1529 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1529 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
""" Test cases for time series specific (freq conversion, etc) """
 | 
						|
from datetime import (
 | 
						|
    date,
 | 
						|
    datetime,
 | 
						|
    time,
 | 
						|
    timedelta,
 | 
						|
)
 | 
						|
import pickle
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas._libs.tslibs import (
 | 
						|
    BaseOffset,
 | 
						|
    to_offset,
 | 
						|
)
 | 
						|
import pandas.util._test_decorators as td
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    NaT,
 | 
						|
    Series,
 | 
						|
    concat,
 | 
						|
    isna,
 | 
						|
    to_datetime,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core.indexes.datetimes import (
 | 
						|
    DatetimeIndex,
 | 
						|
    bdate_range,
 | 
						|
    date_range,
 | 
						|
)
 | 
						|
from pandas.core.indexes.period import (
 | 
						|
    Period,
 | 
						|
    PeriodIndex,
 | 
						|
    period_range,
 | 
						|
)
 | 
						|
from pandas.core.indexes.timedeltas import timedelta_range
 | 
						|
from pandas.tests.plotting.common import TestPlotBase
 | 
						|
 | 
						|
from pandas.tseries.offsets import WeekOfMonth
 | 
						|
 | 
						|
pytestmark = pytest.mark.slow
 | 
						|
 | 
						|
 | 
						|
@td.skip_if_no_mpl
 | 
						|
class TestTSPlot(TestPlotBase):
 | 
						|
    def setup_method(self, method):
 | 
						|
        TestPlotBase.setup_method(self, method)
 | 
						|
 | 
						|
        self.freq = ["S", "T", "H", "D", "W", "M", "Q", "A"]
 | 
						|
        idx = [period_range("12/31/1999", freq=x, periods=100) for x in self.freq]
 | 
						|
        self.period_ser = [Series(np.random.randn(len(x)), x) for x in idx]
 | 
						|
        self.period_df = [
 | 
						|
            DataFrame(np.random.randn(len(x), 3), index=x, columns=["A", "B", "C"])
 | 
						|
            for x in idx
 | 
						|
        ]
 | 
						|
 | 
						|
        freq = ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
 | 
						|
        idx = [date_range("12/31/1999", freq=x, periods=100) for x in freq]
 | 
						|
        self.datetime_ser = [Series(np.random.randn(len(x)), x) for x in idx]
 | 
						|
        self.datetime_df = [
 | 
						|
            DataFrame(np.random.randn(len(x), 3), index=x, columns=["A", "B", "C"])
 | 
						|
            for x in idx
 | 
						|
        ]
 | 
						|
 | 
						|
    def teardown_method(self, method):
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_ts_plot_with_tz(self, tz_aware_fixture):
 | 
						|
        # GH2877, GH17173, GH31205, GH31580
 | 
						|
        tz = tz_aware_fixture
 | 
						|
        index = date_range("1/1/2011", periods=2, freq="H", tz=tz)
 | 
						|
        ts = Series([188.5, 328.25], index=index)
 | 
						|
        with tm.assert_produces_warning(None):
 | 
						|
            _check_plot_works(ts.plot)
 | 
						|
            ax = ts.plot()
 | 
						|
            xdata = list(ax.get_lines())[0].get_xdata()
 | 
						|
            # Check first and last points' labels are correct
 | 
						|
            assert (xdata[0].hour, xdata[0].minute) == (0, 0)
 | 
						|
            assert (xdata[-1].hour, xdata[-1].minute) == (1, 0)
 | 
						|
 | 
						|
    def test_fontsize_set_correctly(self):
 | 
						|
        # For issue #8765
 | 
						|
        df = DataFrame(np.random.randn(10, 9), index=range(10))
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(fontsize=2, ax=ax)
 | 
						|
        for label in ax.get_xticklabels() + ax.get_yticklabels():
 | 
						|
            assert label.get_fontsize() == 2
 | 
						|
 | 
						|
    def test_frame_inferred(self):
 | 
						|
        # inferred freq
 | 
						|
        idx = date_range("1/1/1987", freq="MS", periods=100)
 | 
						|
        idx = DatetimeIndex(idx.values, freq=None)
 | 
						|
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 3), index=idx)
 | 
						|
        _check_plot_works(df.plot)
 | 
						|
 | 
						|
        # axes freq
 | 
						|
        idx = idx[0:40].union(idx[45:99])
 | 
						|
        df2 = DataFrame(np.random.randn(len(idx), 3), index=idx)
 | 
						|
        _check_plot_works(df2.plot)
 | 
						|
 | 
						|
        # N > 1
 | 
						|
        idx = date_range("2008-1-1 00:15:00", freq="15T", periods=10)
 | 
						|
        idx = DatetimeIndex(idx.values, freq=None)
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 3), index=idx)
 | 
						|
        _check_plot_works(df.plot)
 | 
						|
 | 
						|
    def test_is_error_nozeroindex(self):
 | 
						|
        # GH11858
 | 
						|
        i = np.array([1, 2, 3])
 | 
						|
        a = DataFrame(i, index=i)
 | 
						|
        _check_plot_works(a.plot, xerr=a)
 | 
						|
        _check_plot_works(a.plot, yerr=a)
 | 
						|
 | 
						|
    def test_nonnumeric_exclude(self):
 | 
						|
        idx = date_range("1/1/1987", freq="A", periods=3)
 | 
						|
        df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx)
 | 
						|
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(ax=ax)  # it works
 | 
						|
        assert len(ax.get_lines()) == 1  # B was plotted
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        msg = "no numeric data to plot"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df["A"].plot()
 | 
						|
 | 
						|
    def test_tsplot(self):
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ts = tm.makeTimeSeries()
 | 
						|
 | 
						|
        for s in self.period_ser:
 | 
						|
            _check_plot_works(s.plot, ax=ax)
 | 
						|
 | 
						|
        for s in self.datetime_ser:
 | 
						|
            _check_plot_works(s.plot, ax=ax)
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ts.plot(style="k", ax=ax)
 | 
						|
        color = (0.0, 0.0, 0.0, 1)
 | 
						|
        assert color == ax.get_lines()[0].get_color()
 | 
						|
 | 
						|
    def test_both_style_and_color(self):
 | 
						|
 | 
						|
        ts = tm.makeTimeSeries()
 | 
						|
        msg = (
 | 
						|
            "Cannot pass 'style' string with a color symbol and 'color' "
 | 
						|
            "keyword argument. Please use one or the other or pass 'style' "
 | 
						|
            "without a color symbol"
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            ts.plot(style="b-", color="#000099")
 | 
						|
 | 
						|
        s = ts.reset_index(drop=True)
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            s.plot(style="b-", color="#000099")
 | 
						|
 | 
						|
    def test_high_freq(self):
 | 
						|
        freaks = ["ms", "us"]
 | 
						|
        for freq in freaks:
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            rng = date_range("1/1/2012", periods=100, freq=freq)
 | 
						|
            ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
            _check_plot_works(ser.plot, ax=ax)
 | 
						|
 | 
						|
    def test_get_datevalue(self):
 | 
						|
        from pandas.plotting._matplotlib.converter import get_datevalue
 | 
						|
 | 
						|
        assert get_datevalue(None, "D") is None
 | 
						|
        assert get_datevalue(1987, "A") == 1987
 | 
						|
        assert get_datevalue(Period(1987, "A"), "M") == Period("1987-12", "M").ordinal
 | 
						|
        assert get_datevalue("1/1/1987", "D") == Period("1987-1-1", "D").ordinal
 | 
						|
 | 
						|
    def test_ts_plot_format_coord(self):
 | 
						|
        def check_format_of_first_point(ax, expected_string):
 | 
						|
            first_line = ax.get_lines()[0]
 | 
						|
            first_x = first_line.get_xdata()[0].ordinal
 | 
						|
            first_y = first_line.get_ydata()[0]
 | 
						|
            assert expected_string == ax.format_coord(first_x, first_y)
 | 
						|
 | 
						|
        annual = Series(1, index=date_range("2014-01-01", periods=3, freq="A-DEC"))
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        annual.plot(ax=ax)
 | 
						|
        check_format_of_first_point(ax, "t = 2014  y = 1.000000")
 | 
						|
 | 
						|
        # note this is added to the annual plot already in existence, and
 | 
						|
        # changes its freq field
 | 
						|
        daily = Series(1, index=date_range("2014-01-01", periods=3, freq="D"))
 | 
						|
        daily.plot(ax=ax)
 | 
						|
        check_format_of_first_point(ax, "t = 2014-01-01  y = 1.000000")
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_line_plot_period_series(self):
 | 
						|
        for s in self.period_ser:
 | 
						|
            _check_plot_works(s.plot, s.index.freq)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
