1861 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1861 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import datetime
 | 
						|
from datetime import timedelta
 | 
						|
from decimal import Decimal
 | 
						|
from io import StringIO
 | 
						|
import json
 | 
						|
import os
 | 
						|
import sys
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.compat import (
 | 
						|
    IS64,
 | 
						|
    is_platform_windows,
 | 
						|
)
 | 
						|
import pandas.util._test_decorators as td
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    DatetimeIndex,
 | 
						|
    Series,
 | 
						|
    Timestamp,
 | 
						|
    read_json,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
_seriesd = tm.getSeriesData()
 | 
						|
 | 
						|
_frame = DataFrame(_seriesd)
 | 
						|
 | 
						|
_cat_frame = _frame.copy()
 | 
						|
cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15)
 | 
						|
_cat_frame.index = pd.CategoricalIndex(cat, name="E")
 | 
						|
_cat_frame["E"] = list(reversed(cat))
 | 
						|
_cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64")
 | 
						|
 | 
						|
 | 
						|
def assert_json_roundtrip_equal(result, expected, orient):
 | 
						|
    if orient == "records" or orient == "values":
 | 
						|
        expected = expected.reset_index(drop=True)
 | 
						|
    if orient == "values":
 | 
						|
        expected.columns = range(len(expected.columns))
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.filterwarnings(
 | 
						|
    "ignore:an integer is required (got type float)*:DeprecationWarning"
 | 
						|
)
 | 
						|
@pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning")
 | 
						|
class TestPandasContainer:
 | 
						|
    @pytest.fixture(autouse=True)
 | 
						|
    def setup(self):
 | 
						|
        self.categorical = _cat_frame.copy()
 | 
						|
 | 
						|
        yield
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def datetime_series(self):
 | 
						|
        # Same as usual datetime_series, but with index freq set to None,
 | 
						|
        #  since that doesn't round-trip, see GH#33711
 | 
						|
        ser = tm.makeTimeSeries()
 | 
						|
        ser.name = "ts"
 | 
						|
        ser.index = ser.index._with_freq(None)
 | 
						|
        return ser
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def datetime_frame(self):
 | 
						|
        # Same as usual datetime_frame, but with index freq set to None,
 | 
						|
        #  since that doesn't round-trip, see GH#33711
 | 
						|
        df = DataFrame(tm.getTimeSeriesData())
 | 
						|
        df.index = df.index._with_freq(None)
 | 
						|
        return df
 | 
						|
 | 
						|
    def test_frame_double_encoded_labels(self, orient):
 | 
						|
        df = DataFrame(
 | 
						|
            [["a", "b"], ["c", "d"]],
 | 
						|
            index=['index " 1', "index / 2"],
 | 
						|
            columns=["a \\ b", "y / z"],
 | 
						|
        )
 | 
						|
 | 
						|
        result = read_json(df.to_json(orient=orient), orient=orient)
 | 
						|
        expected = df.copy()
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["split", "records", "values"])
 | 
						|
    def test_frame_non_unique_index(self, orient):
 | 
						|
        df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"])
 | 
						|
        result = read_json(df.to_json(orient=orient), orient=orient)
 | 
						|
        expected = df.copy()
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["index", "columns"])
 | 
						|
    def test_frame_non_unique_index_raises(self, orient):
 | 
						|
        df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"])
 | 
						|
        msg = f"DataFrame index must be unique for orient='{orient}'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.to_json(orient=orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["split", "values"])
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data",
 | 
						|
        [
 | 
						|
            [["a", "b"], ["c", "d"]],
 | 
						|
            [[1.5, 2.5], [3.5, 4.5]],
 | 
						|
            [[1, 2.5], [3, 4.5]],
 | 
						|
            [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]],
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_frame_non_unique_columns(self, orient, data):
 | 
						|
        df = DataFrame(data, index=[1, 2], columns=["x", "x"])
 | 
						|
 | 
						|
        result = read_json(
 | 
						|
            df.to_json(orient=orient), orient=orient, convert_dates=["x"]
 | 
						|
        )
 | 
						|
        if orient == "values":
 | 
						|
            expected = DataFrame(data)
 | 
						|
            if expected.iloc[:, 0].dtype == "datetime64[ns]":
 | 
						|
                # orient == "values" by default will write Timestamp objects out
 | 
						|
                # in milliseconds; these are internally stored in nanosecond,
 | 
						|
                # so divide to get where we need
 | 
						|
                # TODO: a to_epoch method would also solve; see GH 14772
 | 
						|
                expected.iloc[:, 0] = expected.iloc[:, 0].view(np.int64) // 1000000
 | 
						|
        elif orient == "split":
 | 
						|
            expected = df
 | 
						|
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["index", "columns", "records"])
 | 
						|
    def test_frame_non_unique_columns_raises(self, orient):
 | 
						|
        df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"])
 | 
						|
 | 
						|
        msg = f"DataFrame columns must be unique for orient='{orient}'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.to_json(orient=orient)
 | 
						|
 | 
						|
    def test_frame_default_orient(self, float_frame):
 | 
						|
        assert float_frame.to_json() == float_frame.to_json(orient="columns")
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [False, float])
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame):
 | 
						|
        data = float_frame.to_json(orient=orient)
 | 
						|
        result = read_json(
 | 
						|
            data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype
 | 
						|
        )
 | 
						|
 | 
						|
        expected = float_frame
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [False, np.int64])
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype, int_frame):
 | 
						|
        data = int_frame.to_json(orient=orient)
 | 
						|
        result = read_json(
 | 
						|
            data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype
 | 
						|
        )
 | 
						|
        expected = int_frame
 | 
						|
        if (
 | 
						|
            numpy
 | 
						|
            and (not IS64 or is_platform_windows())
 | 
						|
            and not dtype
 | 
						|
            and orient != "split"
 | 
						|
        ):
 | 
						|
            # TODO: see what is causing roundtrip dtype loss
 | 
						|
            expected = expected.astype(np.int32)
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [None, np.float64, int, "U3"])
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_str_axes(self, request, orient, convert_axes, numpy, dtype):
 | 
						|
        df = DataFrame(
 | 
						|
            np.zeros((200, 4)),
 | 
						|
            columns=[str(i) for i in range(4)],
 | 
						|
            index=[str(i) for i in range(200)],
 | 
						|
            dtype=dtype,
 | 
						|
        )
 | 
						|
 | 
						|
        # TODO: do we even need to support U3 dtypes?
 | 
						|
        if numpy and dtype == "U3" and orient != "split":
 | 
						|
            request.node.add_marker(
 | 
						|
                pytest.mark.xfail(reason="Can't decode directly to array")
 | 
						|
            )
 | 
						|
 | 
						|
        data = df.to_json(orient=orient)
 | 
						|
        result = read_json(
 | 
						|
            data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype
 | 
						|
        )
 | 
						|
 | 
						|
        expected = df.copy()
 | 
						|
        if not dtype:
 | 
						|
            expected = expected.astype(np.int64)
