373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Authors: The MNE-Python contributors.
 | 
						|
# License: BSD-3-Clause
 | 
						|
# Copyright the MNE-Python contributors.
 | 
						|
 | 
						|
import os.path as op
 | 
						|
import time
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from scipy.io import loadmat
 | 
						|
 | 
						|
from ..._fiff.meas_info import create_info
 | 
						|
from ...channels import make_standard_montage
 | 
						|
from ...epochs import EpochsArray
 | 
						|
from ...utils import _check_pandas_installed, logger, verbose
 | 
						|
from ..utils import _do_path_update, _downloader_params, _get_path, _log_time_size
 | 
						|
 | 
						|
# root url for LIMO files
 | 
						|
root_url = "https://files.de-1.osf.io/v1/resources/52rea/providers/osfstorage/"
 | 
						|
 | 
						|
 | 
						|
@verbose
 | 
						|
def data_path(
 | 
						|
    subject, path=None, force_update=False, update_path=None, *, verbose=None
 | 
						|
):
 | 
						|
    """Get path to local copy of LIMO dataset URL.
 | 
						|
 | 
						|
    This is a low-level function useful for getting a local copy of the
 | 
						|
    remote LIMO dataset :footcite:`Rousselet2016`. The complete dataset is
 | 
						|
    available at datashare.is.ed.ac.uk/.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    subject : int
 | 
						|
        Subject to download. Must be of :class:`ìnt` in the range from 1
 | 
						|
        to 18 (inclusive).
 | 
						|
    path : None | str
 | 
						|
        Location of where to look for the LIMO data storing directory.
 | 
						|
        If None, the environment variable or config parameter
 | 
						|
        ``MNE_DATASETS_LIMO_PATH`` is used. If it doesn't exist, the
 | 
						|
        "~/mne_data" directory is used. If the LIMO dataset
 | 
						|
        is not found under the given path, the data
 | 
						|
        will be automatically downloaded to the specified folder.
 | 
						|
    force_update : bool
 | 
						|
        Force update of the dataset even if a local copy exists.
 | 
						|
    update_path : bool | None
 | 
						|
        If True, set the MNE_DATASETS_LIMO_PATH in mne-python
 | 
						|
        config to the given path. If None, the user is prompted.
 | 
						|
    %(verbose)s
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    path : str
 | 
						|
        Local path to the given data file.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    For example, one could do:
 | 
						|
 | 
						|
        >>> from mne.datasets import limo
 | 
						|
        >>> limo.data_path(subject=1, path=os.getenv('HOME') + '/datasets') # doctest:+SKIP
 | 
						|
 | 
						|
    This would download the LIMO data file to the 'datasets' folder,
 | 
						|
    and prompt the user to save the 'datasets' path to the mne-python config,
 | 
						|
    if it isn't there already.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. footbibliography::
 | 
						|
    """  # noqa: E501
 | 
						|
    import pooch
 | 
						|
 | 
						|
    t0 = time.time()
 | 
						|
 | 
						|
    downloader = pooch.HTTPDownloader(**_downloader_params())
 | 
						|
 | 
						|
    # local storage patch
 | 
						|
    config_key = "MNE_DATASETS_LIMO_PATH"
 | 
						|
    name = "LIMO"
 | 
						|
    subj = f"S{subject}"
 | 
						|
    path = _get_path(path, config_key, name)
 | 
						|
    base_path = op.join(path, "MNE-limo-data")
 | 
						|
    subject_path = op.join(base_path, subj)
 | 
						|
    # the remote URLs are in the form of UUIDs:
 | 
						|