 | 
						|
    )
 | 
						|
    def test_line_plot_period_mlt_series(self, frqncy):
 | 
						|
        # test period index line plot for series with multiples (`mlt`) of the
 | 
						|
        # frequency (`frqncy`) rule code. tests resolution of issue #14763
 | 
						|
        idx = period_range("12/31/1999", freq=frqncy, periods=100)
 | 
						|
        s = Series(np.random.randn(len(idx)), idx)
 | 
						|
        _check_plot_works(s.plot, s.index.freq.rule_code)
 | 
						|
 | 
						|
    def test_line_plot_datetime_series(self):
 | 
						|
        for s in self.datetime_ser:
 | 
						|
            _check_plot_works(s.plot, s.index.freq.rule_code)
 | 
						|
 | 
						|
    def test_line_plot_period_frame(self):
 | 
						|
        for df in self.period_df:
 | 
						|
            _check_plot_works(df.plot, df.index.freq)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
 | 
						|
    )
 | 
						|
    def test_line_plot_period_mlt_frame(self, frqncy):
 | 
						|
        # test period index line plot for DataFrames with multiples (`mlt`)
 | 
						|
        # of the frequency (`frqncy`) rule code. tests resolution of issue
 | 
						|
        # #14763
 | 
						|
        idx = period_range("12/31/1999", freq=frqncy, periods=100)
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
 | 
						|
        freq = df.index.asfreq(df.index.freq.rule_code).freq
 | 
						|
        _check_plot_works(df.plot, freq)
 | 
						|
 | 
						|
    def test_line_plot_datetime_frame(self):
 | 
						|
        for df in self.datetime_df:
 | 
						|
            freq = df.index.to_period(df.index.freq.rule_code).freq
 | 
						|
            _check_plot_works(df.plot, freq)
 | 
						|
 | 
						|
    def test_line_plot_inferred_freq(self):
 | 
						|
        for ser in self.datetime_ser:
 | 
						|
            ser = Series(ser.values, Index(np.asarray(ser.index)))
 | 
						|
            _check_plot_works(ser.plot, ser.index.inferred_freq)
 | 
						|
 | 
						|
            ser = ser[[0, 3, 5, 6]]
 | 
						|
            _check_plot_works(ser.plot)
 | 
						|
 | 
						|
    def test_fake_inferred_business(self):
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        rng = date_range("2001-1-1", "2001-1-10")
 | 
						|
        ts = Series(range(len(rng)), index=rng)
 | 
						|
        ts = concat([ts[:3], ts[5:]])
 | 
						|
        ts.plot(ax=ax)
 | 
						|
        assert not hasattr(ax, "freq")
 | 
						|
 | 
						|
    def test_plot_offset_freq(self):
 | 
						|
        ser = tm.makeTimeSeries()
 | 
						|
        _check_plot_works(ser.plot)
 | 
						|
 | 
						|
        dr = date_range(ser.index[0], freq="BQS", periods=10)
 | 
						|
        ser = Series(np.random.randn(len(dr)), index=dr)
 | 
						|
        _check_plot_works(ser.plot)
 | 
						|
 | 
						|
    def test_plot_multiple_inferred_freq(self):
 | 
						|
        dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(2000, 1, 11)])
 | 
						|
        ser = Series(np.random.randn(len(dr)), index=dr)
 | 
						|
        _check_plot_works(ser.plot)
 | 
						|
 | 
						|
    def test_uhf(self):
 | 
						|
        import pandas.plotting._matplotlib.converter as conv
 | 
						|
 | 
						|
        idx = date_range("2012-6-22 21:59:51.960928", freq="L", periods=500)
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 2), index=idx)
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        df.plot(ax=ax)
 | 
						|
        axis = ax.get_xaxis()
 | 
						|
 | 
						|
        tlocs = axis.get_ticklocs()
 | 
						|
        tlabels = axis.get_ticklabels()
 | 
						|
        for loc, label in zip(tlocs, tlabels):
 | 
						|
            xp = conv._from_ordinal(loc).strftime("%H:%M:%S.%f")
 | 
						|
            rs = str(label.get_text())
 | 
						|
            if len(rs):
 | 
						|
                assert xp == rs
 | 
						|
 | 
						|
    def test_irreg_hf(self):
 | 
						|
        idx = date_range("2012-6-22 21:59:51", freq="S", periods=100)
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 2), index=idx)
 | 
						|
 | 
						|
        irreg = df.iloc[[0, 1, 3, 4]]
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        irreg.plot(ax=ax)
 | 
						|
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
 | 
						|
 | 
						|
        sec = 1.0 / 24 / 60 / 60
 | 
						|
        assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        df2 = df.copy()
 | 
						|
        df2.index = df.index.astype(object)
 | 
						|
        df2.plot(ax=ax)
 | 
						|
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
 | 
						|
        assert (np.fabs(diffs[1:] - sec) < 1e-8).all()
 | 
						|
 | 
						|
    def test_irregular_datetime64_repr_bug(self):
 | 
						|
        ser = tm.makeTimeSeries()
 | 
						|
        ser = ser[[0, 1, 2, 7]]
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
 | 
						|
        ret = ser.plot(ax=ax)
 | 
						|
        assert ret is not None
 | 
						|
 | 
						|
        for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index):
 | 
						|
            assert rs == xp
 | 
						|
 | 
						|
    def test_business_freq(self):
 | 
						|
        bts = tm.makePeriodSeries()
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        bts.plot(ax=ax)
 | 
						|
        assert ax.get_lines()[0].get_xydata()[0, 0] == bts.index[0].ordinal
 | 
						|
        idx = ax.get_lines()[0].get_xdata()
 | 
						|
        assert PeriodIndex(data=idx).freqstr == "B"
 | 
						|
 | 
						|
    def test_business_freq_convert(self):
 | 
						|
        bts = tm.makeTimeSeries(300).asfreq("BM")
 | 
						|
        ts = bts.to_period("M")
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        bts.plot(ax=ax)
 | 
						|
        assert ax.get_lines()[0].get_xydata()[0, 0] == ts.index[0].ordinal
 | 
						|
        idx = ax.get_lines()[0].get_xdata()
 | 
						|
        assert PeriodIndex(data=idx).freqstr == "M"
 | 
						|
 | 
						|
    def test_freq_with_no_period_alias(self):
 | 
						|
        # GH34487
 | 
						|
        freq = WeekOfMonth()
 | 
						|
        bts = tm.makeTimeSeries(5).asfreq(freq)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        bts.plot(ax=ax)
 | 
						|
 | 
						|
        idx = ax.get_lines()[0].get_xdata()
 | 
						|
        msg = "freq not specified and cannot be inferred"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            PeriodIndex(data=idx)
 | 
						|
 | 
						|
    def test_nonzero_base(self):
 | 
						|
        # GH2571
 | 
						|
        idx = date_range("2012-12-20", periods=24, freq="H") + timedelta(minutes=30)
 | 
						|
        df = DataFrame(np.arange(24), index=idx)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        df.plot(ax=ax)
 | 
						|
        rs = ax.get_lines()[0].get_xdata()
 | 
						|
        assert not Index(rs).is_normalized
 | 
						|
 | 
						|
    def test_dataframe(self):
 | 
						|
        bts = DataFrame({"a": tm.makeTimeSeries()})
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        bts.plot(ax=ax)
 | 
						|
        idx = ax.get_lines()[0].get_xdata()
 | 
						|
        tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx))
 | 
						|
 | 
						|
    def test_axis_limits(self):
 | 
						|
        def _test(ax):
 | 
						|
            xlim = ax.get_xlim()
 | 
						|
            ax.set_xlim(xlim[0] - 5, xlim[1] + 10)
 | 
						|
            result = ax.get_xlim()
 | 
						|
            assert result[0] == xlim[0] - 5
 | 
						|
            assert result[1] == xlim[1] + 10
 | 
						|
 | 
						|
            # string
 | 
						|
            expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
 | 
						|
            ax.set_xlim("1/1/2000", "4/1/2000")
 | 
						|
            result = ax.get_xlim()
 | 
						|
            assert int(result[0]) == expected[0].ordinal
 | 
						|
            assert int(result[1]) == expected[1].ordinal
 | 
						|
 | 
						|
            # datetime
 | 
						|
            expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
 | 
						|
            ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1))
 | 
						|
            result = ax.get_xlim()
 | 
						|
            assert int(result[0]) == expected[0].ordinal
 | 
						|
            assert int(result[1]) == expected[1].ordinal
 | 
						|
            fig = ax.get_figure()
 | 
						|
            self.plt.close(fig)
 | 
						|
 | 
						|
        ser = tm.makeTimeSeries()
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ser.plot(ax=ax)
 | 
						|
        _test(ax)
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        df = DataFrame({"a": ser, "b": ser + 1})