 | 
						|
 | 
						|
        # index columns, and records orients cannot fully preserve the string
 | 
						|
        # dtype for axes as the index and column labels are used as keys in
 | 
						|
        # JSON objects. JSON keys are by definition strings, so there's no way
 | 
						|
        # to disambiguate whether those keys actually were strings or numeric
 | 
						|
        # beforehand and numeric wins out.
 | 
						|
        if convert_axes and (orient in ("index", "columns")):
 | 
						|
            expected.columns = expected.columns.astype(np.int64)
 | 
						|
            expected.index = expected.index.astype(np.int64)
 | 
						|
        elif orient == "records" and convert_axes:
 | 
						|
            expected.columns = expected.columns.astype(np.int64)
 | 
						|
        elif convert_axes and orient == "split":
 | 
						|
            expected.columns = expected.columns.astype(np.int64)
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_categorical(self, request, orient, convert_axes, numpy):
 | 
						|
        # TODO: create a better frame to test with and improve coverage
 | 
						|
        if orient in ("index", "columns"):
 | 
						|
            request.node.add_marker(
 | 
						|
                pytest.mark.xfail(
 | 
						|
                    reason=f"Can't have duplicate index values for orient '{orient}')"
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        data = self.categorical.to_json(orient=orient)
 | 
						|
        if numpy and orient in ("records", "values"):
 | 
						|
            request.node.add_marker(
 | 
						|
                pytest.mark.xfail(reason=f"Orient {orient} is broken with numpy=True")
 | 
						|
            )
 | 
						|
 | 
						|
        result = read_json(data, orient=orient, convert_axes=convert_axes, numpy=numpy)
 | 
						|
 | 
						|
        expected = self.categorical.copy()
 | 
						|
        expected.index = expected.index.astype(str)  # Categorical not preserved
 | 
						|
        expected.index.name = None  # index names aren't preserved in JSON
 | 
						|
 | 
						|
        if not numpy and orient == "index":
 | 
						|
            expected = expected.sort_index()
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_empty(self, orient, convert_axes, numpy):
 | 
						|
        empty_frame = DataFrame()
 | 
						|
        data = empty_frame.to_json(orient=orient)
 | 
						|
        result = read_json(data, orient=orient, convert_axes=convert_axes, numpy=numpy)
 | 
						|
        expected = empty_frame.copy()
 | 
						|
 | 
						|
        # TODO: both conditions below are probably bugs
 | 
						|
        if convert_axes:
 | 
						|
            expected.index = expected.index.astype(float)
 | 
						|
            expected.columns = expected.columns.astype(float)
 | 
						|
        if numpy and orient == "values":
 | 
						|
            expected = expected.reindex([0], axis=1).reset_index(drop=True)
 | 
						|
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_timestamp(self, orient, convert_axes, numpy, datetime_frame):
 | 
						|
        # TODO: improve coverage with date_format parameter
 | 
						|
        data = datetime_frame.to_json(orient=orient)
 | 
						|
        result = read_json(data, orient=orient, convert_axes=convert_axes, numpy=numpy)
 | 
						|
        expected = datetime_frame.copy()
 | 
						|
 | 
						|
        if not convert_axes:  # one off for ts handling
 | 
						|
            # DTI gets converted to epoch values
 | 
						|
            idx = expected.index.view(np.int64) // 1000000
 | 
						|
            if orient != "split":  # TODO: handle consistently across orients
 | 
						|
                idx = idx.astype(str)
 | 
						|
 | 
						|
            expected.index = idx
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_roundtrip_mixed(self, request, orient, convert_axes, numpy):
 | 
						|
        if numpy and orient != "split":
 | 
						|
            request.node.add_marker(
 | 
						|
                pytest.mark.xfail(reason="Can't decode directly to array")
 | 
						|
            )
 | 
						|
 | 
						|
        index = pd.Index(["a", "b", "c", "d", "e"])
 | 
						|
        values = {
 | 
						|
            "A": [0.0, 1.0, 2.0, 3.0, 4.0],
 | 
						|
            "B": [0.0, 1.0, 0.0, 1.0, 0.0],
 | 
						|
            "C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
 | 
						|
            "D": [True, False, True, False, True],
 | 
						|
        }
 | 
						|
 | 
						|
        df = DataFrame(data=values, index=index)
 | 
						|
 | 
						|
        data = df.to_json(orient=orient)
 | 
						|
        result = read_json(data, orient=orient, convert_axes=convert_axes, numpy=numpy)
 | 
						|
 | 
						|
        expected = df.copy()
 | 
						|
        expected = expected.assign(**expected.select_dtypes("number").astype(np.int64))
 | 
						|
 | 
						|
        if not numpy and orient == "index":
 | 
						|
            expected = expected.sort_index()
 | 
						|
 | 
						|
        assert_json_roundtrip_equal(result, expected, orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data,msg,orient",
 | 
						|
        [
 | 
						|
            ('{"key":b:a:d}', "Expected object or value", "columns"),
 | 
						|
            # too few indices
 | 
						|
            (
 | 
						|
                '{"columns":["A","B"],'
 | 
						|
                '"index":["2","3"],'
 | 
						|
                '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}',
 | 
						|
                "|".join(
 | 
						|
                    [
 | 
						|
                        r"Length of values \(3\) does not match length of index \(2\)",
 | 
						|
                    ]
 | 
						|
                ),
 | 
						|
                "split",
 | 
						|
            ),
 | 
						|
            # too many columns
 | 
						|
            (
 | 
						|
                '{"columns":["A","B","C"],'
 | 
						|
                '"index":["1","2","3"],'
 | 
						|
                '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}',
 | 
						|
                "3 columns passed, passed data had 2 columns",
 | 
						|
                "split",
 | 
						|
            ),
 | 
						|
            # bad key
 | 
						|
            (
 | 
						|
                '{"badkey":["A","B"],'
 | 
						|
                '"index":["2","3"],'
 | 
						|
                '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}',
 | 
						|
                r"unexpected key\(s\): badkey",
 | 
						|
                "split",
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_frame_from_json_bad_data_raises(self, data, msg, orient):
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            read_json(StringIO(data), orient=orient)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [True, False])
 | 
						|
    @pytest.mark.parametrize("convert_axes", [True, False])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype):
 | 
						|
        num_df = DataFrame([[1, 2], [4, 5, 6]])
 | 
						|
        result = read_json(
 | 
						|
            num_df.to_json(orient=orient),
 | 
						|
            orient=orient,
 | 
						|
            convert_axes=convert_axes,
 | 
						|
            dtype=dtype,
 | 
						|
        )
 | 
						|
        assert np.isnan(result.iloc[0, 2])
 | 
						|
 | 
						|
        obj_df = DataFrame([["1", "2"], ["4", "5", "6"]])
 | 
						|
        result = read_json(
 | 
						|
            obj_df.to_json(orient=orient),
 | 
						|
            orient=orient,
 | 
						|
            convert_axes=convert_axes,
 | 
						|
            dtype=dtype,
 | 
						|
        )
 | 
						|
        assert np.isnan(result.iloc[0, 2])
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [True, False])
 | 
						|
    def test_frame_read_json_dtype_missing_value(self, orient, dtype):
 | 
						|
        # GH28501 Parse missing values using read_json with dtype=False
 | 
						|
        # to NaN instead of None
 | 
						|
        result = read_json("[null]", dtype=dtype)
 | 
						|
        expected = DataFrame([np.nan])
 | 
						|
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("inf", [np.inf, np.NINF])
 | 
						|
    @pytest.mark.parametrize("dtype", [True, False])
 | 
						|
    def test_frame_infinity(self, orient, inf, dtype):
 | 
						|
        # infinities get mapped to nulls which get mapped to NaNs during
 | 
						|
        # deserialisation
 | 
						|
        df = DataFrame([[1, 2], [4, 5, 6]])
 | 
						|
        df.loc[0, 2] = inf
 | 
						|
        result = read_json(df.to_json(), dtype=dtype)
 | 
						|
        assert np.isnan(result.iloc[0, 2])
 | 
						|
 | 
						|
    @pytest.mark.skipif(not IS64, reason="not compliant on 32-bit, xref #15865")
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "value,precision,expected_val",
 | 
						|
        [
 | 
						|
            (0.95, 1, 1.0),
 | 
						|
            (1.95, 1, 2.0),
 | 
						|
            (-1.95, 1, -2.0),
 | 
						|
            (0.995, 2, 1.0),
 | 
						|
            (0.9995, 3, 1.0),
 | 
						|
            (0.99999999999999944, 15, 1.0),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_frame_to_json_float_precision(self, value, precision, expected_val):
 | 
						|
        df = DataFrame([{"a_float": value}])
 | 
						|
        encoded = df.to_json(double_precision=precision)
 | 
						|
        assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}'
 | 
						|
 | 
						|
    def test_frame_to_json_except(self):
 | 
						|
        df = DataFrame([1, 2, 3])
 | 
						|
        msg = "Invalid value 'garbage' for option 'orient'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.to_json(orient="garbage")
 | 
						|
 | 
						|
    def test_frame_empty(self):
 | 
						|
        df = DataFrame(columns=["jim", "joe"])
 | 
						|
        assert not df._is_mixed_type
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False
 | 
						|
        )
 | 
						|
        # GH 7445
 | 
						|
        result = DataFrame({"test": []}, index=[]).to_json(orient="columns")
 | 
						|
        expected = '{"test":{}}'
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    def test_frame_empty_mixedtype(self):
 | 
						|
        # mixed type
 | 
						|
        df = DataFrame(columns=["jim", "joe"])
 | 
						|
        df["joe"] = df["joe"].astype("i8")
 | 
						|
        assert df._is_mixed_type
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False
 | 
						|
        )
 | 
						|
 | 
						|
    def test_frame_mixedtype_orient(self):  # GH10289
 | 
						|
        vals = [
 | 
						|