    urls = dict(
 | 
						|
        S18={
 | 
						|
            "Yr.mat": "5cf839833a4d9500178a6ff8",
 | 
						|
            "LIMO.mat": "5cf83907e650a2001ad592e4",
 | 
						|
        },
 | 
						|
        S17={
 | 
						|
            "Yr.mat": "5cf838e83a4d9500168aeb76",
 | 
						|
            "LIMO.mat": "5cf83867a542b80019c87602",
 | 
						|
        },
 | 
						|
        S16={
 | 
						|
            "Yr.mat": "5cf83857e650a20019d5778f",
 | 
						|
            "LIMO.mat": "5cf837dc3a4d9500188a64fe",
 | 
						|
        },
 | 
						|
        S15={
 | 
						|
            "Yr.mat": "5cf837cce650a2001ad591e8",
 | 
						|
            "LIMO.mat": "5cf83758a542b8001ac7d11d",
 | 
						|
        },
 | 
						|
        S14={
 | 
						|
            "Yr.mat": "5cf837493a4d9500198a938f",
 | 
						|
            "LIMO.mat": "5cf836e4a542b8001bc7cc53",
 | 
						|
        },
 | 
						|
        S13={
 | 
						|
            "Yr.mat": "5cf836d23a4d9500178a6df7",
 | 
						|
            "LIMO.mat": "5cf836543a4d9500168ae7cb",
 | 
						|
        },
 | 
						|
        S12={
 | 
						|
            "Yr.mat": "5cf83643d4c7d700193e5954",
 | 
						|
            "LIMO.mat": "5cf835193a4d9500178a6c92",
 | 
						|
        },
 | 
						|
        S11={
 | 
						|
            "Yr.mat": "5cf8356ea542b8001cc81517",
 | 
						|
            "LIMO.mat": "5cf834f7d4c7d700163daab8",
 | 
						|
        },
 | 
						|
        S10={
 | 
						|
            "Yr.mat": "5cf833b0e650a20019d57454",
 | 
						|
            "LIMO.mat": "5cf83204e650a20018d59eb2",
 | 
						|
        },
 | 
						|
        S9={
 | 
						|
            "Yr.mat": "5cf83201a542b8001cc811cf",
 | 
						|
            "LIMO.mat": "5cf8316c3a4d9500168ae13b",
 | 
						|
        },
 | 
						|
        S8={
 | 
						|
            "Yr.mat": "5cf8326ce650a20017d60373",
 | 
						|
            "LIMO.mat": "5cf8316d3a4d9500198a8dc5",
 | 
						|
        },
 | 
						|
        S7={
 | 
						|
            "Yr.mat": "5cf834a03a4d9500168ae59b",
 | 
						|
            "LIMO.mat": "5cf83069e650a20017d600d7",
 | 
						|
        },
 | 
						|
        S6={
 | 
						|
            "Yr.mat": "5cf830e6a542b80019c86a70",
 | 
						|
            "LIMO.mat": "5cf83057a542b80019c869ca",
 | 
						|
        },
 | 
						|
        S5={
 | 
						|
            "Yr.mat": "5cf8115be650a20018d58041",
 | 
						|
            "LIMO.mat": "5cf80c0bd4c7d700193e213c",
 | 
						|
        },
 | 
						|
        S4={
 | 
						|
            "Yr.mat": "5cf810c9a542b80019c8450a",
 | 
						|
            "LIMO.mat": "5cf80bf83a4d9500198a6eb4",
 | 
						|
        },
 | 
						|
        S3={
 | 
						|
            "Yr.mat": "5cf80c55d4c7d700163d8f52",
 | 
						|
            "LIMO.mat": "5cf80bdea542b80019c83cab",
 | 
						|
        },
 | 
						|
        S2={
 | 
						|
            "Yr.mat": "5cde827123fec40019e01300",
 | 
						|
            "LIMO.mat": "5cde82682a50c4001677c259",
 | 
						|
        },
 | 
						|
        S1={
 | 
						|
            "Yr.mat": "5d6d3071536cf5001a8b0c78",
 | 
						|
            "LIMO.mat": "5d6d305f6f41fc001a3151d8",
 | 
						|
        },
 | 
						|
    )
 | 
						|
    # these can't be in the registry file (mne/data/dataset_checksums.txt)
 | 
						|
    # because of filename duplication
 | 
						|
    hashes = dict(
 | 
						|
        S18={
 | 
						|
            "Yr.mat": "md5:87f883d442737971a80fc0a35d057e51",
 | 
						|
            "LIMO.mat": "md5:8b4879646f65d7876fa4adf2e40162c5",
 | 
						|
        },
 | 
						|
        S17={
 | 
						|