 | 
						|
        df.plot(ax=ax)
 | 
						|
        _test(ax)
 | 
						|
 | 
						|
        df = DataFrame({"a": ser, "b": ser + 1})
 | 
						|
        axes = df.plot(subplots=True)
 | 
						|
 | 
						|
        for ax in axes:
 | 
						|
            _test(ax)
 | 
						|
 | 
						|
    def test_get_finder(self):
 | 
						|
        import pandas.plotting._matplotlib.converter as conv
 | 
						|
 | 
						|
        assert conv.get_finder(to_offset("B")) == conv._daily_finder
 | 
						|
        assert conv.get_finder(to_offset("D")) == conv._daily_finder
 | 
						|
        assert conv.get_finder(to_offset("M")) == conv._monthly_finder
 | 
						|
        assert conv.get_finder(to_offset("Q")) == conv._quarterly_finder
 | 
						|
        assert conv.get_finder(to_offset("A")) == conv._annual_finder
 | 
						|
        assert conv.get_finder(to_offset("W")) == conv._daily_finder
 | 
						|
 | 
						|
    def test_finder_daily(self):
 | 
						|
        day_lst = [10, 40, 252, 400, 950, 2750, 10000]
 | 
						|
 | 
						|
        xpl1 = xpl2 = [Period("1999-1-1", freq="B").ordinal] * len(day_lst)
 | 
						|
        rs1 = []
 | 
						|
        rs2 = []
 | 
						|
        for n in day_lst:
 | 
						|
            rng = bdate_range("1999-1-1", periods=n)
 | 
						|
            ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            ser.plot(ax=ax)
 | 
						|
            xaxis = ax.get_xaxis()
 | 
						|
            rs1.append(xaxis.get_majorticklocs()[0])
 | 
						|
 | 
						|
            vmin, vmax = ax.get_xlim()
 | 
						|
            ax.set_xlim(vmin + 0.9, vmax)
 | 
						|
            rs2.append(xaxis.get_majorticklocs()[0])
 | 
						|
            self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        assert rs1 == xpl1
 | 
						|
        assert rs2 == xpl2
 | 
						|
 | 
						|
    def test_finder_quarterly(self):
 | 
						|
        yrs = [3.5, 11]
 | 
						|
 | 
						|
        xpl1 = xpl2 = [Period("1988Q1").ordinal] * len(yrs)
 | 
						|
        rs1 = []
 | 
						|
        rs2 = []
 | 
						|
        for n in yrs:
 | 
						|
            rng = period_range("1987Q2", periods=int(n * 4), freq="Q")
 | 
						|
            ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            ser.plot(ax=ax)
 | 
						|
            xaxis = ax.get_xaxis()
 | 
						|
            rs1.append(xaxis.get_majorticklocs()[0])
 | 
						|
 | 
						|
            (vmin, vmax) = ax.get_xlim()
 | 
						|
            ax.set_xlim(vmin + 0.9, vmax)
 | 
						|
            rs2.append(xaxis.get_majorticklocs()[0])
 | 
						|
            self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        assert rs1 == xpl1
 | 
						|
        assert rs2 == xpl2
 | 
						|
 | 
						|
    def test_finder_monthly(self):
 | 
						|
        yrs = [1.15, 2.5, 4, 11]
 | 
						|
 | 
						|
        xpl1 = xpl2 = [Period("Jan 1988").ordinal] * len(yrs)
 | 
						|
        rs1 = []
 | 
						|
        rs2 = []
 | 
						|
        for n in yrs:
 | 
						|
            rng = period_range("1987Q2", periods=int(n * 12), freq="M")
 | 
						|
            ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            ser.plot(ax=ax)
 | 
						|
            xaxis = ax.get_xaxis()
 | 
						|
            rs1.append(xaxis.get_majorticklocs()[0])
 | 
						|
 | 
						|
            vmin, vmax = ax.get_xlim()
 | 
						|
            ax.set_xlim(vmin + 0.9, vmax)
 | 
						|
            rs2.append(xaxis.get_majorticklocs()[0])
 | 
						|
            self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        assert rs1 == xpl1
 | 
						|
        assert rs2 == xpl2
 | 
						|
 | 
						|
    def test_finder_monthly_long(self):
 | 
						|
        rng = period_range("1988Q1", periods=24 * 12, freq="M")
 | 
						|
        ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ser.plot(ax=ax)
 | 
						|
        xaxis = ax.get_xaxis()
 | 
						|
        rs = xaxis.get_majorticklocs()[0]
 | 
						|
        xp = Period("1989Q1", "M").ordinal
 | 
						|
        assert rs == xp
 | 
						|
 | 
						|
    def test_finder_annual(self):
 | 
						|
        xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170]
 | 
						|
        xp = [Period(x, freq="A").ordinal for x in xp]
 | 
						|
        rs = []
 | 
						|
        for nyears in [5, 10, 19, 49, 99, 199, 599, 1001]:
 | 
						|
            rng = period_range("1987", periods=nyears, freq="A")
 | 
						|
            ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            ser.plot(ax=ax)
 | 
						|
            xaxis = ax.get_xaxis()
 | 
						|
            rs.append(xaxis.get_majorticklocs()[0])
 | 
						|
            self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        assert rs == xp
 | 
						|
 | 
						|
    def test_finder_minutely(self):
 | 
						|
        nminutes = 50 * 24 * 60
 | 
						|
        rng = date_range("1/1/1999", freq="Min", periods=nminutes)
 | 
						|
        ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ser.plot(ax=ax)
 | 
						|
        xaxis = ax.get_xaxis()
 | 
						|
        rs = xaxis.get_majorticklocs()[0]
 | 
						|
        xp = Period("1/1/1999", freq="Min").ordinal
 | 
						|
 | 
						|
        assert rs == xp
 | 
						|
 | 
						|
    def test_finder_hourly(self):
 | 
						|
        nhours = 23
 | 
						|
        rng = date_range("1/1/1999", freq="H", periods=nhours)
 | 
						|
        ser = Series(np.random.randn(len(rng)), rng)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ser.plot(ax=ax)
 | 
						|
        xaxis = ax.get_xaxis()
 | 
						|
        rs = xaxis.get_majorticklocs()[0]
 | 
						|
        xp = Period("1/1/1999", freq="H").ordinal
 | 
						|
 | 
						|
        assert rs == xp
 | 
						|
 | 
						|
    def test_gaps(self):
 | 
						|
        ts = tm.makeTimeSeries()
 | 
						|
        ts[5:25] = np.nan
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ts.plot(ax=ax)
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert len(lines) == 1
 | 
						|
        line = lines[0]
 | 
						|
        data = line.get_xydata()
 | 
						|
 | 
						|
        if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
 | 
						|
            data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
 | 
						|
 | 
						|
        assert isinstance(data, np.ma.core.MaskedArray)
 | 
						|
        mask = data.mask
 | 
						|
        assert mask[5:25, 1].all()
 | 
						|
        self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        # irregular
 | 
						|
        ts = tm.makeTimeSeries()
 | 
						|
        ts = ts[[0, 1, 2, 5, 7, 9, 12, 15, 20]]
 | 
						|
        ts[2:5] = np.nan
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ax = ts.plot(ax=ax)
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert len(lines) == 1
 | 
						|
        line = lines[0]
 | 
						|
        data = line.get_xydata()
 | 
						|
 | 
						|
        if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
 | 
						|
            data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
 | 
						|
 | 
						|
        assert isinstance(data, np.ma.core.MaskedArray)
 | 
						|
        mask = data.mask
 | 
						|
        assert mask[2:5, 1].all()
 | 
						|
        self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        # non-ts
 | 
						|
        idx = [0, 1, 2, 5, 7, 9, 12, 15, 20]
 | 
						|
        ser = Series(np.random.randn(len(idx)), idx)
 | 
						|
        ser[2:5] = np.nan
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ser.plot(ax=ax)
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert len(lines) == 1
 | 
						|
        line = lines[0]
 | 
						|
        data = line.get_xydata()
 | 
						|
        if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
 | 
						|
            data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
 | 
						|
 | 
						|
        assert isinstance(data, np.ma.core.MaskedArray)
 | 
						|
        mask = data.mask
 | 
						|
        assert mask[2:5, 1].all()
 | 
						|
 | 
						|
    def test_gap_upsample(self):
 | 
						|
        low = tm.makeTimeSeries()
 | 
						|
        low[5:25] = np.nan
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        low.plot(ax=ax)
 | 
						|
 | 
						|
        idxh = date_range(low.index[0], low.index[-1], freq="12h")
 | 
						|
        s = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        s.plot(secondary_y=True)
 | 
						|
        lines = ax.get_lines()
 | 
						|
        assert len(lines) == 1
 | 
						|
        assert len(ax.right_ax.get_lines()) == 1
 | 
						|
 | 
						|
        line = lines[0]
 | 