            [10, 1, "foo", 0.1, 0.01],
 | 
						|
            [20, 2, "bar", 0.2, 0.02],
 | 
						|
            [30, 3, "baz", 0.3, 0.03],
 | 
						|
            [40, 4, "qux", 0.4, 0.04],
 | 
						|
        ]
 | 
						|
 | 
						|
        df = DataFrame(
 | 
						|
            vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"]
 | 
						|
        )
 | 
						|
 | 
						|
        assert df._is_mixed_type
 | 
						|
        right = df.copy()
 | 
						|
 | 
						|
        for orient in ["split", "index", "columns"]:
 | 
						|
            inp = df.to_json(orient=orient)
 | 
						|
            left = read_json(inp, orient=orient, convert_axes=False)
 | 
						|
            tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
        right.index = np.arange(len(df))
 | 
						|
        inp = df.to_json(orient="records")
 | 
						|
        left = read_json(inp, orient="records", convert_axes=False)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
        right.columns = np.arange(df.shape[1])
 | 
						|
        inp = df.to_json(orient="values")
 | 
						|
        left = read_json(inp, orient="values", convert_axes=False)
 | 
						|
        tm.assert_frame_equal(left, right)
 | 
						|
 | 
						|
    def test_v12_compat(self, datapath):
 | 
						|
        dti = pd.date_range("2000-01-03", "2000-01-07")
 | 
						|
        # freq doesn't roundtrip
 | 
						|
        dti = DatetimeIndex(np.asarray(dti), freq=None)
 | 
						|
        df = DataFrame(
 | 
						|
            [
 | 
						|
                [1.56808523, 0.65727391, 1.81021139, -0.17251653],
 | 
						|
                [-0.2550111, -0.08072427, -0.03202878, -0.17581665],
 | 
						|
                [1.51493992, 0.11805825, 1.629455, -1.31506612],
 | 
						|
                [-0.02765498, 0.44679743, 0.33192641, -0.27885413],
 | 
						|
                [0.05951614, -2.69652057, 1.28163262, 0.34703478],
 | 
						|
            ],
 | 
						|
            columns=["A", "B", "C", "D"],
 | 
						|
            index=dti,
 | 
						|
        )
 | 
						|
        df["date"] = Timestamp("19920106 18:21:32.12")
 | 
						|
        df.iloc[3, df.columns.get_loc("date")] = Timestamp("20130101")
 | 
						|
        df["modified"] = df["date"]
 | 
						|
        df.iloc[1, df.columns.get_loc("modified")] = pd.NaT
 | 
						|
 | 
						|
        dirpath = datapath("io", "json", "data")
 | 
						|
        v12_json = os.path.join(dirpath, "tsframe_v012.json")
 | 
						|
        df_unser = read_json(v12_json)
 | 
						|
        tm.assert_frame_equal(df, df_unser)
 | 
						|
 | 
						|
        df_iso = df.drop(["modified"], axis=1)
 | 
						|
        v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json")
 | 
						|
        df_unser_iso = read_json(v12_iso_json)
 | 
						|
        tm.assert_frame_equal(df_iso, df_unser_iso)
 | 
						|
 | 
						|
    def test_blocks_compat_GH9037(self):
 | 
						|
        index = pd.date_range("20000101", periods=10, freq="H")
 | 
						|
        # freq doesn't round-trip
 | 
						|
        index = DatetimeIndex(list(index), freq=None)
 | 
						|
 | 
						|
        df_mixed = DataFrame(
 | 
						|
            {
 | 
						|
                "float_1": [
 | 
						|
                    -0.92077639,
 | 
						|
                    0.77434435,
 | 
						|
                    1.25234727,
 | 
						|
                    0.61485564,
 | 
						|
                    -0.60316077,
 | 
						|
                    0.24653374,
 | 
						|
                    0.28668979,
 | 
						|
                    -2.51969012,
 | 
						|
                    0.95748401,
 | 
						|
                    -1.02970536,
 | 
						|
                ],
 | 
						|
                "int_1": [
 | 
						|
                    19680418,
 | 
						|
                    75337055,
 | 
						|
                    99973684,
 | 
						|
                    65103179,
 | 
						|
                    79373900,
 | 
						|
                    40314334,
 | 
						|
                    21290235,
 | 
						|
                    4991321,
 | 
						|
                    41903419,
 | 
						|
                    16008365,
 | 
						|
                ],
 | 
						|
                "str_1": [
 | 
						|
                    "78c608f1",
 | 
						|
                    "64a99743",
 | 
						|
                    "13d2ff52",
 | 
						|
                    "ca7f4af2",
 | 
						|
                    "97236474",
 | 
						|
                    "bde7e214",
 | 
						|
                    "1a6bde47",
 | 
						|
                    "b1190be5",
 | 
						|
                    "7a669144",
 | 
						|
                    "8d64d068",
 | 
						|
                ],
 | 
						|
                "float_2": [
 | 
						|
                    -0.0428278,
 | 
						|
                    -1.80872357,
 | 
						|
                    3.36042349,
 | 
						|
                    -0.7573685,
 | 
						|
                    -0.48217572,
 | 
						|
                    0.86229683,
 | 
						|
                    1.08935819,
 | 
						|
                    0.93898739,
 | 
						|
                    -0.03030452,
 | 
						|
                    1.43366348,
 | 
						|
                ],
 | 
						|
                "str_2": [
 | 
						|
                    "14f04af9",
 | 
						|
                    "d085da90",
 | 
						|
                    "4bcfac83",
 | 
						|
                    "81504caf",
 | 
						|
                    "2ffef4a9",
 | 
						|
                    "08e2f5c4",
 | 
						|
                    "07e1af03",
 | 
						|
                    "addbd4a7",
 | 
						|
                    "1f6a09ba",
 | 
						|
                    "4bfc4d87",
 | 
						|
                ],
 | 
						|
                "int_2": [
 | 
						|
                    86967717,
 | 
						|
                    98098830,
 | 
						|
                    51927505,
 | 
						|
                    20372254,
 | 
						|
                    12601730,
 | 
						|
                    20884027,
 | 
						|
                    34193846,
 | 
						|
                    10561746,
 | 
						|
                    24867120,
 | 
						|
                    76131025,
 | 
						|
                ],
 | 
						|
            },
 | 
						|
            index=index,
 | 
						|
        )
 | 
						|
 | 
						|
        # JSON deserialisation always creates unicode strings
 | 
						|
        df_mixed.columns = df_mixed.columns.astype("unicode")
 | 
						|
 | 
						|
        df_roundtrip = read_json(df_mixed.to_json(orient="split"), orient="split")
 | 
						|
        tm.assert_frame_equal(
 | 
						|
            df_mixed,
 | 
						|
            df_roundtrip,
 | 
						|
            check_index_type=True,
 | 
						|
            check_column_type=True,
 | 
						|
            by_blocks=True,
 | 
						|
            check_exact=True,
 | 
						|
        )
 | 
						|
 | 
						|
    def test_frame_nonprintable_bytes(self):
 | 
						|
        # GH14256: failing column caused segfaults, if it is not the last one
 | 
						|
 | 
						|
        class BinaryThing:
 | 
						|
            def __init__(self, hexed):
 | 
						|
                self.hexed = hexed
 | 
						|
                self.binary = bytes.fromhex(hexed)
 | 
						|
 | 
						|
            def __str__(self) -> str:
 | 
						|
                return self.hexed
 | 
						|
 | 
						|
        hexed = "574b4454ba8c5eb4f98a8f45"
 | 
						|
        binthing = BinaryThing(hexed)
 | 
						|
 | 
						|
        # verify the proper conversion of printable content
 | 
						|
        df_printable = DataFrame({"A": [binthing.hexed]})
 | 
						|
        assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}'
 | 
						|
 | 
						|
        # check if non-printable content throws appropriate Exception
 | 
						|
        df_nonprintable = DataFrame({"A": [binthing]})
 | 
						|
        msg = "Unsupported UTF-8 sequence length when encoding string"
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            df_nonprintable.to_json()
 | 
						|
 | 
						|
        # the same with multiple columns threw segfaults
 | 
						|
        df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"])
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            df_mixed.to_json()
 | 
						|
 | 
						|
        # default_handler should resolve exceptions for non-string types
 | 
						|
        result = df_nonprintable.to_json(default_handler=str)
 | 
						|
        expected = f'{{"A":{{"0":"{hexed}"}}}}'
 | 
						|
        assert result == expected
 | 
						|
        assert (
 | 
						|
            df_mixed.to_json(default_handler=str)
 | 
						|
            == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}'
 | 
						|
        )
 | 
						|
 | 
						|
    def test_label_overflow(self):
 | 
						|
        # GH14256: buffer length not checked when writing label
 | 
						|
        result = DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json()
 | 
						|
        expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}'
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    def test_series_non_unique_index(self):
 | 
						|
        s = Series(["a", "b"], index=[1, 1])
 | 
						|
 | 
						|
        msg = "Series index must be unique for orient='index'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            s.to_json(orient="index")
 | 
						|
 | 
						|
        tm.assert_series_equal(
 | 
						|
            s, read_json(s.to_json(orient="split"), orient="split", typ="series")
 | 
						|
        )
 | 
						|
        unserialized = read_json(
 | 
						|
            s.to_json(orient="records"), orient="records", typ="series"
 | 
						|
        )
 | 
						|
        tm.assert_numpy_array_equal(s.values, unserialized.values)
 | 
						|
 | 
						|
    def test_series_default_orient(self, string_series):
 | 
						|
        assert string_series.to_json() == string_series.to_json(orient="index")
 | 
						|
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_series_roundtrip_simple(self, orient, numpy, string_series):
 | 
						|
        data = string_series.to_json(orient=orient)
 | 
						|
        result = read_json(data, typ="series", orient=orient, numpy=numpy)
 | 
						|
 | 
						|
        expected = string_series
 | 
						|
        if orient in ("values", "records"):
 | 
						|
            expected = expected.reset_index(drop=True)
 | 
						|
        if orient != "split":
 | 
						|
            expected.name = None
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [False, None])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_series_roundtrip_object(self, orient, numpy, dtype, object_series):