            "Yr.mat": "md5:7b667ec9eefd7a9996f61ae270e295ee",
 | 
						|
            "LIMO.mat": "md5:22eaca4e6fad54431fd61b307fc426b8",
 | 
						|
        },
 | 
						|
        S16={
 | 
						|
            "Yr.mat": "md5:c877afdb4897426421577e863a45921a",
 | 
						|
            "LIMO.mat": "md5:86672d7afbea1e8c39305bc3f852c8c2",
 | 
						|
        },
 | 
						|
        S15={
 | 
						|
            "Yr.mat": "md5:eea9e0140af598fefc08c886a6f05de5",
 | 
						|
            "LIMO.mat": "md5:aed5cb71ddbfd27c6a3ac7d3e613d07f",
 | 
						|
        },
 | 
						|
        S14={
 | 
						|
            "Yr.mat": "md5:8bd842cfd8588bd5d32e72fdbe70b66e",
 | 
						|
            "LIMO.mat": "md5:1e07d1f36f2eefad435a77530daf2680",
 | 
						|
        },
 | 
						|
        S13={
 | 
						|
            "Yr.mat": "md5:d7925d2af7288b8a5186dfb5dbb63d34",
 | 
						|
            "LIMO.mat": "md5:ba891015d2f9e447955fffa9833404ca",
 | 
						|
        },
 | 
						|
        S12={
 | 
						|
            "Yr.mat": "md5:0e1d05beaa4bf2726e0d0671b78fe41e",
 | 
						|
            "LIMO.mat": "md5:423fd479d71097995b6614ecb11df9ad",
 | 
						|
        },
 | 
						|
        S11={
 | 
						|
            "Yr.mat": "md5:1b0016fb9832e43b71f79c1992fcbbb1",
 | 
						|
            "LIMO.mat": "md5:1a281348c2a41ee899f42731d30cda70",
 | 
						|
        },
 | 
						|
        S10={
 | 
						|
            "Yr.mat": "md5:13c66f60e241b9a9cc576eaf1b55a417",
 | 
						|
            "LIMO.mat": "md5:3c4b41e221eb352a21bbef1a7e006f06",
 | 
						|
        },
 | 
						|
        S9={
 | 
						|
            "Yr.mat": "md5:3ae1d9c3a1d9325deea2f2dddd1ab507",
 | 
						|
            "LIMO.mat": "md5:5e204e2a4bcfe4f535b4b1af469b37f7",
 | 
						|
        },
 | 
						|
        S8={
 | 
						|
            "Yr.mat": "md5:7e9adbca4e03d8d7ce8ea07ccecdc8fd",
 | 
						|
            "LIMO.mat": "md5:88313c21d34428863590e586b2bc3408",
 | 
						|
        },
 | 
						|
        S7={
 | 
						|
            "Yr.mat": "md5:6b5290a6725ecebf1022d5d2789b186d",
 | 
						|
            "LIMO.mat": "md5:8c769219ebc14ce3f595063e84bfc0a9",
 | 
						|
        },
 | 
						|
        S6={
 | 
						|
            "Yr.mat": "md5:420c858a8340bf7c28910b7b0425dc5d",
 | 
						|
            "LIMO.mat": "md5:9cf4e1a405366d6bd0cc6d996e32fd63",
 | 
						|
        },
 | 
						|
        S5={
 | 
						|
            "Yr.mat": "md5:946436cfb474c8debae56ffb1685ecf3",
 | 
						|
            "LIMO.mat": "md5:241fac95d3a79d2cea081391fb7078bd",
 | 
						|
        },
 | 
						|
        S4={
 | 
						|
            "Yr.mat": "md5:c8216af78ac87b739e86e57b345cafdd",
 | 
						|
            "LIMO.mat": "md5:8e10ef36c2e075edc2f787581ba33459",
 | 
						|
        },
 | 
						|
        S3={
 | 
						|
            "Yr.mat": "md5:ff02e885b65b7b807146f259a30b1b5e",
 | 
						|
            "LIMO.mat": "md5:59b5fb3a9749003133608b5871309e2c",
 | 
						|
        },
 | 
						|
        S2={
 | 
						|
            "Yr.mat": "md5:a4329022e57fd07ceceb7d1735fd2718",
 | 
						|
            "LIMO.mat": "md5:98b284b567f2dd395c936366e404f2c6",
 | 
						|
        },
 | 
						|
        S1={
 | 
						|
            "Yr.mat": "md5:076c0ae78fb71d43409c1877707df30e",
 | 
						|
            "LIMO.mat": "md5:136c8cf89f8f111a11f531bd9fa6ae69",
 | 
						|
        },
 | 
						|
    )
 | 
						|
    # create the download manager
 | 
						|
    fetcher = pooch.create(
 | 
						|
        path=subject_path,
 | 
						|
        base_url="",
 | 
						|
        version=None,  # Data versioning is decoupled from MNE-Python version.