						|
        data = line.get_xydata()
 | 
						|
        if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
 | 
						|
            data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
 | 
						|
 | 
						|
        assert isinstance(data, np.ma.core.MaskedArray)
 | 
						|
        mask = data.mask
 | 
						|
        assert mask[5:25, 1].all()
 | 
						|
 | 
						|
    def test_secondary_y(self):
 | 
						|
        ser = Series(np.random.randn(10))
 | 
						|
        ser2 = Series(np.random.randn(10))
 | 
						|
        fig, _ = self.plt.subplots()
 | 
						|
        ax = ser.plot(secondary_y=True)
 | 
						|
        assert hasattr(ax, "left_ax")
 | 
						|
        assert not hasattr(ax, "right_ax")
 | 
						|
        axes = fig.get_axes()
 | 
						|
        line = ax.get_lines()[0]
 | 
						|
        xp = Series(line.get_ydata(), line.get_xdata())
 | 
						|
        tm.assert_series_equal(ser, xp)
 | 
						|
        assert ax.get_yaxis().get_ticks_position() == "right"
 | 
						|
        assert not axes[0].get_yaxis().get_visible()
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        _, ax2 = self.plt.subplots()
 | 
						|
        ser2.plot(ax=ax2)
 | 
						|
        assert ax2.get_yaxis().get_ticks_position() == self.default_tick_position
 | 
						|
        self.plt.close(ax2.get_figure())
 | 
						|
 | 
						|
        ax = ser2.plot()
 | 
						|
        ax2 = ser.plot(secondary_y=True)
 | 
						|
        assert ax.get_yaxis().get_visible()
 | 
						|
        assert not hasattr(ax, "left_ax")
 | 
						|
        assert hasattr(ax, "right_ax")
 | 
						|
        assert hasattr(ax2, "left_ax")
 | 
						|
        assert not hasattr(ax2, "right_ax")
 | 
						|
 | 
						|
    def test_secondary_y_ts(self):
 | 
						|
        idx = date_range("1/1/2000", periods=10)
 | 
						|
        ser = Series(np.random.randn(10), idx)
 | 
						|
        ser2 = Series(np.random.randn(10), idx)
 | 
						|
        fig, _ = self.plt.subplots()
 | 
						|
        ax = ser.plot(secondary_y=True)
 | 
						|
        assert hasattr(ax, "left_ax")
 | 
						|
        assert not hasattr(ax, "right_ax")
 | 
						|
        axes = fig.get_axes()
 | 
						|
        line = ax.get_lines()[0]
 | 
						|
        xp = Series(line.get_ydata(), line.get_xdata()).to_timestamp()
 | 
						|
        tm.assert_series_equal(ser, xp)
 | 
						|
        assert ax.get_yaxis().get_ticks_position() == "right"
 | 
						|
        assert not axes[0].get_yaxis().get_visible()
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        _, ax2 = self.plt.subplots()
 | 
						|
        ser2.plot(ax=ax2)
 | 
						|
        assert ax2.get_yaxis().get_ticks_position() == self.default_tick_position
 | 
						|
        self.plt.close(ax2.get_figure())
 | 
						|
 | 
						|
        ax = ser2.plot()
 | 
						|
        ax2 = ser.plot(secondary_y=True)
 | 
						|
        assert ax.get_yaxis().get_visible()
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_secondary_kde(self):
 | 
						|
 | 
						|
        ser = Series(np.random.randn(10))
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        ax = ser.plot(secondary_y=True, kind="density", ax=ax)
 | 
						|
        assert hasattr(ax, "left_ax")
 | 
						|
        assert not hasattr(ax, "right_ax")
 | 
						|
        axes = fig.get_axes()
 | 
						|
        assert axes[1].get_yaxis().get_ticks_position() == "right"
 | 
						|
 | 
						|
    def test_secondary_bar(self):
 | 
						|
        ser = Series(np.random.randn(10))
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        ser.plot(secondary_y=True, kind="bar", ax=ax)
 | 
						|
        axes = fig.get_axes()
 | 
						|
        assert axes[1].get_yaxis().get_ticks_position() == "right"
 | 
						|
 | 
						|
    def test_secondary_frame(self):
 | 
						|
        df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
 | 
						|
        axes = df.plot(secondary_y=["a", "c"], subplots=True)
 | 
						|
        assert axes[0].get_yaxis().get_ticks_position() == "right"
 | 
						|
        assert axes[1].get_yaxis().get_ticks_position() == self.default_tick_position
 | 
						|
        assert axes[2].get_yaxis().get_ticks_position() == "right"
 | 
						|
 | 
						|
    def test_secondary_bar_frame(self):
 | 
						|
        df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
 | 
						|
        axes = df.plot(kind="bar", secondary_y=["a", "c"], subplots=True)
 | 
						|
        assert axes[0].get_yaxis().get_ticks_position() == "right"
 | 
						|
        assert axes[1].get_yaxis().get_ticks_position() == self.default_tick_position
 | 
						|
        assert axes[2].get_yaxis().get_ticks_position() == "right"
 | 
						|
 | 
						|
    def test_mixed_freq_regular_first(self):
 | 
						|
        # TODO
 | 
						|
        s1 = tm.makeTimeSeries()
 | 
						|
        s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
 | 
						|
 | 
						|
        # it works!
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s1.plot(ax=ax)
 | 
						|
 | 
						|
        ax2 = s2.plot(style="g", ax=ax)
 | 
						|
        lines = ax2.get_lines()
 | 
						|
        idx1 = PeriodIndex(lines[0].get_xdata())
 | 
						|
        idx2 = PeriodIndex(lines[1].get_xdata())
 | 
						|
 | 
						|
        tm.assert_index_equal(idx1, s1.index.to_period("B"))
 | 
						|
        tm.assert_index_equal(idx2, s2.index.to_period("B"))
 | 
						|
 | 
						|
        left, right = ax2.get_xlim()
 | 
						|
        pidx = s1.index.to_period()
 | 
						|
        assert left <= pidx[0].ordinal
 | 
						|
        assert right >= pidx[-1].ordinal
 | 
						|
 | 
						|
    def test_mixed_freq_irregular_first(self):
 | 
						|
        s1 = tm.makeTimeSeries()
 | 
						|
        s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s2.plot(style="g", ax=ax)
 | 
						|
        s1.plot(ax=ax)
 | 
						|
        assert not hasattr(ax, "freq")
 | 
						|
        lines = ax.get_lines()
 | 
						|
        x1 = lines[0].get_xdata()
 | 
						|
        tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
 | 
						|
        x2 = lines[1].get_xdata()
 | 
						|
        tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
 | 
						|
 | 
						|
    def test_mixed_freq_regular_first_df(self):
 | 
						|
        # GH 9852
 | 
						|
        s1 = tm.makeTimeSeries().to_frame()
 | 
						|
        s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s1.plot(ax=ax)
 | 
						|
        ax2 = s2.plot(style="g", ax=ax)
 | 
						|
        lines = ax2.get_lines()
 | 
						|
        idx1 = PeriodIndex(lines[0].get_xdata())
 | 
						|
        idx2 = PeriodIndex(lines[1].get_xdata())
 | 
						|
        assert idx1.equals(s1.index.to_period("B"))
 | 
						|
        assert idx2.equals(s2.index.to_period("B"))
 | 
						|
        left, right = ax2.get_xlim()
 | 
						|
        pidx = s1.index.to_period()
 | 
						|
        assert left <= pidx[0].ordinal
 | 
						|
        assert right >= pidx[-1].ordinal
 | 
						|
 | 
						|
    def test_mixed_freq_irregular_first_df(self):
 | 
						|
        # GH 9852
 | 
						|
        s1 = tm.makeTimeSeries().to_frame()
 | 
						|
        s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s2.plot(style="g", ax=ax)
 | 
						|
        s1.plot(ax=ax)
 | 
						|
        assert not hasattr(ax, "freq")
 | 
						|
        lines = ax.get_lines()
 | 
						|
        x1 = lines[0].get_xdata()
 | 
						|
        tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
 | 
						|
        x2 = lines[1].get_xdata()
 | 
						|
        tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
 | 
						|
 | 
						|
    def test_mixed_freq_hf_first(self):
 | 
						|
        idxh = date_range("1/1/1999", periods=365, freq="D")
 | 
						|
        idxl = date_range("1/1/1999", periods=12, freq="M")
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        high.plot(ax=ax)
 | 
						|
        low.plot(ax=ax)
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == "D"
 | 
						|
 | 
						|
    def test_mixed_freq_alignment(self):
 | 
						|
        ts_ind = date_range("2012-01-01 13:00", "2012-01-02", freq="H")
 | 
						|
        ts_data = np.random.randn(12)
 | 
						|
 | 
						|
        ts = Series(ts_data, index=ts_ind)
 | 
						|
        ts2 = ts.asfreq("T").interpolate()
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ax = ts.plot(ax=ax)
 | 
						|
        ts2.plot(style="r", ax=ax)
 | 
						|
 | 
						|
        assert ax.lines[0].get_xdata()[0] == ax.lines[1].get_xdata()[0]
 | 
						|
 | 
						|
    def test_mixed_freq_lf_first(self):
 | 
						|
 | 