 | 
						|
        data = object_series.to_json(orient=orient)
 | 
						|
        result = read_json(data, typ="series", orient=orient, numpy=numpy, dtype=dtype)
 | 
						|
 | 
						|
        expected = object_series
 | 
						|
        if orient in ("values", "records"):
 | 
						|
            expected = expected.reset_index(drop=True)
 | 
						|
        if orient != "split":
 | 
						|
            expected.name = None
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_series_roundtrip_empty(self, orient, numpy):
 | 
						|
        empty_series = Series([], index=[], dtype=np.float64)
 | 
						|
        data = empty_series.to_json(orient=orient)
 | 
						|
        result = read_json(data, typ="series", orient=orient, numpy=numpy)
 | 
						|
 | 
						|
        expected = empty_series
 | 
						|
        if orient in ("values", "records"):
 | 
						|
            expected = expected.reset_index(drop=True)
 | 
						|
        else:
 | 
						|
            expected.index = expected.index.astype(float)
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series):
 | 
						|
        data = datetime_series.to_json(orient=orient)
 | 
						|
        result = read_json(data, typ="series", orient=orient, numpy=numpy)
 | 
						|
 | 
						|
        expected = datetime_series
 | 
						|
        if orient in ("values", "records"):
 | 
						|
            expected = expected.reset_index(drop=True)
 | 
						|
        if orient != "split":
 | 
						|
            expected.name = None
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [np.float64, int])
 | 
						|
    @pytest.mark.parametrize("numpy", [True, False])
 | 
						|
    def test_series_roundtrip_numeric(self, orient, numpy, dtype):
 | 
						|
        s = Series(range(6), index=["a", "b", "c", "d", "e", "f"])
 | 
						|
        data = s.to_json(orient=orient)
 | 
						|
        result = read_json(data, typ="series", orient=orient, numpy=numpy)
 | 
						|
 | 
						|
        expected = s.copy()
 | 
						|
        if orient in ("values", "records"):
 | 
						|
            expected = expected.reset_index(drop=True)
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_series_to_json_except(self):
 | 
						|
        s = Series([1, 2, 3])
 | 
						|
        msg = "Invalid value 'garbage' for option 'orient'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            s.to_json(orient="garbage")
 | 
						|
 | 
						|
    def test_series_from_json_precise_float(self):
 | 
						|
        s = Series([4.56, 4.56, 4.56])
 | 
						|
        result = read_json(s.to_json(), typ="series", precise_float=True)
 | 
						|
        tm.assert_series_equal(result, s, check_index_type=False)
 | 
						|
 | 
						|
    def test_series_with_dtype(self):
 | 
						|
        # GH 21986
 | 
						|
        s = Series([4.56, 4.56, 4.56])
 | 
						|
        result = read_json(s.to_json(), typ="series", dtype=np.int64)
 | 
						|
        expected = Series([4] * 3)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "dtype,expected",
 | 
						|
        [
 | 
						|
            (True, Series(["2000-01-01"], dtype="datetime64[ns]")),
 | 
						|
            (False, Series([946684800000])),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_series_with_dtype_datetime(self, dtype, expected):
 | 
						|
        s = Series(["2000-01-01"], dtype="datetime64[ns]")
 | 
						|
        data = s.to_json()
 | 
						|
        result = read_json(data, typ="series", dtype=dtype)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_frame_from_json_precise_float(self):
 | 
						|
        df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]])
 | 
						|
        result = read_json(df.to_json(), precise_float=True)
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
    def test_typ(self):
 | 
						|
 | 
						|
        s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64")
 | 
						|
        result = read_json(s.to_json(), typ=None)
 | 
						|
        tm.assert_series_equal(result, s)
 | 
						|
 | 
						|
    def test_reconstruction_index(self):
 | 
						|
 | 
						|
        df = DataFrame([[1, 2, 3], [4, 5, 6]])
 | 
						|
        result = read_json(df.to_json())
 | 
						|
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
        df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"])
 | 
						|
        result = read_json(df.to_json())
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
    def test_path(self, float_frame, int_frame, datetime_frame):
 | 
						|
        with tm.ensure_clean("test.json") as path:
 | 
						|
            for df in [float_frame, int_frame, datetime_frame]:
 | 
						|
                df.to_json(path)
 | 
						|
                read_json(path)
 | 
						|
 | 
						|
    def test_axis_dates(self, datetime_series, datetime_frame):
 | 
						|
 | 
						|
        # frame
 | 
						|
        json = datetime_frame.to_json()
 | 
						|
        result = read_json(json)
 | 
						|
        tm.assert_frame_equal(result, datetime_frame)
 | 
						|
 | 
						|
        # series
 | 
						|
        json = datetime_series.to_json()
 | 
						|
        result = read_json(json, typ="series")
 | 
						|
        tm.assert_series_equal(result, datetime_series, check_names=False)
 | 
						|
        assert result.name is None
 | 
						|
 | 
						|
    def test_convert_dates(self, datetime_series, datetime_frame):
 | 
						|
 | 
						|
        # frame
 | 
						|
        df = datetime_frame
 | 
						|
        df["date"] = Timestamp("20130101")
 | 
						|
 | 
						|
        json = df.to_json()
 | 
						|
        result = read_json(json)
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
        df["foo"] = 1.0
 | 
						|
        json = df.to_json(date_unit="ns")
 | 
						|
 | 
						|
        result = read_json(json, convert_dates=False)
 | 
						|
        expected = df.copy()
 | 
						|
        expected["date"] = expected["date"].values.view("i8")
 | 
						|
        expected["foo"] = expected["foo"].astype("int64")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # series
 | 
						|
        ts = Series(Timestamp("20130101"), index=datetime_series.index)
 | 
						|
        json = ts.to_json()
 | 
						|
        result = read_json(json, typ="series")
 | 
						|
        tm.assert_series_equal(result, ts)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("date_format", ["epoch", "iso"])
 | 
						|
    @pytest.mark.parametrize("as_object", [True, False])
 | 
						|
    @pytest.mark.parametrize("date_typ", [datetime.date, datetime.datetime, Timestamp])
 | 
						|
    def test_date_index_and_values(self, date_format, as_object, date_typ):
 | 
						|
        data = [date_typ(year=2020, month=1, day=1), pd.NaT]
 | 
						|
        if as_object:
 | 
						|
            data.append("a")
 | 
						|
 | 
						|
        ser = Series(data, index=data)
 | 
						|
        result = ser.to_json(date_format=date_format)
 | 
						|
 | 
						|
        if date_format == "epoch":
 | 
						|
            expected = '{"1577836800000":1577836800000,"null":null}'
 | 
						|
        else:
 | 
						|
            expected = (
 | 
						|
                '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}'
 | 
						|
            )
 | 
						|
 | 
						|
        if as_object:
 | 
						|
            expected = expected.replace("}", ',"a":"a"}')
 | 
						|
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "infer_word",
 | 
						|
        [
 | 
						|
            "trade_time",
 | 
						|
            "date",
 | 
						|
            "datetime",
 | 
						|
            "sold_at",
 | 
						|
            "modified",
 | 
						|
            "timestamp",
 | 
						|
            "timestamps",
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_convert_dates_infer(self, infer_word):
 | 
						|
        # GH10747
 | 
						|
        from pandas.io.json import dumps
 | 
						|
 | 
						|
        data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}]
 | 
						|
        expected = DataFrame(
 | 
						|
            [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word]
 | 
						|
        )
 | 
						|
        result = read_json(dumps(data))[["id", infer_word]]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "date,date_unit",
 | 
						|
        [
 | 
						|
            ("20130101 20:43:42.123", None),
 | 
						|
            ("20130101 20:43:42", "s"),
 | 
						|
            ("20130101 20:43:42.123", "ms"),
 | 
						|
            ("20130101 20:43:42.123456", "us"),
 | 
						|
            ("20130101 20:43:42.123456789", "ns"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_date_format_frame(self, date, date_unit, datetime_frame):
 | 
						|
        df = datetime_frame
 | 
						|
 | 
						|
        df["date"] = Timestamp(date)
 | 
						|
        df.iloc[1, df.columns.get_loc("date")] = pd.NaT
 | 
						|
        df.iloc[5, df.columns.get_loc("date")] = pd.NaT
 | 
						|
        if date_unit:
 | 
						|
            json = df.to_json(date_format="iso", date_unit=date_unit)
 | 
						|
        else:
 | 
						|
            json = df.to_json(date_format="iso")
 | 
						|
        result = read_json(json)
 | 
						|
        expected = df.copy()
 | 
						|
        expected.index = expected.index.tz_localize("UTC")
 | 
						|
        expected["date"] = expected["date"].dt.tz_localize("UTC")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_date_format_frame_raises(self, datetime_frame):
 | 
						|
        df = datetime_frame
 | 
						|
        msg = "Invalid value 'foo' for option 'date_unit'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.to_json(date_format="iso", date_unit="foo")
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "date,date_unit",
 | 
						|
        [
 | 
						|
            ("20130101 20:43:42.123", None),
 | 
						|
            ("20130101 20:43:42", "s"),
 | 
						|
            ("20130101 20:43:42.123", "ms"),
 | 
						|
            ("20130101 20:43:42.123456", "us"),
 | 
						|
            ("20130101 20:43:42.123456789", "ns"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_date_format_series(self, date, date_unit, datetime_series):
 | 
						|
        ts = Series(Timestamp(date), index=datetime_series.index)
 | 
						|
        ts.iloc[1] = pd.NaT
 | 
						|
        ts.iloc[5] = pd.NaT
 | 
						|
        if date_unit:
 | 
						|
            json = ts.to_json(date_format="iso", date_unit=date_unit)
 | 
						|
        else:
 | 
						|
            json = ts.to_json(date_format="iso")
 | 
						|
        result = read_json(json, typ="series")
