(getitem_epochspectrum_return)s
"""
return super().__getitem__(item)
def __getstate__(self):
"""Prepare object for serialization."""
out = super().__getstate__()
out.update(
metadata=self._metadata,
drop_log=self.drop_log,
event_id=self.event_id,
events=self.events,
selection=self.selection,
)
return out
def __setstate__(self, state):
"""Unpack from serialized format."""
super().__setstate__(state)
self._metadata = state["metadata"]
self.drop_log = state["drop_log"]
self.event_id = state["event_id"]
self.events = state["events"]
self.selection = state["selection"]
def average(self, method="mean"):
"""Average the spectra across epochs.
Parameters
----------
method : 'mean' | 'median' | callable
How to aggregate spectra across epochs. If callable, must take a
:class:`NumPy array<numpy.ndarray>` of shape
``(n_epochs, n_channels, n_freqs)`` and return an array of shape
``(n_channels, n_freqs)``. Default is ``'mean'``.
Returns
-------
spectrum : instance of Spectrum
The aggregated spectrum object.
"""
_validate_type(method, ("str", "callable"), "method")
method = _make_combine_callable(
method, axis=0, valid=("mean", "median"), keepdims=False
)
if not callable(method):
raise ValueError(
'"method" must be a valid string or callable, '
f"got a {type(method).__name__} ({method})."
)
# averaging unaggregated spectral estimates are not supported
if "segment" in self._dims:
raise NotImplementedError(
"Averaging individual Welch segments across epochs is not "
"supported. Consider averaging the signals before computing "
"the Welch spectrum estimates."
)
if "taper" in self._dims:
raise NotImplementedError(
"Averaging multitaper tapers across epochs is not supported. Consider "
"averaging the signals before computing the complex spectrum."
)
# serialize the object and update data, dims, and data type
state = super().__getstate__()
state["nave"] = state["data"].shape[0]
state["data"] = method(state["data"])
state["dims"] = state["dims"][1:]
state["data_type"] = f'Averaged {state["data_type"]}'
defaults = dict(
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=None,
remove_dc=None,
reject_by_annotation=None,
n_jobs=None,
verbose=None,
)
return Spectrum(state, **defaults)
@fill_doc
class EpochsSpectrumArray(EpochsSpectrum):
"""Data object for precomputed epoched spectral data (in NumPy array format).
Parameters
----------
data : ndarray, shape (n_epochs, n_channels, [n_tapers], n_freqs, [n_segments])
The spectra for each channel in each epoch.
%(info_not_none)s
%(freqs_tfr_array)s
%(events_epochs)s
%(event_id)s
dim_names : tuple of str
The name of the dimensions in the data, in the order they occur. Must contain
``'channel'`` and ``'freq'``; if data are unaggregated estimates, also include
either a ``'segment'`` (e.g., Welch-like algorithms) or ``'taper'`` (e.g.,
multitaper algorithms) dimension. If including ``'taper'``, you should also pass
a ``weights`` parameter.
.. versionadded:: 1.8
weights : ndarray | None
Weights for the ``'taper'`` dimension, if present (see ``dim_names``).
.. versionadded:: 1.8
%(verbose)s
See Also
--------
mne.create_info
mne.EpochsArray
SpectrumArray
Notes
-----
%(notes_spectrum_array)s
.. versionadded:: 1.6
"""
@verbose
def __init__(
self,
data,
info,
freqs,
events=None,
event_id=None,
dim_names=("epoch", "channel", "freq"),
weights=None,
*,
verbose=None,
):
# (epoch, channel, [taper], freq, [segment])
_check_option("data.ndim", data.ndim, (3, 4)) # only allow one extra dimension
if list(dim_names).index("epoch") != 0:
raise ValueError("'epoch' must be the first dimension of `data`.")
if events is not None and data.shape[0] != events.shape[0]:
raise ValueError(
f"The first dimension of `data` ({data.shape[0]}) must match the first "
f"dimension of `events` ({events.shape[0]})."
)
_check_data_shape(data, info, freqs, dim_names, weights, is_epoched=True)
self.__setstate__(
dict(
method="unknown",
data=data,
sfreq=info["sfreq"],
dims=dim_names,
freqs=freqs,
inst_type_str="Array",
data_type=(
"Fourier Coefficients"
if np.iscomplexobj(data)
else "Power Spectrum"
),
info=info,
events=events,
event_id=event_id,
metadata=None,
selection=np.arange(data.shape[0]),
drop_log=tuple(tuple() for _ in range(data.shape[0])),
weights=weights,
)
)
def read_spectrum(fname):
"""Load a :class:`mne.time_frequency.Spectrum` object from disk.
Parameters
----------
fname : path-like
Path to a spectrum file in HDF5 format, which should end with ``.h5`` or
``.hdf5``.
Returns
-------
spectrum : instance of Spectrum
The loaded Spectrum object.
See Also
--------
mne.time_frequency.Spectrum.save
"""
read_hdf5, _ = _import_h5io_funcs()
_validate_type(fname, "path-like", "fname")
fname = _check_fname(fname=fname, overwrite="read", must_exist=False)
# read it in
hdf5_dict = read_hdf5(fname, title="mnepython")
defaults = dict(
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=None,
remove_dc=None,
reject_by_annotation=None,
n_jobs=None,
verbose=None,
)
Klass = EpochsSpectrum if hdf5_dict["inst_type_str"] == "Epochs" else Spectrum
return Klass(hdf5_dict, **defaults)
def _check_ci(ci):
ci = "sd" if ci == "std" else ci # be forgiving
if _is_numeric(ci):
if not (0 < ci <= 100):
raise ValueError(f"ci must satisfy 0 < ci <= 100, got {ci}")
ci /= 100.0
else:
_check_option("ci", ci, [None, "sd", "range"])
return ci
def _compute_n_welch_segments(n_times, method_kw):
# get default values from psd_array_welch
_defaults = dict()
for param in ("n_fft", "n_per_seg", "n_overlap"):
_defaults[param] = signature(psd_array_welch).parameters[param].default
# override defaults with user-specified values
for key, val in _defaults.items():
_defaults.update({key: method_kw.get(key, val)})
# sanity check values / replace `None`s with real numbers
n_fft, n_per_seg, n_overlap = _check_nfft(n_times, **_defaults)
# compute expected number of segments
step = n_per_seg - n_overlap
return (n_times - n_overlap) // step
def _validate_method(method, instance_type):
"""Convert 'auto' to a real method name, and validate."""
if method == "auto":
method = "welch" if instance_type.startswith("Raw") else "multitaper"
_check_option("method", method, ("welch", "multitaper"))
return method