						|
        idxh = date_range("1/1/1999", periods=365, freq="D")
 | 
						|
        idxl = date_range("1/1/1999", periods=12, freq="M")
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        low.plot(legend=True, ax=ax)
 | 
						|
        high.plot(legend=True, ax=ax)
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == "D"
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert len(leg.texts) == 2
 | 
						|
        self.plt.close(ax.get_figure())
 | 
						|
 | 
						|
        idxh = date_range("1/1/1999", periods=240, freq="T")
 | 
						|
        idxl = date_range("1/1/1999", periods=4, freq="H")
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        low.plot(ax=ax)
 | 
						|
        high.plot(ax=ax)
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == "T"
 | 
						|
 | 
						|
    def test_mixed_freq_irreg_period(self):
 | 
						|
        ts = tm.makeTimeSeries()
 | 
						|
        irreg = ts[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]]
 | 
						|
        rng = period_range("1/3/2000", periods=30, freq="B")
 | 
						|
        ps = Series(np.random.randn(len(rng)), rng)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        irreg.plot(ax=ax)
 | 
						|
        ps.plot(ax=ax)
 | 
						|
 | 
						|
    def test_mixed_freq_shared_ax(self):
 | 
						|
 | 
						|
        # GH13341, using sharex=True
 | 
						|
        idx1 = date_range("2015-01-01", periods=3, freq="M")
 | 
						|
        idx2 = idx1[:1].union(idx1[2:])
 | 
						|
        s1 = Series(range(len(idx1)), idx1)
 | 
						|
        s2 = Series(range(len(idx2)), idx2)
 | 
						|
 | 
						|
        fig, (ax1, ax2) = self.plt.subplots(nrows=2, sharex=True)
 | 
						|
        s1.plot(ax=ax1)
 | 
						|
        s2.plot(ax=ax2)
 | 
						|
 | 
						|
        assert ax1.freq == "M"
 | 
						|
        assert ax2.freq == "M"
 | 
						|
        assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
 | 
						|
 | 
						|
        # using twinx
 | 
						|
        fig, ax1 = self.plt.subplots()
 | 
						|
        ax2 = ax1.twinx()
 | 
						|
        s1.plot(ax=ax1)
 | 
						|
        s2.plot(ax=ax2)
 | 
						|
 | 
						|
        assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
 | 
						|
 | 
						|
        # TODO (GH14330, GH14322)
 | 
						|
        # plotting the irregular first does not yet work
 | 
						|
        # fig, ax1 = plt.subplots()
 | 
						|
        # ax2 = ax1.twinx()
 | 
						|
        # s2.plot(ax=ax1)
 | 
						|
        # s1.plot(ax=ax2)
 | 
						|
        # assert (ax1.lines[0].get_xydata()[0, 0] ==
 | 
						|
        #         ax2.lines[0].get_xydata()[0, 0])
 | 
						|
 | 
						|
    def test_nat_handling(self):
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
 | 
						|
        dti = DatetimeIndex(["2015-01-01", NaT, "2015-01-03"])
 | 
						|
        s = Series(range(len(dti)), dti)
 | 
						|
        s.plot(ax=ax)
 | 
						|
        xdata = ax.get_lines()[0].get_xdata()
 | 
						|
        # plot x data is bounded by index values
 | 
						|
        assert s.index.min() <= Series(xdata).min()
 | 
						|
        assert Series(xdata).max() <= s.index.max()
 | 
						|
 | 
						|
    def test_to_weekly_resampling(self):
 | 
						|
        idxh = date_range("1/1/1999", periods=52, freq="W")
 | 
						|
        idxl = date_range("1/1/1999", periods=12, freq="M")
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        high.plot(ax=ax)
 | 
						|
        low.plot(ax=ax)
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
 | 
						|
 | 
						|
    def test_from_weekly_resampling(self):
 | 
						|
        idxh = date_range("1/1/1999", periods=52, freq="W")
 | 
						|
        idxl = date_range("1/1/1999", periods=12, freq="M")
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        low.plot(ax=ax)
 | 
						|
        high.plot(ax=ax)
 | 
						|
 | 
						|
        expected_h = idxh.to_period().asi8.astype(np.float64)
 | 
						|
        expected_l = np.array(
 | 
						|
            [1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544, 1549, 1553, 1558, 1562],
 | 
						|
            dtype=np.float64,
 | 
						|
        )
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
 | 
						|
            xdata = line.get_xdata(orig=False)
 | 
						|
            if len(xdata) == 12:  # idxl lines
 | 
						|
                tm.assert_numpy_array_equal(xdata, expected_l)
 | 
						|
            else:
 | 
						|
                tm.assert_numpy_array_equal(xdata, expected_h)
 | 
						|
        tm.close()
 | 
						|
 | 
						|
    def test_from_resampling_area_line_mixed(self):
 | 
						|
        idxh = date_range("1/1/1999", periods=52, freq="W")
 | 
						|
        idxl = date_range("1/1/1999", periods=12, freq="M")
 | 
						|
        high = DataFrame(np.random.rand(len(idxh), 3), index=idxh, columns=[0, 1, 2])
 | 
						|
        low = DataFrame(np.random.rand(len(idxl), 3), index=idxl, columns=[0, 1, 2])
 | 
						|
 | 
						|
        # low to high
 | 
						|
        for kind1, kind2 in [("line", "area"), ("area", "line")]:
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            low.plot(kind=kind1, stacked=True, ax=ax)
 | 
						|
            high.plot(kind=kind2, stacked=True, ax=ax)
 | 
						|
 | 
						|
            # check low dataframe result
 | 
						|
            expected_x = np.array(
 | 
						|
                [
 | 
						|
                    1514,
 | 
						|
                    1519,
 | 
						|
                    1523,
 | 
						|
                    1527,
 | 
						|
                    1531,
 | 
						|
                    1536,
 | 
						|
                    1540,
 | 
						|
                    1544,
 | 
						|
                    1549,
 | 
						|
                    1553,
 | 
						|
                    1558,
 | 
						|
                    1562,
 | 
						|
                ],
 | 
						|
                dtype=np.float64,
 | 
						|
            )
 | 
						|
            expected_y = np.zeros(len(expected_x), dtype=np.float64)
 | 
						|
            for i in range(3):
 | 
						|
                line = ax.lines[i]
 | 
						|
                assert PeriodIndex(line.get_xdata()).freq == idxh.freq
 | 
						|
                tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
 | 
						|
                # check stacked values are correct
 | 
						|
                expected_y += low[i].values
 | 
						|
                tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
 | 
						|
 | 
						|
            # check high dataframe result
 | 
						|
            expected_x = idxh.to_period().asi8.astype(np.float64)
 | 
						|
            expected_y = np.zeros(len(expected_x), dtype=np.float64)
 | 
						|
            for i in range(3):
 | 
						|
                line = ax.lines[3 + i]
 | 
						|
                assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
 | 
						|
                tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
 | 
						|
                expected_y += high[i].values
 | 
						|
                tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
 | 
						|
 | 
						|
        # high to low
 | 
						|
        for kind1, kind2 in [("line", "area"), ("area", "line")]:
 | 
						|
            _, ax = self.plt.subplots()
 | 
						|
            high.plot(kind=kind1, stacked=True, ax=ax)
 | 
						|
            low.plot(kind=kind2, stacked=True, ax=ax)
 | 
						|
 | 
						|
            # check high dataframe result
 | 
						|
            expected_x = idxh.to_period().asi8.astype(np.float64)
 | 
						|
            expected_y = np.zeros(len(expected_x), dtype=np.float64)
 | 
						|
            for i in range(3):
 | 
						|
                line = ax.lines[i]
 | 
						|
                assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
 | 
						|
                tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
 | 
						|
                expected_y += high[i].values
 | 
						|
                tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
 | 
						|
 | 
						|
            # check low dataframe result
 | 
						|
            expected_x = np.array(
 | 
						|
                [
 | 
						|
                    1514,
 | 
						|
                    1519,
 | 
						|
                    1523,
 | 
						|
                    1527,
 | 
						|
                    1531,
 | 
						|
                    1536,
 | 
						|
                    1540,
 | 
						|
                    1544,
 | 
						|
                    1549,
 | 
						|
                    1553,
 | 
						|
                    1558,
 | 
						|
                    1562,