 | 
						|
        expected = ts.copy()
 | 
						|
        expected.index = expected.index.tz_localize("UTC")
 | 
						|
        expected = expected.dt.tz_localize("UTC")
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_date_format_series_raises(self, datetime_series):
 | 
						|
        ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index)
 | 
						|
        msg = "Invalid value 'foo' for option 'date_unit'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            ts.to_json(date_format="iso", date_unit="foo")
 | 
						|
 | 
						|
    @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
 | 
						|
    def test_date_unit(self, unit, datetime_frame):
 | 
						|
        df = datetime_frame
 | 
						|
        df["date"] = Timestamp("20130101 20:43:42")
 | 
						|
        dl = df.columns.get_loc("date")
 | 
						|
        df.iloc[1, dl] = Timestamp("19710101 20:43:42")
 | 
						|
        df.iloc[2, dl] = Timestamp("21460101 20:43:42")
 | 
						|
        df.iloc[4, dl] = pd.NaT
 | 
						|
 | 
						|
        json = df.to_json(date_format="epoch", date_unit=unit)
 | 
						|
 | 
						|
        # force date unit
 | 
						|
        result = read_json(json, date_unit=unit)
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
        # detect date unit
 | 
						|
        result = read_json(json, date_unit=None)
 | 
						|
        tm.assert_frame_equal(result, df)
 | 
						|
 | 
						|
    def test_weird_nested_json(self):
 | 
						|
        # this used to core dump the parser
 | 
						|
        s = r"""{
 | 
						|
        "status": "success",
 | 
						|
        "data": {
 | 
						|
        "posts": [
 | 
						|
            {
 | 
						|
            "id": 1,
 | 
						|
            "title": "A blog post",
 | 
						|
            "body": "Some useful content"
 | 
						|
            },
 | 
						|
            {
 | 
						|
            "id": 2,
 | 
						|
            "title": "Another blog post",
 | 
						|
            "body": "More content"
 | 
						|
            }
 | 
						|
           ]
 | 
						|
          }
 | 
						|
        }"""
 | 
						|
 | 
						|
        read_json(s)
 | 
						|
 | 
						|
    def test_doc_example(self):
 | 
						|
        dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB"))
 | 
						|
        dfj2["date"] = Timestamp("20130101")
 | 
						|
        dfj2["ints"] = range(5)
 | 
						|
        dfj2["bools"] = True
 | 
						|
        dfj2.index = pd.date_range("20130101", periods=5)
 | 
						|
 | 
						|
        json = dfj2.to_json()
 | 
						|
        result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_})
 | 
						|
        tm.assert_frame_equal(result, result)
 | 
						|
 | 
						|
    def test_misc_example(self):
 | 
						|
 | 
						|
        # parsing unordered input fails
 | 
						|
        result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True)
 | 
						|
        expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
 | 
						|
 | 
						|
        error_msg = """DataFrame\\.index are different
 | 
						|
 | 
						|
DataFrame\\.index values are different \\(100\\.0 %\\)
 | 
						|
\\[left\\]:  Index\\(\\['a', 'b'\\], dtype='object'\\)
 | 
						|
\\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)"""
 | 
						|
        with pytest.raises(AssertionError, match=error_msg):
 | 
						|
            tm.assert_frame_equal(result, expected, check_index_type=False)
 | 
						|
 | 
						|
        result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]')
 | 
						|
        expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_round_trip_exception_(self, datapath):
 | 
						|
        # GH 3867
 | 
						|
        path = datapath("io", "json", "data", "teams.csv")
 | 
						|
        df = pd.read_csv(path)
 | 
						|
        s = df.to_json()
 | 
						|
        result = read_json(s)
 | 
						|
        tm.assert_frame_equal(result.reindex(index=df.index, columns=df.columns), df)
 | 
						|
 | 
						|
    @pytest.mark.network
 | 
						|
    @tm.network(
 | 
						|
        url="https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5",
 | 
						|
        check_before_test=True,
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "field,dtype",
 | 
						|
        [
 | 
						|
            ["created_at", pd.DatetimeTZDtype(tz="UTC")],
 | 
						|
            ["closed_at", "datetime64[ns]"],
 | 
						|
            ["updated_at", pd.DatetimeTZDtype(tz="UTC")],
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_url(self, field, dtype):
 | 
						|
        url = "https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5"
 | 
						|
        result = read_json(url, convert_dates=True)
 | 
						|
        assert result[field].dtype == dtype
 | 
						|
 | 
						|
    def test_timedelta(self):
 | 
						|
        converter = lambda x: pd.to_timedelta(x, unit="ms")
 | 
						|
 | 
						|
        s = Series([timedelta(23), timedelta(seconds=5)])
 | 
						|
        assert s.dtype == "timedelta64[ns]"
 | 
						|
 | 
						|
        result = read_json(s.to_json(), typ="series").apply(converter)
 | 
						|
        tm.assert_series_equal(result, s)
 | 
						|
 | 
						|
        s = Series([timedelta(23), timedelta(seconds=5)], index=pd.Index([0, 1]))
 | 
						|
        assert s.dtype == "timedelta64[ns]"
 | 
						|
        result = read_json(s.to_json(), typ="series").apply(converter)
 | 
						|
        tm.assert_series_equal(result, s)
 | 
						|
 | 
						|
        frame = DataFrame([timedelta(23), timedelta(seconds=5)])
 | 
						|
        assert frame[0].dtype == "timedelta64[ns]"
 | 
						|
        tm.assert_frame_equal(frame, read_json(frame.to_json()).apply(converter))
 | 
						|
 | 
						|
        frame = DataFrame(
 | 
						|
            {
 | 
						|
                "a": [timedelta(days=23), timedelta(seconds=5)],
 | 
						|
                "b": [1, 2],
 | 
						|
                "c": pd.date_range(start="20130101", periods=2),
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        result = read_json(frame.to_json(date_unit="ns"))
 | 
						|
        result["a"] = pd.to_timedelta(result.a, unit="ns")
 | 
						|
        result["c"] = pd.to_datetime(result.c)
 | 
						|
        tm.assert_frame_equal(frame, result)
 | 
						|
 | 
						|
    def test_mixed_timedelta_datetime(self):
 | 
						|
        frame = DataFrame({"a": [timedelta(23), Timestamp("20130101")]}, dtype=object)
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            {"a": [pd.Timedelta(frame.a[0]).value, Timestamp(frame.a[1]).value]}
 | 
						|
        )
 | 
						|
        result = read_json(frame.to_json(date_unit="ns"), dtype={"a": "int64"})
 | 
						|
        tm.assert_frame_equal(result, expected, check_index_type=False)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("as_object", [True, False])
 | 
						|
    @pytest.mark.parametrize("date_format", ["iso", "epoch"])
 | 
						|
    @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta])
 | 
						|
    def test_timedelta_to_json(self, as_object, date_format, timedelta_typ):
 | 
						|
        # GH28156: to_json not correctly formatting Timedelta
 | 
						|
        data = [timedelta_typ(days=1), timedelta_typ(days=2), pd.NaT]
 | 
						|
        if as_object:
 | 
						|
            data.append("a")
 | 
						|
 | 
						|
        ser = Series(data, index=data)
 | 
						|
        if date_format == "iso":
 | 
						|
            expected = (
 | 
						|
                '{"P1DT0H0M0S":"P1DT0H0M0S","P2DT0H0M0S":"P2DT0H0M0S","null":null}'
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            expected = '{"86400000":86400000,"172800000":172800000,"null":null}'
 | 
						|
 | 
						|
        if as_object:
 | 
						|
            expected = expected.replace("}", ',"a":"a"}')
 | 
						|
 | 
						|
        result = ser.to_json(date_format=date_format)
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    def test_default_handler(self):
 | 
						|
        value = object()
 | 
						|
        frame = DataFrame({"a": [7, value]})
 | 
						|
        expected = DataFrame({"a": [7, str(value)]})
 | 
						|
        result = read_json(frame.to_json(default_handler=str))
 | 
						|
        tm.assert_frame_equal(expected, result, check_index_type=False)
 | 
						|
 | 
						|
    def test_default_handler_indirect(self):
 | 
						|
        from pandas.io.json import dumps
 | 
						|
 | 
						|
        def default(obj):
 | 
						|
            if isinstance(obj, complex):
 | 
						|
                return [("mathjs", "Complex"), ("re", obj.real), ("im", obj.imag)]
 | 
						|
            return str(obj)
 | 
						|
 | 
						|
        df_list = [
 | 
						|
            9,
 | 
						|
            DataFrame(
 | 
						|
                {"a": [1, "STR", complex(4, -5)], "b": [float("nan"), None, "N/A"]},
 | 
						|
                columns=["a", "b"],
 | 
						|
            ),
 | 
						|
        ]
 | 
						|
        expected = (
 | 
						|
            '[9,[[1,null],["STR",null],[[["mathjs","Complex"],'
 | 
						|
            '["re",4.0],["im",-5.0]],"N\\/A"]]]'
 | 
						|
        )
 | 
						|
        assert dumps(df_list, default_handler=default, orient="values") == expected
 | 
						|
 | 
						|
    def test_default_handler_numpy_unsupported_dtype(self):
 | 
						|
        # GH12554 to_json raises 'Unhandled numpy dtype 15'
 | 
						|
        df = DataFrame(
 | 
						|
            {"a": [1, 2.3, complex(4, -5)], "b": [float("nan"), None, complex(1.2, 0)]},
 | 
						|
            columns=["a", "b"],
 | 
						|
        )
 | 
						|
        expected = (
 | 
						|
            '[["(1+0j)","(nan+0j)"],'
 | 
						|
            '["(2.3+0j)","(nan+0j)"],'
 | 
						|
            '["(4-5j)","(1.2+0j)"]]'
 | 
						|
        )
 | 
						|
        assert df.to_json(default_handler=str, orient="values") == expected
 | 
						|
 | 
						|
    def test_default_handler_raises(self):
 | 
						|
        msg = "raisin"
 | 
						|
 | 
						|
        def my_handler_raises(obj):
 | 
						|
            raise TypeError(msg)
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            DataFrame({"a": [1, 2, object()]}).to_json(
 | 
						|
                default_handler=my_handler_raises
 | 
						|
            )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            DataFrame({"a": [1, 2, complex(4, -5)]}).to_json(
 | 
						|
                default_handler=my_handler_raises
 | 
						|
            )
 | 
						|
 | 
						|
    def test_categorical(self):
 | 
						|
        # GH4377 df.to_json segfaults with non-ndarray blocks