 | 
						|
        registry=hashes[subj],
 | 
						|
        urls={key: f"{root_url}{uuid}" for key, uuid in urls[subj].items()},
 | 
						|
        retry_if_failed=2,  # 2 retries = 3 total attempts
 | 
						|
    )
 | 
						|
    # use our logger level for pooch's logger too
 | 
						|
    pooch.get_logger().setLevel(logger.getEffectiveLevel())
 | 
						|
    # fetch the data
 | 
						|
    sz = 0
 | 
						|
    for fname in ("LIMO.mat", "Yr.mat"):
 | 
						|
        destination = Path(subject_path, fname)
 | 
						|
        if destination.exists():
 | 
						|
            if force_update:
 | 
						|
                destination.unlink()
 | 
						|
            else:
 | 
						|
                continue
 | 
						|
        if sz == 0:  # log once
 | 
						|
            logger.info("Downloading LIMO data")
 | 
						|
        # fetch the remote file (if local file missing or has hash mismatch)
 | 
						|
        fetcher.fetch(fname=fname, downloader=downloader)
 | 
						|
        sz += destination.stat().st_size
 | 
						|
    # update path in config if desired
 | 
						|
    _do_path_update(path, update_path, config_key, name)
 | 
						|
    if sz > 0:
 | 
						|
        _log_time_size(t0, sz)
 | 
						|
    return base_path
 | 
						|
 | 
						|
 | 
						|
@verbose
 | 
						|
def load_data(subject, path=None, force_update=False, update_path=None, verbose=None):
 | 
						|
    """Fetch subjects epochs data for the LIMO data set.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    subject : int
 | 
						|
        Subject to use. Must be of class ìnt in the range from 1 to 18.
 | 
						|
    path : str
 | 
						|
        Location of where to look for the LIMO data.
 | 
						|
        If None, the environment variable or config parameter
 | 
						|
        ``MNE_DATASETS_LIMO_PATH`` is used. If it doesn't exist, the
 | 
						|
        "~/mne_data" directory is used.
 | 
						|
    force_update : bool
 | 
						|
        Force update of the dataset even if a local copy exists.
 | 
						|
    update_path : bool | None
 | 
						|
        If True, set the MNE_DATASETS_LIMO_PATH in mne-python
 | 
						|
        config to the given path. If None, the user is prompted.
 | 
						|
    %(verbose)s
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    epochs : instance of Epochs
 | 
						|
        The epochs.