 | 
						|
                ],
 | 
						|
                dtype=np.float64,
 | 
						|
            )
 | 
						|
            expected_y = np.zeros(len(expected_x), dtype=np.float64)
 | 
						|
            for i in range(3):
 | 
						|
                lines = ax.lines[3 + i]
 | 
						|
                assert PeriodIndex(data=lines.get_xdata()).freq == idxh.freq
 | 
						|
                tm.assert_numpy_array_equal(lines.get_xdata(orig=False), expected_x)
 | 
						|
                expected_y += low[i].values
 | 
						|
                tm.assert_numpy_array_equal(lines.get_ydata(orig=False), expected_y)
 | 
						|
 | 
						|
    def test_mixed_freq_second_millisecond(self):
 | 
						|
        # GH 7772, GH 7760
 | 
						|
        idxh = date_range("2014-07-01 09:00", freq="S", periods=50)
 | 
						|
        idxl = date_range("2014-07-01 09:00", freq="100L", periods=500)
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        # high to low
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        high.plot(ax=ax)
 | 
						|
        low.plot(ax=ax)
 | 
						|
        assert len(ax.get_lines()) == 2
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == "L"
 | 
						|
        tm.close()
 | 
						|
 | 
						|
        # low to high
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        low.plot(ax=ax)
 | 
						|
        high.plot(ax=ax)
 | 
						|
        assert len(ax.get_lines()) == 2
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(data=line.get_xdata()).freq == "L"
 | 
						|
 | 
						|
    def test_irreg_dtypes(self):
 | 
						|
        # date
 | 
						|
        idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)]
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 3), Index(idx, dtype=object))
 | 
						|
        _check_plot_works(df.plot)
 | 
						|
 | 
						|
        # np.datetime64
 | 
						|
        idx = date_range("1/1/2000", periods=10)
 | 
						|
        idx = idx[[0, 2, 5, 9]].astype(object)
 | 
						|
        df = DataFrame(np.random.randn(len(idx), 3), idx)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        _check_plot_works(df.plot, ax=ax)
 | 
						|
 | 
						|
    def test_time(self):
 | 
						|
        t = datetime(1, 1, 1, 3, 30, 0)
 | 
						|
        deltas = np.random.randint(1, 20, 3).cumsum()
 | 
						|
        ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
 | 
						|
        df = DataFrame(
 | 
						|
            {"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
 | 
						|
        )
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(ax=ax)
 | 
						|
 | 
						|
        # verify tick labels
 | 
						|
        ticks = ax.get_xticks()
 | 
						|
        labels = ax.get_xticklabels()
 | 
						|
        for t, l in zip(ticks, labels):
 | 
						|
            m, s = divmod(int(t), 60)
 | 
						|
            h, m = divmod(m, 60)
 | 
						|
            rs = l.get_text()
 | 
						|
            if len(rs) > 0:
 | 
						|
                if s != 0:
 | 
						|
                    xp = time(h, m, s).strftime("%H:%M:%S")
 | 
						|
                else:
 | 
						|
                    xp = time(h, m, s).strftime("%H:%M")
 | 
						|
                assert xp == rs
 | 
						|
 | 
						|
    def test_time_change_xlim(self):
 | 
						|
        t = datetime(1, 1, 1, 3, 30, 0)
 | 
						|
        deltas = np.random.randint(1, 20, 3).cumsum()
 | 
						|
        ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
 | 
						|
        df = DataFrame(
 | 
						|
            {"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
 | 
						|
        )
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(ax=ax)
 | 
						|
 | 
						|
        # verify tick labels
 | 
						|
        ticks = ax.get_xticks()
 | 
						|
        labels = ax.get_xticklabels()
 | 
						|
        for t, l in zip(ticks, labels):
 | 
						|
            m, s = divmod(int(t), 60)
 | 
						|
            h, m = divmod(m, 60)
 | 
						|
            rs = l.get_text()
 | 
						|
            if len(rs) > 0:
 | 
						|
                if s != 0:
 | 
						|
                    xp = time(h, m, s).strftime("%H:%M:%S")
 | 
						|
                else:
 | 
						|
                    xp = time(h, m, s).strftime("%H:%M")
 | 
						|
                assert xp == rs
 | 
						|
 | 
						|
        # change xlim
 | 
						|
        ax.set_xlim("1:30", "5:00")
 | 
						|
 | 
						|
        # check tick labels again
 | 
						|
        ticks = ax.get_xticks()
 | 
						|
        labels = ax.get_xticklabels()
 | 
						|
        for t, l in zip(ticks, labels):
 | 
						|
            m, s = divmod(int(t), 60)
 | 
						|
            h, m = divmod(m, 60)
 | 
						|
            rs = l.get_text()
 | 
						|
            if len(rs) > 0:
 | 
						|
                if s != 0:
 | 
						|
                    xp = time(h, m, s).strftime("%H:%M:%S")
 | 
						|
                else:
 | 
						|
                    xp = time(h, m, s).strftime("%H:%M")
 | 
						|
                assert xp == rs
 | 
						|
 | 
						|
    def test_time_musec(self):
 | 
						|
        t = datetime(1, 1, 1, 3, 30, 0)
 | 
						|
        deltas = np.random.randint(1, 20, 3).cumsum()
 | 
						|
        ts = np.array([(t + timedelta(microseconds=int(x))).time() for x in deltas])
 | 
						|
        df = DataFrame(
 | 
						|
            {"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
 | 
						|
        )
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        ax = df.plot(ax=ax)
 | 
						|
 | 
						|
        # verify tick labels
 | 
						|
        ticks = ax.get_xticks()
 | 
						|
        labels = ax.get_xticklabels()
 | 
						|
        for t, l in zip(ticks, labels):
 | 
						|
            m, s = divmod(int(t), 60)
 | 
						|
 | 
						|
            us = round((t - int(t)) * 1e6)
 | 
						|
 | 
						|
            h, m = divmod(m, 60)
 | 
						|
            rs = l.get_text()
 | 
						|
            if len(rs) > 0:
 | 
						|
                if (us % 1000) != 0:
 | 
						|
                    xp = time(h, m, s, us).strftime("%H:%M:%S.%f")
 | 
						|
                elif (us // 1000) != 0:
 | 
						|
                    xp = time(h, m, s, us).strftime("%H:%M:%S.%f")[:-3]
 | 
						|
                elif s != 0:
 | 
						|
                    xp = time(h, m, s, us).strftime("%H:%M:%S")
 | 
						|
                else:
 | 
						|
                    xp = time(h, m, s, us).strftime("%H:%M")
 | 
						|
                assert xp == rs
 | 
						|
 | 
						|
    def test_secondary_upsample(self):
 | 
						|
        idxh = date_range("1/1/1999", periods=365, freq="D")
 | 
						|
        idxl = date_range("1/1/1999", periods=12, freq="M")
 | 
						|
        high = Series(np.random.randn(len(idxh)), idxh)
 | 
						|
        low = Series(np.random.randn(len(idxl)), idxl)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        low.plot(ax=ax)
 | 
						|
        ax = high.plot(secondary_y=True, ax=ax)
 | 
						|
        for line in ax.get_lines():
 | 
						|
            assert PeriodIndex(line.get_xdata()).freq == "D"
 | 
						|
        assert hasattr(ax, "left_ax")
 | 
						|
        assert not hasattr(ax, "right_ax")
 | 
						|
        for line in ax.left_ax.get_lines():
 | 
						|
            assert PeriodIndex(line.get_xdata()).freq == "D"
 | 
						|
 | 
						|
    def test_secondary_legend(self):
 | 
						|
        fig = self.plt.figure()
 | 
						|
        ax = fig.add_subplot(211)
 | 
						|
 | 
						|
        # ts
 | 
						|
        df = tm.makeTimeDataFrame()
 | 
						|
        df.plot(secondary_y=["A", "B"], ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert len(leg.get_lines()) == 4
 | 
						|
        assert leg.get_texts()[0].get_text() == "A (right)"
 | 
						|
        assert leg.get_texts()[1].get_text() == "B (right)"
 | 
						|
        assert leg.get_texts()[2].get_text() == "C"
 | 
						|
        assert leg.get_texts()[3].get_text() == "D"
 | 
						|
        assert ax.right_ax.get_legend() is None
 | 
						|
        colors = set()
 | 
						|
        for line in leg.get_lines():
 | 
						|
            colors.add(line.get_color())
 | 
						|
 | 
						|
        # TODO: color cycle problems
 | 
						|
        assert len(colors) == 4
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        fig = self.plt.figure()
 | 
						|
        ax = fig.add_subplot(211)
 | 
						|
        df.plot(secondary_y=["A", "C"], mark_right=False, ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert len(leg.get_lines()) == 4
 | 
						|
        assert leg.get_texts()[0].get_text() == "A"
 | 
						|