 | 
						|
        df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]})
 | 
						|
        df["B"] = df["A"]
 | 
						|
        expected = df.to_json()
 | 
						|
 | 
						|
        df["B"] = df["A"].astype("category")
 | 
						|
        assert expected == df.to_json()
 | 
						|
 | 
						|
        s = df["A"]
 | 
						|
        sc = df["B"]
 | 
						|
        assert s.to_json() == sc.to_json()
 | 
						|
 | 
						|
    def test_datetime_tz(self):
 | 
						|
        # GH4377 df.to_json segfaults with non-ndarray blocks
 | 
						|
        tz_range = pd.date_range("20130101", periods=3, tz="US/Eastern")
 | 
						|
        tz_naive = tz_range.tz_convert("utc").tz_localize(None)
 | 
						|
 | 
						|
        df = DataFrame({"A": tz_range, "B": pd.date_range("20130101", periods=3)})
 | 
						|
 | 
						|
        df_naive = df.copy()
 | 
						|
        df_naive["A"] = tz_naive
 | 
						|
        expected = df_naive.to_json()
 | 
						|
        assert expected == df.to_json()
 | 
						|
 | 
						|
        stz = Series(tz_range)
 | 
						|
        s_naive = Series(tz_naive)
 | 
						|
        assert stz.to_json() == s_naive.to_json()
 | 
						|
 | 
						|
    def test_sparse(self):
 | 
						|
        # GH4377 df.to_json segfaults with non-ndarray blocks
 | 
						|
        df = DataFrame(np.random.randn(10, 4))
 | 
						|
        df.loc[:8] = np.nan
 | 
						|
 | 
						|
        sdf = df.astype("Sparse")
 | 
						|
        expected = df.to_json()
 | 
						|
        assert expected == sdf.to_json()
 | 
						|
 | 
						|
        s = Series(np.random.randn(10))
 | 
						|
        s.loc[:8] = np.nan
 | 
						|
        ss = s.astype("Sparse")
 | 
						|
 | 
						|
        expected = s.to_json()
 | 
						|
        assert expected == ss.to_json()
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "ts",
 | 
						|
        [
 | 
						|
            Timestamp("2013-01-10 05:00:00Z"),
 | 
						|
            Timestamp("2013-01-10 00:00:00", tz="US/Eastern"),
 | 
						|
            Timestamp("2013-01-10 00:00:00-0500"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_tz_is_utc(self, ts):
 | 
						|
        from pandas.io.json import dumps
 | 
						|
 | 
						|
        exp = '"2013-01-10T05:00:00.000Z"'
 | 
						|
 | 
						|
        assert dumps(ts, iso_dates=True) == exp
 | 
						|
        dt = ts.to_pydatetime()
 | 
						|
        assert dumps(dt, iso_dates=True) == exp
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "tz_range",
 | 
						|
        [
 | 
						|
            pd.date_range("2013-01-01 05:00:00Z", periods=2),
 | 
						|
            pd.date_range("2013-01-01 00:00:00", periods=2, tz="US/Eastern"),
 | 
						|
            pd.date_range("2013-01-01 00:00:00-0500", periods=2),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_tz_range_is_utc(self, tz_range):
 | 
						|
        from pandas.io.json import dumps
 | 
						|
 | 
						|
        exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]'
 | 
						|
        dfexp = (
 | 
						|
            '{"DT":{'
 | 
						|
            '"0":"2013-01-01T05:00:00.000Z",'
 | 
						|
            '"1":"2013-01-02T05:00:00.000Z"}}'
 | 
						|
        )
 | 
						|
 | 
						|
        assert dumps(tz_range, iso_dates=True) == exp
 | 
						|
        dti = DatetimeIndex(tz_range)
 | 
						|
        assert dumps(dti, iso_dates=True) == exp
 | 
						|
        df = DataFrame({"DT": dti})
 | 
						|
        result = dumps(df, iso_dates=True)
 | 
						|
        assert result == dfexp
 | 
						|
 | 
						|
    def test_read_inline_jsonl(self):
 | 
						|
        # GH9180
 | 
						|
        result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True)
 | 
						|
        expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.single_cpu
 | 
						|
    @td.skip_if_not_us_locale
 | 
						|
    def test_read_s3_jsonl(self, s3_resource, s3so):
 | 
						|
        # GH17200
 | 
						|
 | 
						|
        result = read_json(
 | 
						|
            "s3n://pandas-test/items.jsonl", lines=True, storage_options=s3so
 | 
						|
        )
 | 
						|
        expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_read_local_jsonl(self):
 | 
						|
        # GH17200
 | 
						|
        with tm.ensure_clean("tmp_items.json") as path:
 | 
						|
            with open(path, "w") as infile:
 | 
						|
                infile.write('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n')
 | 
						|
            result = read_json(path, lines=True)
 | 
						|
            expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
 | 
						|
            tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_read_jsonl_unicode_chars(self):
 | 
						|
        # GH15132: non-ascii unicode characters
 | 
						|
        # \u201d == RIGHT DOUBLE QUOTATION MARK
 | 
						|
 | 
						|
        # simulate file handle
 | 
						|
        json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
 | 
						|
        json = StringIO(json)
 | 
						|
        result = read_json(json, lines=True)
 | 
						|
        expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # simulate string
 | 
						|
        json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
 | 
						|
        result = read_json(json, lines=True)
 | 
						|
        expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("bigNum", [sys.maxsize + 1, -(sys.maxsize + 2)])
 | 
						|
    def test_to_json_large_numbers(self, bigNum):
 | 
						|
        # GH34473
 | 
						|
        series = Series(bigNum, dtype=object, index=["articleId"])
 | 
						|
        json = series.to_json()
 | 
						|
        expected = '{"articleId":' + str(bigNum) + "}"
 | 
						|
        assert json == expected
 | 
						|
 | 
						|
        df = DataFrame(bigNum, dtype=object, index=["articleId"], columns=[0])
 | 
						|
        json = df.to_json()
 | 
						|
        expected = '{"0":{"articleId":' + str(bigNum) + "}}"
 | 
						|
        assert json == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize("bigNum", [-(2**63) - 1, 2**64])
 | 
						|
    def test_read_json_large_numbers(self, bigNum):
 | 
						|
        # GH20599, 26068
 | 
						|
        json = StringIO('{"articleId":' + str(bigNum) + "}")
 | 
						|
        msg = r"Value is too small|Value is too big"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            read_json(json)
 | 
						|
 | 
						|
        json = StringIO('{"0":{"articleId":' + str(bigNum) + "}}")
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            read_json(json)
 | 
						|
 | 
						|
    def test_read_json_large_numbers2(self):
 | 
						|
        # GH18842
 | 
						|
        json = '{"articleId": "1404366058080022500245"}'
 | 
						|
        json = StringIO(json)
 | 
						|
        result = read_json(json, typ="series")
 | 
						|
        expected = Series(1.404366e21, index=["articleId"])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        json = '{"0": {"articleId": "1404366058080022500245"}}'
 | 
						|
        json = StringIO(json)
 | 
						|
        result = read_json(json)
 | 
						|
        expected = DataFrame(1.404366e21, index=["articleId"], columns=[0])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_to_jsonl(self):
 | 
						|
        # GH9180
 | 
						|
        df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
 | 
						|
        result = df.to_json(orient="records", lines=True)
 | 
						|
        expected = '{"a":1,"b":2}\n{"a":1,"b":2}\n'
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
        df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"])
 | 
						|
        result = df.to_json(orient="records", lines=True)
 | 
						|
        expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}\n'
 | 
						|
        assert result == expected
 | 
						|
        tm.assert_frame_equal(read_json(result, lines=True), df)
 | 
						|
 | 
						|
        # GH15096: escaped characters in columns and data
 | 
						|
        df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"])
 | 
						|
        result = df.to_json(orient="records", lines=True)
 | 
						|
        expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}\n'
 | 
						|
        assert result == expected
 | 
						|
        tm.assert_frame_equal(read_json(result, lines=True), df)
 | 
						|
 | 
						|
    # TODO: there is a near-identical test for pytables; can we share?
 | 
						|
    @pytest.mark.xfail(reason="GH#13774 encoding kwarg not supported", raises=TypeError)
 | 
						|
    def test_latin_encoding(self):
 | 
						|
        # GH 13774
 | 
						|
        values = [
 | 
						|
            [b"E\xc9, 17", b"", b"a", b"b", b"c"],
 | 
						|
            [b"E\xc9, 17", b"a", b"b", b"c"],
 | 
						|
            [b"EE, 17", b"", b"a", b"b", b"c"],
 | 
						|
            [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"],
 | 
						|
            [b"", b"a", b"b", b"c"],
 | 
						|
            [b"\xf8\xfc", b"a", b"b", b"c"],
 | 
						|
            [b"A\xf8\xfc", b"", b"a", b"b", b"c"],
 | 
						|
            [np.nan, b"", b"b", b"c"],
 | 
						|
            [b"A\xf8\xfc", np.nan, b"", b"b", b"c"],
 | 
						|
        ]
 | 
						|
 | 
						|
        values = [
 | 
						|
            [x.decode("latin-1") if isinstance(x, bytes) else x for x in y]
 | 
						|
            for y in values
 | 
						|
        ]
 | 
						|
 | 
						|
        examples = []
 | 
						|
        for dtype in ["category", object]:
 | 
						|
            for val in values:
 | 
						|
                examples.append(Series(val, dtype=dtype))
 | 
						|
 | 
						|
        def roundtrip(s, encoding="latin-1"):
 | 
						|
            with tm.ensure_clean("test.json") as path:
 | 
						|
                s.to_json(path, encoding=encoding)
 | 
						|
                retr = read_json(path, encoding=encoding)
 | 
						|
                tm.assert_series_equal(s, retr, check_categorical=False)
 | 
						|
 | 
						|
        for s in examples:
 | 
						|
            roundtrip(s)
 | 
						|
 | 
						|
    def test_data_frame_size_after_to_json(self):
 | 
						|
        # GH15344
 | 
						|
        df = DataFrame({"a": [str(1)]})
 | 
						|
 | 
						|
        size_before = df.memory_usage(index=True, deep=True).sum()
 | 
						|
        df.to_json()
 | 
						|
        size_after = df.memory_usage(index=True, deep=True).sum()
 | 
						|
 | 
						|
        assert size_before == size_after
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index", [None, [1, 2], [1.0, 2.0], ["a", "b"], ["1", "2"], ["1.", "2."]]
