76 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "values, dtype",
 | 
						|
    [
 | 
						|
        ([], "object"),
 | 
						|
        ([1, 2, 3], "int64"),
 | 
						|
        ([1.0, 2.0, 3.0], "float64"),
 | 
						|
        (["a", "b", "c"], "object"),
 | 
						|
        (["a", "b", "c"], "string"),
 | 
						|
        ([1, 2, 3], "datetime64[ns]"),
 | 
						|
        ([1, 2, 3], "datetime64[ns, CET]"),
 | 
						|
        ([1, 2, 3], "timedelta64[ns]"),
 | 
						|
        (["2000", "2001", "2002"], "Period[D]"),
 | 
						|
        ([1, 0, 3], "Sparse"),
 | 
						|
        ([pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(3, 4)], "interval"),
 | 
						|
    ],
 | 
						|
)
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "mask", [[True, False, False], [True, True, True], [False, False, False]]
 | 
						|
)
 | 
						|
@pytest.mark.parametrize("indexer_class", [list, pd.array, pd.Index, pd.Series])
 | 
						|
@pytest.mark.parametrize("frame", [True, False])
 | 
						|
def test_series_mask_boolean(values, dtype, mask, indexer_class, frame):
 | 
						|
    # In case len(values) < 3
 | 
						|
    index = ["a", "b", "c"][: len(values)]
 | 
						|
    mask = mask[: len(values)]
 | 
						|
 | 
						|
    obj = pd.Series(values, dtype=dtype, index=index)
 | 
						|
    if frame:
 | 
						|
        if len(values) == 0:
 | 
						|
            # Otherwise obj is an empty DataFrame with shape (0, 1)
 | 
						|
            obj = pd.DataFrame(dtype=dtype)
 | 
						|
        else:
 | 
						|
            obj = obj.to_frame()
 | 
						|
 | 
						|
    if indexer_class is pd.array:
 | 
						|
        mask = pd.array(mask, dtype="boolean")
 | 
						|
    elif indexer_class is pd.Series:
 | 
						|
        mask = pd.Series(mask, index=obj.index, dtype="boolean")
 | 
						|
    else:
 | 
						|
        mask = indexer_class(mask)
 | 
						|
 | 
						|
    expected = obj[mask]
 | 
						|
 | 
						|
    result = obj[mask]
 | 
						|
    tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    if indexer_class is pd.Series:
 | 
						|
        msg = "iLocation based boolean indexing cannot use an indexable as a mask"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            result = obj.iloc[mask]
 | 
						|
            tm.assert_equal(result, expected)
 | 
						|
    else:
 | 
						|
        result = obj.iloc[mask]
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    result = obj.loc[mask]
 | 
						|
    tm.assert_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_na_treated_as_false(frame_or_series, indexer_sli):
 | 
						|
    # https://github.com/pandas-dev/pandas/issues/31503
 | 
						|
    obj = frame_or_series([1, 2, 3])
 | 
						|
 | 
						|
    mask = pd.array([True, False, None], dtype="boolean")
 | 
						|
 | 
						|
    result = indexer_sli(obj)[mask]
 | 
						|
    expected = indexer_sli(obj)[mask.fillna(False)]
 | 
						|
 | 
						|
    tm.assert_equal(result, expected)
 |