        assert leg.get_texts()[1].get_text() == "B"
 | 
						|
        assert leg.get_texts()[2].get_text() == "C"
 | 
						|
        assert leg.get_texts()[3].get_text() == "D"
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(kind="bar", secondary_y=["A"], ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert leg.get_texts()[0].get_text() == "A (right)"
 | 
						|
        assert leg.get_texts()[1].get_text() == "B"
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(kind="bar", secondary_y=["A"], mark_right=False, ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert leg.get_texts()[0].get_text() == "A"
 | 
						|
        assert leg.get_texts()[1].get_text() == "B"
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        fig = self.plt.figure()
 | 
						|
        ax = fig.add_subplot(211)
 | 
						|
        df = tm.makeTimeDataFrame()
 | 
						|
        ax = df.plot(secondary_y=["C", "D"], ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert len(leg.get_lines()) == 4
 | 
						|
        assert ax.right_ax.get_legend() is None
 | 
						|
        colors = set()
 | 
						|
        for line in leg.get_lines():
 | 
						|
            colors.add(line.get_color())
 | 
						|
 | 
						|
        # TODO: color cycle problems
 | 
						|
        assert len(colors) == 4
 | 
						|
        self.plt.close(fig)
 | 
						|
 | 
						|
        # non-ts
 | 
						|
        df = tm.makeDataFrame()
 | 
						|
        fig = self.plt.figure()
 | 
						|
        ax = fig.add_subplot(211)
 | 
						|
        ax = df.plot(secondary_y=["A", "B"], ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert len(leg.get_lines()) == 4
 | 
						|
        assert ax.right_ax.get_legend() is None
 | 
						|
        colors = set()
 | 
						|
        for line in leg.get_lines():
 | 
						|
            colors.add(line.get_color())
 | 
						|
 | 
						|
        # TODO: color cycle problems
 | 
						|
        assert len(colors) == 4
 | 
						|
        self.plt.close()
 | 
						|
 | 
						|
        fig = self.plt.figure()
 | 
						|
        ax = fig.add_subplot(211)
 | 
						|
        ax = df.plot(secondary_y=["C", "D"], ax=ax)
 | 
						|
        leg = ax.get_legend()
 | 
						|
        assert len(leg.get_lines()) == 4
 | 
						|
        assert ax.right_ax.get_legend() is None
 | 
						|
        colors = set()
 | 
						|
        for line in leg.get_lines():
 | 
						|
            colors.add(line.get_color())
 | 
						|
 | 
						|
        # TODO: color cycle problems
 | 
						|
        assert len(colors) == 4
 | 
						|
 | 
						|
    def test_format_date_axis(self):
 | 
						|
        rng = date_range("1/1/2012", periods=12, freq="M")
 | 
						|
        df = DataFrame(np.random.randn(len(rng), 3), rng)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ax = df.plot(ax=ax)
 | 
						|
        xaxis = ax.get_xaxis()
 | 
						|
        for line in xaxis.get_ticklabels():
 | 
						|
            if len(line.get_text()) > 0:
 | 
						|
                assert line.get_rotation() == 30
 | 
						|
 | 
						|
    def test_ax_plot(self):
 | 
						|
        x = date_range(start="2012-01-02", periods=10, freq="D")
 | 
						|
        y = list(range(len(x)))
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        lines = ax.plot(x, y, label="Y")
 | 
						|
        tm.assert_index_equal(DatetimeIndex(lines[0].get_xdata()), x)
 | 
						|
 | 
						|
    def test_mpl_nopandas(self):
 | 
						|
        dates = [date(2008, 12, 31), date(2009, 1, 31)]
 | 
						|
        values1 = np.arange(10.0, 11.0, 0.5)
 | 
						|
        values2 = np.arange(11.0, 12.0, 0.5)
 | 
						|
 | 
						|
        kw = {"fmt": "-", "lw": 4}
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ax.plot_date([x.toordinal() for x in dates], values1, **kw)
 | 
						|
        ax.plot_date([x.toordinal() for x in dates], values2, **kw)
 | 
						|
 | 
						|
        line1, line2 = ax.get_lines()
 | 
						|
 | 
						|
        exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
 | 
						|
        tm.assert_numpy_array_equal(line1.get_xydata()[:, 0], exp)
 | 
						|
        exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
 | 
						|
        tm.assert_numpy_array_equal(line2.get_xydata()[:, 0], exp)
 | 
						|
 | 
						|
    def test_irregular_ts_shared_ax_xlim(self):
 | 
						|
        # GH 2960
 | 
						|
        from pandas.plotting._matplotlib.converter import DatetimeConverter
 | 
						|
 | 
						|
        ts = tm.makeTimeSeries()[:20]
 | 
						|
        ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
 | 
						|
 | 
						|
        # plot the left section of the irregular series, then the right section
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ts_irregular[:5].plot(ax=ax)
 | 
						|
        ts_irregular[5:].plot(ax=ax)
 | 
						|
 | 
						|
        # check that axis limits are correct
 | 
						|
        left, right = ax.get_xlim()
 | 
						|
        assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
 | 
						|
        assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
 | 
						|
 | 
						|
    def test_secondary_y_non_ts_xlim(self):
 | 
						|
        # GH 3490 - non-timeseries with secondary y
 | 
						|
        index_1 = [1, 2, 3, 4]
 | 
						|
        index_2 = [5, 6, 7, 8]
 | 
						|
        s1 = Series(1, index=index_1)
 | 
						|
        s2 = Series(2, index=index_2)
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s1.plot(ax=ax)
 | 
						|
        left_before, right_before = ax.get_xlim()
 | 
						|
        s2.plot(secondary_y=True, ax=ax)
 | 
						|
        left_after, right_after = ax.get_xlim()
 | 
						|
 | 
						|
        assert left_before >= left_after
 | 
						|
        assert right_before < right_after
 | 
						|
 | 
						|
    def test_secondary_y_regular_ts_xlim(self):
 | 
						|
        # GH 3490 - regular-timeseries with secondary y
 | 
						|
        index_1 = date_range(start="2000-01-01", periods=4, freq="D")
 | 
						|
        index_2 = date_range(start="2000-01-05", periods=4, freq="D")
 | 
						|
        s1 = Series(1, index=index_1)
 | 
						|
        s2 = Series(2, index=index_2)
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s1.plot(ax=ax)
 | 
						|
        left_before, right_before = ax.get_xlim()
 | 
						|
        s2.plot(secondary_y=True, ax=ax)
 | 
						|
        left_after, right_after = ax.get_xlim()
 | 
						|
 | 
						|
        assert left_before >= left_after
 | 
						|
        assert right_before < right_after
 | 
						|
 | 
						|
    def test_secondary_y_mixed_freq_ts_xlim(self):
 | 
						|
        # GH 3490 - mixed frequency timeseries with secondary y
 | 
						|
        rng = date_range("2000-01-01", periods=10000, freq="min")
 | 
						|
        ts = Series(1, index=rng)
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ts.plot(ax=ax)
 | 
						|
        left_before, right_before = ax.get_xlim()
 | 
						|
        ts.resample("D").mean().plot(secondary_y=True, ax=ax)
 | 
						|
        left_after, right_after = ax.get_xlim()
 | 
						|
 | 
						|
        # a downsample should not have changed either limit
 | 
						|
        assert left_before == left_after
 | 
						|
        assert right_before == right_after
 | 
						|
 | 
						|
    def test_secondary_y_irregular_ts_xlim(self):
 | 
						|
        # GH 3490 - irregular-timeseries with secondary y
 | 
						|
        from pandas.plotting._matplotlib.converter import DatetimeConverter
 | 
						|
 | 
						|
        ts = tm.makeTimeSeries()[:20]
 | 
						|
        ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
 | 
						|
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ts_irregular[:5].plot(ax=ax)
 | 
						|
        # plot higher-x values on secondary axis
 | 
						|
        ts_irregular[5:].plot(secondary_y=True, ax=ax)
 | 
						|
        # ensure secondary limits aren't overwritten by plot on primary
 | 
						|
        ts_irregular[:5].plot(ax=ax)
 | 
						|
 | 
						|
        left, right = ax.get_xlim()
 | 
						|
        assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
 | 
						|
        assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
 | 
						|
 | 
						|
    def test_plot_outofbounds_datetime(self):
 | 
						|
        # 2579 - checking this does not raise
 | 
						|
        values = [date(1677, 1, 1), date(1677, 1, 2)]
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ax.plot(values)
 | 
						|
 | 
						|
        values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
 | 
						|
        ax.plot(values)
 | 
						|
 | 
						|
    def test_format_timedelta_ticks_narrow(self):
 | 