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize("columns", [["a", "b"], ["1", "2"], ["1.", "2."]])
 | 
						|
    def test_from_json_to_json_table_index_and_columns(self, index, columns):
 | 
						|
        # GH25433 GH25435
 | 
						|
        expected = DataFrame([[1, 2], [3, 4]], index=index, columns=columns)
 | 
						|
        dfjson = expected.to_json(orient="table")
 | 
						|
        result = read_json(dfjson, orient="table")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_from_json_to_json_table_dtypes(self):
 | 
						|
        # GH21345
 | 
						|
        expected = DataFrame({"a": [1, 2], "b": [3.0, 4.0], "c": ["5", "6"]})
 | 
						|
        dfjson = expected.to_json(orient="table")
 | 
						|
        result = read_json(dfjson, orient="table")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["split", "records", "index", "columns"])
 | 
						|
    def test_to_json_from_json_columns_dtypes(self, orient):
 | 
						|
        # GH21892 GH33205
 | 
						|
        expected = DataFrame.from_dict(
 | 
						|
            {
 | 
						|
                "Integer": Series([1, 2, 3], dtype="int64"),
 | 
						|
                "Float": Series([None, 2.0, 3.0], dtype="float64"),
 | 
						|
                "Object": Series([None, "", "c"], dtype="object"),
 | 
						|
                "Bool": Series([True, False, True], dtype="bool"),
 | 
						|
                "Category": Series(["a", "b", None], dtype="category"),
 | 
						|
                "Datetime": Series(
 | 
						|
                    ["2020-01-01", None, "2020-01-03"], dtype="datetime64[ns]"
 | 
						|
                ),
 | 
						|
            }
 | 
						|
        )
 | 
						|
        dfjson = expected.to_json(orient=orient)
 | 
						|
        result = read_json(
 | 
						|
            dfjson,
 | 
						|
            orient=orient,
 | 
						|
            dtype={
 | 
						|
                "Integer": "int64",
 | 
						|
                "Float": "float64",
 | 
						|
                "Object": "object",
 | 
						|
                "Bool": "bool",
 | 
						|
                "Category": "category",
 | 
						|
                "Datetime": "datetime64[ns]",
 | 
						|
            },
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [True, {"b": int, "c": int}])
 | 
						|
    def test_read_json_table_dtype_raises(self, dtype):
 | 
						|
        # GH21345
 | 
						|
        df = DataFrame({"a": [1, 2], "b": [3.0, 4.0], "c": ["5", "6"]})
 | 
						|
        dfjson = df.to_json(orient="table")
 | 
						|
        msg = "cannot pass both dtype and orient='table'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            read_json(dfjson, orient="table", dtype=dtype)
 | 
						|
 | 
						|
    def test_read_json_table_convert_axes_raises(self):
 | 
						|
        # GH25433 GH25435
 | 
						|
        df = DataFrame([[1, 2], [3, 4]], index=[1.0, 2.0], columns=["1.", "2."])
 | 
						|
        dfjson = df.to_json(orient="table")
 | 
						|
        msg = "cannot pass both convert_axes and orient='table'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            read_json(dfjson, orient="table", convert_axes=True)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data, expected",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                DataFrame([[1, 2], [4, 5]], columns=["a", "b"]),
 | 
						|
                {"columns": ["a", "b"], "data": [[1, 2], [4, 5]]},
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                DataFrame([[1, 2], [4, 5]], columns=["a", "b"]).rename_axis("foo"),
 | 
						|
                {"columns": ["a", "b"], "data": [[1, 2], [4, 5]]},
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                DataFrame(
 | 
						|
                    [[1, 2], [4, 5]], columns=["a", "b"], index=[["a", "b"], ["c", "d"]]
 | 
						|
                ),
 | 
						|
                {"columns": ["a", "b"], "data": [[1, 2], [4, 5]]},
 | 
						|
            ),
 | 
						|
            (Series([1, 2, 3], name="A"), {"name": "A", "data": [1, 2, 3]}),
 | 
						|
            (
 | 
						|
                Series([1, 2, 3], name="A").rename_axis("foo"),
 | 
						|
                {"name": "A", "data": [1, 2, 3]},
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                Series([1, 2], name="A", index=[["a", "b"], ["c", "d"]]),
 | 
						|
                {"name": "A", "data": [1, 2]},
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_index_false_to_json_split(self, data, expected):
 | 
						|
        # GH 17394
 | 
						|
        # Testing index=False in to_json with orient='split'
 | 
						|
 | 
						|
        result = data.to_json(orient="split", index=False)
 | 
						|
        result = json.loads(result)
 | 
						|
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data",
 | 
						|
        [
 | 
						|
            (DataFrame([[1, 2], [4, 5]], columns=["a", "b"])),
 | 
						|
            (DataFrame([[1, 2], [4, 5]], columns=["a", "b"]).rename_axis("foo")),
 | 
						|
            (
 | 
						|
                DataFrame(
 | 
						|
                    [[1, 2], [4, 5]], columns=["a", "b"], index=[["a", "b"], ["c", "d"]]
 | 
						|
                )
 | 
						|
            ),
 | 
						|
            (Series([1, 2, 3], name="A")),
 | 
						|
            (Series([1, 2, 3], name="A").rename_axis("foo")),
 | 
						|
            (Series([1, 2], name="A", index=[["a", "b"], ["c", "d"]])),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_index_false_to_json_table(self, data):
 | 
						|
        # GH 17394
 | 
						|
        # Testing index=False in to_json with orient='table'
 | 
						|
 | 
						|
        result = data.to_json(orient="table", index=False)
 | 
						|
        result = json.loads(result)
 | 
						|
 | 
						|
        expected = {
 | 
						|
            "schema": pd.io.json.build_table_schema(data, index=False),
 | 
						|
            "data": DataFrame(data).to_dict(orient="records"),
 | 
						|
        }
 | 
						|
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["records", "index", "columns", "values"])
 | 
						|
    def test_index_false_error_to_json(self, orient):
 | 
						|
        # GH 17394
 | 
						|
        # Testing error message from to_json with index=False
 | 
						|
 | 
						|
        df = DataFrame([[1, 2], [4, 5]], columns=["a", "b"])
 | 
						|
 | 
						|
        msg = "'index=False' is only valid when 'orient' is 'split' or 'table'"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df.to_json(orient=orient, index=False)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("orient", ["split", "table"])
 | 
						|
    @pytest.mark.parametrize("index", [True, False])
 | 
						|
    def test_index_false_from_json_to_json(self, orient, index):
 | 
						|
        # GH25170
 | 
						|
        # Test index=False in from_json to_json
 | 
						|
        expected = DataFrame({"a": [1, 2], "b": [3, 4]})
 | 
						|
        dfjson = expected.to_json(orient=orient, index=index)
 | 
						|
        result = read_json(dfjson, orient=orient)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_read_timezone_information(self):
 | 
						|
        # GH 25546
 | 
						|
        result = read_json(
 | 
						|
            '{"2019-01-01T11:00:00.000Z":88}', typ="series", orient="index"
 | 
						|
        )
 | 
						|
        expected = Series([88], index=DatetimeIndex(["2019-01-01 11:00:00"], tz="UTC"))
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "url",
 | 
						|
        [
 | 
						|
            "s3://example-fsspec/",
 | 
						|
            "gcs://another-fsspec/file.json",
 | 
						|
            "https://example-site.com/data",
 | 
						|
            "some-protocol://data.txt",
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_read_json_with_url_value(self, url):
 | 
						|
        # GH 36271
 | 
						|
        result = read_json(f'{{"url":{{"0":"{url}"}}}}')
 | 
						|
        expected = DataFrame({"url": [url]})
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "date_format,key", [("epoch", 86400000), ("iso", "P1DT0H0M0S")]
 | 
						|
    )
 | 
						|
    def test_timedelta_as_label(self, date_format, key):
 | 
						|
        df = DataFrame([[1]], columns=[pd.Timedelta("1D")])
 | 
						|
        expected = f'{{"{key}":{{"0":1}}}}'
 | 
						|
        result = df.to_json(date_format=date_format)
 | 
						|
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "orient,expected",
 | 
						|
        [
 | 
						|
            ("index", "{\"('a', 'b')\":{\"('c', 'd')\":1}}"),
 | 
						|
            ("columns", "{\"('c', 'd')\":{\"('a', 'b')\":1}}"),
 | 
						|
            # TODO: the below have separate encoding procedures
 | 
						|
            # They produce JSON but not in a consistent manner
 | 
						|
            pytest.param("split", "", marks=pytest.mark.skip),
 | 
						|
            pytest.param("table", "", marks=pytest.mark.skip),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_tuple_labels(self, orient, expected):
 | 
						|
        # GH 20500
 | 
						|
        df = DataFrame([[1]], index=[("a", "b")], columns=[("c", "d")])
 | 
						|
        result = df.to_json(orient=orient)
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize("indent", [1, 2, 4])
 | 
						|
    def test_to_json_indent(self, indent):
 | 
						|
        # GH 12004
 | 
						|
        df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["a", "b"])
 | 
						|
 | 
						|
        result = df.to_json(indent=indent)
 | 
						|
        spaces = " " * indent
 | 
						|
        expected = f"""{{
 | 
						|
{spaces}"a":{{
 | 
						|
{spaces}{spaces}"0":"foo",
 | 
						|
{spaces}{spaces}"1":"baz"
 | 
						|
{spaces}}},
 | 
						|
{spaces}"b":{{
 | 
						|
{spaces}{spaces}"0":"bar",
 | 
						|
{spaces}{spaces}"1":"qux"
 | 
						|
{spaces}}}
 | 
						|
}}"""
 | 
						|
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "orient,expected",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                "split",
 | 
						|