 | 
						|
    """  # noqa: E501
 | 
						|
    pd = _check_pandas_installed()
 | 
						|
    # subject in question
 | 
						|
    if isinstance(subject, int) and 1 <= subject <= 18:
 | 
						|
        subj = f"S{subject}"
 | 
						|
    else:
 | 
						|
        raise ValueError("subject must be an int in the range from 1 to 18")
 | 
						|
 | 
						|
    # set limo path, download and decompress files if not found
 | 
						|
    limo_path = data_path(subject, path, force_update, update_path)
 | 
						|
 | 
						|
    # -- 1) import .mat files
 | 
						|
    # epochs info
 | 
						|
    fname_info = op.join(limo_path, subj, "LIMO.mat")
 | 
						|
    data_info = loadmat(fname_info)
 | 
						|
    # number of epochs per condition
 | 
						|
    design = data_info["LIMO"]["design"][0][0]["X"][0][0]
 | 
						|
    data_info = data_info["LIMO"]["data"][0][0][0][0]
 | 
						|
    # epochs data
 | 
						|
    fname_eeg = op.join(limo_path, subj, "Yr.mat")
 | 
						|
    data = loadmat(fname_eeg)
 | 
						|
 | 
						|
    # -- 2) get epochs information from structure
 | 
						|
    # sampling rate
 | 
						|
    sfreq = data_info["sampling_rate"][0][0]
 | 
						|
    # tmin and tmax
 | 
						|
    tmin = data_info["start"][0][0]
 | 
						|
    # create events matrix
 | 
						|
    sample = np.arange(len(design))
 | 
						|
    prev_id = np.zeros(len(design))
 | 
						|
    ev_id = design[:, 1]
 | 
						|
    events = np.array([sample, prev_id, ev_id]).astype(int).T
 | 
						|
    # event ids, such that Face B == 1
 | 
						|
    event_id = {"Face/A": 0, "Face/B": 1}
 | 
						|
 | 
						|
    # -- 3) extract channel labels from LIMO structure
 | 
						|
    # get individual labels
 | 
						|
    labels = data_info["chanlocs"]["labels"]
 | 
						|
    labels = [label for label, *_ in labels[0]]
 | 
						|
    # get montage
 | 
						|
    montage = make_standard_montage("biosemi128")
 | 
						|
    # add external electrodes (e.g., eogs)
 | 
						|
    ch_names = montage.ch_names + ["EXG1", "EXG2", "EXG3", "EXG4"]
 | 
						|
    # match individual labels to labels in montage
 | 
						|
    found_inds = [ind for ind, name in enumerate(ch_names) if name in labels]
 | 
						|
    missing_chans = [name for name in ch_names if name not in labels]
 | 
						|
    assert labels == [ch_names[ind] for ind in found_inds]
 | 
						|
 | 
						|
    # -- 4) extract data from subjects Yr structure
 | 
						|
    # data is stored as channels x time points x epochs
 | 
						|
    # data['Yr'].shape  # <-- see here
 | 
						|
    # transpose to epochs x channels time points
 | 
						|
    data = np.transpose(data["Yr"], (2, 0, 1))
 | 
						|
    # initialize data in expected order
 | 
						|
    temp_data = np.empty((data.shape[0], len(ch_names), data.shape[2]))
 | 
						|
    # copy over the non-missing data
 | 
						|
    for source, target in enumerate(found_inds):
 | 
						|
        # avoid copy when fancy indexing
 | 
						|
        temp_data[:, target, :] = data[:, source, :]
 | 
						|
    # data to V (to match MNE's format)
 | 
						|
    data = temp_data / 1e6
 | 
						|
    # create list containing channel types
 | 
						|
    types = ["eog" if ch.startswith("EXG") else "eeg" for ch in ch_names]
 | 
						|
 | 
						|
    # -- 5) Create custom info for mne epochs structure
 | 
						|
    # create info
 | 
						|
    info = create_info(ch_names, sfreq, types).set_montage(montage)
 | 
						|
    # get faces and noise variables from design matrix
 | 
						|
    event_list = list(events[:, 2])
 | 
						|
    faces = ["B" if event else "A" for event in event_list]
 | 
						|
    noise = list(design[:, 2])
 | 
						|
    # create epochs metadata
 | 
						|
    metadata = {"face": faces, "phase-coherence": noise}
 | 
						|
    metadata = pd.DataFrame(metadata)
 | 
						|
 | 
						|
    # -- 6) Create custom epochs array
 | 
						|
    epochs = EpochsArray(
 | 
						|
        data, info, events, tmin, event_id, metadata=metadata, verbose=False
 | 
						|
    )
 | 
						|
    epochs.info["bads"] = missing_chans  # missing channels are marked as bad.
 | 
						|
 | 
						|
    return epochs
 |