49 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Series,
 | 
						|
    period_range,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def test_iat(float_frame):
 | 
						|
 | 
						|
    for i, row in enumerate(float_frame.index):
 | 
						|
        for j, col in enumerate(float_frame.columns):
 | 
						|
            result = float_frame.iat[i, j]
 | 
						|
            expected = float_frame.at[row, col]
 | 
						|
            assert result == expected
 | 
						|
 | 
						|
 | 
						|
def test_iat_duplicate_columns():
 | 
						|
    # https://github.com/pandas-dev/pandas/issues/11754
 | 
						|
    df = DataFrame([[1, 2]], columns=["x", "x"])
 | 
						|
    assert df.iat[0, 0] == 1
 | 
						|
 | 
						|
 | 
						|
def test_iat_getitem_series_with_period_index():
 | 
						|
    # GH#4390, iat incorrectly indexing
 | 
						|
    index = period_range("1/1/2001", periods=10)
 | 
						|
    ser = Series(np.random.randn(10), index=index)
 | 
						|
    expected = ser[index[0]]
 | 
						|
    result = ser.iat[0]
 | 
						|
    assert expected == result
 | 
						|
 | 
						|
 | 
						|
def test_iat_setitem_item_cache_cleared(indexer_ial):
 | 
						|
    # GH#45684
 | 
						|
    data = {"x": np.arange(8, dtype=np.int64), "y": np.int64(0)}
 | 
						|
    df = DataFrame(data).copy()
 | 
						|
    ser = df["y"]
 | 
						|
 | 
						|
    # previously this iat setting would split the block and fail to clear
 | 
						|
    #  the item_cache.
 | 
						|
    indexer_ial(df)[7, 0] = 9999
 | 
						|
 | 
						|
    indexer_ial(df)[7, 1] = 1234
 | 
						|
 | 
						|
    assert df.iat[7, 1] == 1234
 | 
						|
    assert ser.iloc[-1] == 1234
 | 
						|
    assert df.iloc[-1, -1] == 1234
 |