                """{
 | 
						|
    "columns":[
 | 
						|
        "a",
 | 
						|
        "b"
 | 
						|
    ],
 | 
						|
    "index":[
 | 
						|
        0,
 | 
						|
        1
 | 
						|
    ],
 | 
						|
    "data":[
 | 
						|
        [
 | 
						|
            "foo",
 | 
						|
            "bar"
 | 
						|
        ],
 | 
						|
        [
 | 
						|
            "baz",
 | 
						|
            "qux"
 | 
						|
        ]
 | 
						|
    ]
 | 
						|
}""",
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "records",
 | 
						|
                """[
 | 
						|
    {
 | 
						|
        "a":"foo",
 | 
						|
        "b":"bar"
 | 
						|
    },
 | 
						|
    {
 | 
						|
        "a":"baz",
 | 
						|
        "b":"qux"
 | 
						|
    }
 | 
						|
]""",
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "index",
 | 
						|
                """{
 | 
						|
    "0":{
 | 
						|
        "a":"foo",
 | 
						|
        "b":"bar"
 | 
						|
    },
 | 
						|
    "1":{
 | 
						|
        "a":"baz",
 | 
						|
        "b":"qux"
 | 
						|
    }
 | 
						|
}""",
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "columns",
 | 
						|
                """{
 | 
						|
    "a":{
 | 
						|
        "0":"foo",
 | 
						|
        "1":"baz"
 | 
						|
    },
 | 
						|
    "b":{
 | 
						|
        "0":"bar",
 | 
						|
        "1":"qux"
 | 
						|
    }
 | 
						|
}""",
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "values",
 | 
						|
                """[
 | 
						|
    [
 | 
						|
        "foo",
 | 
						|
        "bar"
 | 
						|
    ],
 | 
						|
    [
 | 
						|
        "baz",
 | 
						|
        "qux"
 | 
						|
    ]
 | 
						|
]""",
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "table",
 | 
						|
                """{
 | 
						|
    "schema":{
 | 
						|
        "fields":[
 | 
						|
            {
 | 
						|
                "name":"index",
 | 
						|
                "type":"integer"
 | 
						|
            },
 | 
						|
            {
 | 
						|
                "name":"a",
 | 
						|
                "type":"string"
 | 
						|
            },
 | 
						|
            {
 | 
						|
                "name":"b",
 | 
						|
                "type":"string"
 | 
						|
            }
 | 
						|
        ],
 | 
						|
        "primaryKey":[
 | 
						|
            "index"
 | 
						|
        ],
 | 
						|
        "pandas_version":"1.4.0"
 | 
						|
    },
 | 
						|
    "data":[
 | 
						|
        {
 | 
						|
            "index":0,
 | 
						|
            "a":"foo",
 | 
						|
            "b":"bar"
 | 
						|
        },
 | 
						|
        {
 | 
						|
            "index":1,
 | 
						|
            "a":"baz",
 | 
						|
            "b":"qux"
 | 
						|
        }
 | 
						|
    ]
 | 
						|
}""",
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_json_indent_all_orients(self, orient, expected):
 | 
						|
        # GH 12004
 | 
						|
        df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["a", "b"])
 | 
						|
        result = df.to_json(orient=orient, indent=4)
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    def test_json_negative_indent_raises(self):
 | 
						|
        with pytest.raises(ValueError, match="must be a nonnegative integer"):
 | 
						|
            DataFrame().to_json(indent=-1)
 | 
						|
 | 
						|
    def test_emca_262_nan_inf_support(self):
 | 
						|
        # GH 12213
 | 
						|
        data = '["a", NaN, "NaN", Infinity, "Infinity", -Infinity, "-Infinity"]'
 | 
						|
        result = read_json(data)
 | 
						|
        expected = DataFrame(
 | 
						|
            ["a", np.nan, "NaN", np.inf, "Infinity", -np.inf, "-Infinity"]
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_deprecate_numpy_argument_read_json(self):
 | 
						|
        # GH 28512
 | 
						|
        expected = DataFrame([1, 2, 3])
 | 
						|
        with tm.assert_produces_warning(FutureWarning):
 | 
						|
            result = read_json(expected.to_json(), numpy=True)
 | 
						|
            tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_frame_int_overflow(self):
 | 
						|
        # GH 30320
 | 
						|
        encoded_json = json.dumps([{"col": "31900441201190696999"}, {"col": "Text"}])
 | 
						|
        expected = DataFrame({"col": ["31900441201190696999", "Text"]})
 | 
						|
        result = read_json(encoded_json)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "dataframe,expected",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                DataFrame({"x": [1, 2, 3], "y": ["a", "b", "c"]}),
 | 
						|
                '{"(0, \'x\')":1,"(0, \'y\')":"a","(1, \'x\')":2,'
 | 
						|
                '"(1, \'y\')":"b","(2, \'x\')":3,"(2, \'y\')":"c"}',
 | 
						|
            )
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_json_multiindex(self, dataframe, expected):
 | 
						|
        series = dataframe.stack()
 | 
						|
        result = series.to_json(orient="index")
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.single_cpu
 | 
						|
    def test_to_s3(self, s3_resource, s3so):
 | 
						|
        import time
 | 
						|
 | 
						|
        # GH 28375
 | 
						|
        mock_bucket_name, target_file = "pandas-test", "test.json"
 | 
						|
        df = DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
 | 
						|
        df.to_json(f"s3://{mock_bucket_name}/{target_file}", storage_options=s3so)
 | 
						|
        timeout = 5
 | 
						|
        while True:
 | 
						|
            if target_file in (
 | 
						|
                obj.key for obj in s3_resource.Bucket("pandas-test").objects.all()
 | 
						|
            ):
 | 
						|
                break
 | 
						|
            time.sleep(0.1)
 | 
						|
            timeout -= 0.1
 | 
						|
            assert timeout > 0, "Timed out waiting for file to appear on moto"
 | 
						|
 | 
						|
    def test_json_pandas_nulls(self, nulls_fixture, request):
 | 
						|
        # GH 31615
 | 
						|
        if isinstance(nulls_fixture, Decimal):
 | 
						|
            mark = pytest.mark.xfail(reason="not implemented")
 | 
						|
            request.node.add_marker(mark)
 | 
						|
 | 
						|
        result = DataFrame([[nulls_fixture]]).to_json()
 | 
						|
        assert result == '{"0":{"0":null}}'
 | 
						|
 | 
						|
    def test_readjson_bool_series(self):
 | 
						|
        # GH31464
 | 
						|
        result = read_json("[true, true, false]", typ="series")
 | 
						|
        expected = Series([True, True, False])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_to_json_multiindex_escape(self):
 | 
						|
        # GH 15273
 | 
						|
        df = DataFrame(
 | 
						|
            True,
 | 
						|
            index=pd.date_range("2017-01-20", "2017-01-23"),
 | 
						|
            columns=["foo", "bar"],
 | 
						|
        ).stack()
 | 
						|
        result = df.to_json()
 | 
						|
        expected = (
 | 
						|
            "{\"(Timestamp('2017-01-20 00:00:00'), 'foo')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-20 00:00:00'), 'bar')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-21 00:00:00'), 'foo')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-21 00:00:00'), 'bar')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-22 00:00:00'), 'foo')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-22 00:00:00'), 'bar')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-23 00:00:00'), 'foo')\":true,"
 | 
						|
            "\"(Timestamp('2017-01-23 00:00:00'), 'bar')\":true}"
 | 
						|
        )
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    def test_to_json_series_of_objects(self):
 | 
						|
        class _TestObject:
 | 
						|
            def __init__(self, a, b, _c, d):
 | 
						|
                self.a = a
 | 
						|
                self.b = b
 | 
						|
                self._c = _c
 | 
						|
                self.d = d
 | 
						|
 | 
						|
            def e(self):
 | 
						|
                return 5
 | 
						|
 | 
						|
        # JSON keys should be all non-callable non-underscore attributes, see GH-42768
 | 
						|
        series = Series([_TestObject(a=1, b=2, _c=3, d=4)])
 | 
						|
        assert json.loads(series.to_json()) == {"0": {"a": 1, "b": 2, "d": 4}}
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data,expected",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                Series({0: -6 + 8j, 1: 0 + 1j, 2: 9 - 5j}),
 | 
						|
                '{"0":{"imag":8.0,"real":-6.0},'
 | 
						|
                '"1":{"imag":1.0,"real":0.0},'
 | 
						|
                '"2":{"imag":-5.0,"real":9.0}}',
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                Series({0: -9.39 + 0.66j, 1: 3.95 + 9.32j, 2: 4.03 - 0.17j}),
 | 
						|
                '{"0":{"imag":0.66,"real":-9.39},'
 | 
						|
                '"1":{"imag":9.32,"real":3.95},'
 | 
						|
                '"2":{"imag":-0.17,"real":4.03}}',
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                DataFrame([[-2 + 3j, -1 - 0j], [4 - 3j, -0 - 10j]]),
 | 
						|
                '{"0":{"0":{"imag":3.0,"real":-2.0},'
 | 
						|
                '"1":{"imag":-3.0,"real":4.0}},'
 | 
						|
                '"1":{"0":{"imag":0.0,"real":-1.0},'
 | 
						|
                '"1":{"imag":-10.0,"real":0.0}}}',
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                DataFrame(
 | 
						|
                    [[-0.28 + 0.34j, -1.08 - 0.39j], [0.41 - 0.34j, -0.78 - 1.35j]]
 | 
						|
                ),
 | 
						|
                '{"0":{"0":{"imag":0.34,"real":-0.28},'
 | 
						|
                '"1":{"imag":-0.34,"real":0.41}},'
 | 
						|
                '"1":{"0":{"imag":-0.39,"real":-1.08},'
 | 
						|
                '"1":{"imag":-1.35,"real":-0.78}}}',
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_complex_data_tojson(self, data, expected):
 | 
						|
        # GH41174
 | 
						|
        result = data.to_json()
 | 
						|
        assert result == expected
 |