						|
 | 
						|
        expected_labels = [f"00:00:00.0000000{i:0>2d}" for i in np.arange(10)]
 | 
						|
 | 
						|
        rng = timedelta_range("0", periods=10, freq="ns")
 | 
						|
        df = DataFrame(np.random.randn(len(rng), 3), rng)
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        df.plot(fontsize=2, ax=ax)
 | 
						|
        self.plt.draw()
 | 
						|
        labels = ax.get_xticklabels()
 | 
						|
 | 
						|
        result_labels = [x.get_text() for x in labels]
 | 
						|
        assert len(result_labels) == len(expected_labels)
 | 
						|
        assert result_labels == expected_labels
 | 
						|
 | 
						|
    def test_format_timedelta_ticks_wide(self):
 | 
						|
        expected_labels = [
 | 
						|
            "00:00:00",
 | 
						|
            "1 days 03:46:40",
 | 
						|
            "2 days 07:33:20",
 | 
						|
            "3 days 11:20:00",
 | 
						|
            "4 days 15:06:40",
 | 
						|
            "5 days 18:53:20",
 | 
						|
            "6 days 22:40:00",
 | 
						|
            "8 days 02:26:40",
 | 
						|
            "9 days 06:13:20",
 | 
						|
        ]
 | 
						|
 | 
						|
        rng = timedelta_range("0", periods=10, freq="1 d")
 | 
						|
        df = DataFrame(np.random.randn(len(rng), 3), rng)
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        ax = df.plot(fontsize=2, ax=ax)
 | 
						|
        self.plt.draw()
 | 
						|
        labels = ax.get_xticklabels()
 | 
						|
 | 
						|
        result_labels = [x.get_text() for x in labels]
 | 
						|
        assert len(result_labels) == len(expected_labels)
 | 
						|
        assert result_labels == expected_labels
 | 
						|
 | 
						|
    def test_timedelta_plot(self):
 | 
						|
        # test issue #8711
 | 
						|
        s = Series(range(5), timedelta_range("1day", periods=5))
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        _check_plot_works(s.plot, ax=ax)
 | 
						|
 | 
						|
        # test long period
 | 
						|
        index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 d")
 | 
						|
        s = Series(np.random.randn(len(index)), index)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        _check_plot_works(s.plot, ax=ax)
 | 
						|
 | 
						|
        # test short period
 | 
						|
        index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 ns")
 | 
						|
        s = Series(np.random.randn(len(index)), index)
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        _check_plot_works(s.plot, ax=ax)
 | 
						|
 | 
						|
    def test_hist(self):
 | 
						|
        # https://github.com/matplotlib/matplotlib/issues/8459
 | 
						|
        rng = date_range("1/1/2011", periods=10, freq="H")
 | 
						|
        x = rng
 | 
						|
        w1 = np.arange(0, 1, 0.1)
 | 
						|
        w2 = np.arange(0, 1, 0.1)[::-1]
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        ax.hist([x, x], weights=[w1, w2])
 | 
						|
 | 
						|
    def test_overlapping_datetime(self):
 | 
						|
        # GB 6608
 | 
						|
        s1 = Series(
 | 
						|
            [1, 2, 3],
 | 
						|
            index=[
 | 
						|
                datetime(1995, 12, 31),
 | 
						|
                datetime(2000, 12, 31),
 | 
						|
                datetime(2005, 12, 31),
 | 
						|
            ],
 | 
						|
        )
 | 
						|
        s2 = Series(
 | 
						|
            [1, 2, 3],
 | 
						|
            index=[
 | 
						|
                datetime(1997, 12, 31),
 | 
						|
                datetime(2003, 12, 31),
 | 
						|
                datetime(2008, 12, 31),
 | 
						|
            ],
 | 
						|
        )
 | 
						|
 | 
						|
        # plot first series, then add the second series to those axes,
 | 
						|
        # then try adding the first series again
 | 
						|
        _, ax = self.plt.subplots()
 | 
						|
        s1.plot(ax=ax)
 | 
						|
        s2.plot(ax=ax)
 | 
						|
        s1.plot(ax=ax)
 | 
						|
 | 
						|
    @pytest.mark.xfail(reason="GH9053 matplotlib does not use ax.xaxis.converter")
 | 
						|
    def test_add_matplotlib_datetime64(self):
 | 
						|
        # GH9053 - ensure that a plot with PeriodConverter still understands
 | 
						|
        # datetime64 data. This still fails because matplotlib overrides the
 | 
						|
        # ax.xaxis.converter with a DatetimeConverter
 | 
						|
        s = Series(np.random.randn(10), index=date_range("1970-01-02", periods=10))
 | 
						|
        ax = s.plot()
 | 
						|
        with tm.assert_produces_warning(DeprecationWarning):
 | 
						|
            # multi-dimensional indexing
 | 
						|
            ax.plot(s.index, s.values, color="g")
 | 
						|
        l1, l2 = ax.lines
 | 
						|
        tm.assert_numpy_array_equal(l1.get_xydata(), l2.get_xydata())
 | 
						|
 | 
						|
    def test_matplotlib_scatter_datetime64(self):
 | 
						|
        # https://github.com/matplotlib/matplotlib/issues/11391
 | 
						|
        df = DataFrame(np.random.RandomState(0).rand(10, 2), columns=["x", "y"])
 | 
						|
        df["time"] = date_range("2018-01-01", periods=10, freq="D")
 | 
						|
        fig, ax = self.plt.subplots()
 | 
						|
        ax.scatter(x="time", y="y", data=df)
 | 
						|
        self.plt.draw()
 | 
						|
        label = ax.get_xticklabels()[0]
 | 
						|
        if self.mpl_ge_3_2_0:
 | 
						|
            expected = "2018-01-01"
 | 
						|
        elif self.mpl_ge_3_0_0:
 | 
						|
            expected = "2017-12-08"
 | 
						|
        else:
 | 
						|
            expected = "2017-12-12"
 | 
						|
        assert label.get_text() == expected
 | 
						|
 | 
						|
    def test_check_xticks_rot(self):
 | 
						|
        # https://github.com/pandas-dev/pandas/issues/29460
 | 
						|
        # regular time series
 | 
						|
        x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-03"])
 | 
						|
        df = DataFrame({"x": x, "y": [1, 2, 3]})
 | 
						|
        axes = df.plot(x="x", y="y")
 | 
						|
        self._check_ticks_props(axes, xrot=0)
 | 
						|
 | 
						|
        # irregular time series
 | 
						|
        x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
 | 
						|
        df = DataFrame({"x": x, "y": [1, 2, 3]})
 | 
						|
        axes = df.plot(x="x", y="y")
 | 
						|
        self._check_ticks_props(axes, xrot=30)
 | 
						|
 | 
						|
        # use timeseries index or not
 | 
						|
        axes = df.set_index("x").plot(y="y", use_index=True)
 | 
						|
        self._check_ticks_props(axes, xrot=30)
 | 
						|
        axes = df.set_index("x").plot(y="y", use_index=False)
 | 
						|
        self._check_ticks_props(axes, xrot=0)
 | 
						|
 | 
						|
        # separate subplots
 | 
						|
        axes = df.plot(x="x", y="y", subplots=True, sharex=True)
 | 
						|
        self._check_ticks_props(axes, xrot=30)
 | 
						|
        axes = df.plot(x="x", y="y", subplots=True, sharex=False)
 | 
						|
        self._check_ticks_props(axes, xrot=0)
 | 
						|
 | 
						|
 | 
						|
def _check_plot_works(f, freq=None, series=None, *args, **kwargs):
 | 
						|
    import matplotlib.pyplot as plt
 | 
						|
 | 
						|
    fig = plt.gcf()
 | 
						|
 | 
						|
    try:
 | 
						|
        plt.clf()
 | 
						|
        ax = fig.add_subplot(211)
 | 
						|
        orig_ax = kwargs.pop("ax", plt.gca())
 | 
						|
        orig_axfreq = getattr(orig_ax, "freq", None)
 | 
						|
 | 
						|
        ret = f(*args, **kwargs)
 | 
						|
        assert ret is not None  # do something more intelligent
 | 
						|
 | 
						|
        ax = kwargs.pop("ax", plt.gca())
 | 
						|
        if series is not None:
 | 
						|
            dfreq = series.index.freq
 | 
						|
            if isinstance(dfreq, BaseOffset):
 | 
						|
                dfreq = dfreq.rule_code
 | 
						|
            if orig_axfreq is None:
 | 
						|
                assert ax.freq == dfreq
 | 
						|
 | 
						|
        if freq is not None and orig_axfreq is None:
 | 
						|
            assert ax.freq == freq
 | 
						|
 | 
						|
        ax = fig.add_subplot(212)
 | 
						|
        kwargs["ax"] = ax
 | 
						|
        ret = f(*args, **kwargs)
 | 
						|
        assert ret is not None  # TODO: do something more intelligent
 | 
						|
 | 
						|
        with tm.ensure_clean(return_filelike=True) as path:
 | 
						|
            plt.savefig(path)
 | 
						|
 | 
						|
        # GH18439, GH#24088, statsmodels#4772
 | 
						|
        with tm.ensure_clean(return_filelike=True) as path:
 | 
						|
            pickle.dump(fig, path)
 | 
						|
    finally:
 | 
						|
        plt.close(fig)
 |