556 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			556 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import re
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.core.dtypes.common import is_categorical_dtype
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    Categorical,
 | 
						|
    CategoricalIndex,
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    Interval,
 | 
						|
    Series,
 | 
						|
    Timedelta,
 | 
						|
    Timestamp,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.api.types import CategoricalDtype as CDT
 | 
						|
 | 
						|
 | 
						|
class TestCategoricalIndex:
 | 
						|
    def setup_method(self, method):
 | 
						|
 | 
						|
        self.df = DataFrame(
 | 
						|
            {
 | 
						|
                "A": np.arange(6, dtype="int64"),
 | 
						|
            },
 | 
						|
            index=CategoricalIndex(list("aabbca"), dtype=CDT(list("cab")), name="B"),
 | 
						|
        )
 | 
						|
        self.df2 = DataFrame(
 | 
						|
            {
 | 
						|
                "A": np.arange(6, dtype="int64"),
 | 
						|
            },
 | 
						|
            index=CategoricalIndex(list("aabbca"), dtype=CDT(list("cabe")), name="B"),
 | 
						|
        )
 | 
						|
 | 
						|
    def test_loc_scalar(self):
 | 
						|
        dtype = CDT(list("cab"))
 | 
						|
        result = self.df.loc["a"]
 | 
						|
        bidx = Series(list("aaa"), name="B").astype(dtype)
 | 
						|
        assert bidx.dtype == dtype
 | 
						|
 | 
						|
        expected = DataFrame({"A": [0, 1, 5]}, index=Index(bidx))
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        df = self.df.copy()
 | 
						|
        df.loc["a"] = 20
 | 
						|
        bidx2 = Series(list("aabbca"), name="B").astype(dtype)
 | 
						|
        assert bidx2.dtype == dtype
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                "A": [20, 20, 2, 3, 4, 20],
 | 
						|
            },
 | 
						|
            index=Index(bidx2),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(df, expected)
 | 
						|
 | 
						|
        # value not in the categories
 | 
						|
        with pytest.raises(KeyError, match=r"^'d'$"):
 | 
						|
            df.loc["d"]
 | 
						|
 | 
						|
        df2 = df.copy()
 | 
						|
        expected = df2.copy()
 | 
						|
        expected.index = expected.index.astype(object)
 | 
						|
        expected.loc["d"] = 10
 | 
						|
        df2.loc["d"] = 10
 | 
						|
        tm.assert_frame_equal(df2, expected)
 | 
						|
 | 
						|
    def test_loc_setitem_with_expansion_non_category(self):
 | 
						|
        # Setting-with-expansion with a new key "d" that is not among caegories
 | 
						|
        df = self.df
 | 
						|
        df.loc["a"] = 20
 | 
						|
 | 
						|
        # Setting a new row on an existing column
 | 
						|
        df3 = df.copy()
 | 
						|
        df3.loc["d", "A"] = 10
 | 
						|
        bidx3 = Index(list("aabbcad"), name="B")
 | 
						|
        expected3 = DataFrame(
 | 
						|
            {
 | 
						|
                "A": [20, 20, 2, 3, 4, 20, 10.0],
 | 
						|
            },
 | 
						|
            index=Index(bidx3),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(df3, expected3)
 | 
						|
 | 
						|
        # Settig a new row _and_ new column
 | 
						|
        df4 = df.copy()
 | 
						|
        df4.loc["d", "C"] = 10
 | 
						|
        expected3 = DataFrame(
 | 
						|
            {
 | 
						|
                "A": [20, 20, 2, 3, 4, 20, np.nan],
 | 
						|
                "C": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 10],
 | 
						|
            },
 | 
						|
            index=Index(bidx3),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(df4, expected3)
 | 
						|
 | 
						|
    def test_loc_getitem_scalar_non_category(self):
 | 
						|
        with pytest.raises(KeyError, match="^1$"):
 | 
						|
            self.df.loc[1]
 | 
						|
 | 
						|
    def test_slicing(self):
 | 
						|
        cat = Series(Categorical([1, 2, 3, 4]))
 | 
						|
        reverse = cat[::-1]
 | 
						|
        exp = np.array([4, 3, 2, 1], dtype=np.int64)
 | 
						|
        tm.assert_numpy_array_equal(reverse.__array__(), exp)
 | 
						|
 | 
						|
        df = DataFrame({"value": (np.arange(100) + 1).astype("int64")})
 | 
						|
        df["D"] = pd.cut(df.value, bins=[0, 25, 50, 75, 100])
 | 
						|
 | 
						|
        expected = Series([11, Interval(0, 25)], index=["value", "D"], name=10)
 | 
						|
        result = df.iloc[10]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            {"value": np.arange(11, 21).astype("int64")},
 | 
						|
            index=np.arange(10, 20).astype("int64"),
 | 
						|
        )
 | 
						|
        expected["D"] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100])
 | 
						|
        result = df.iloc[10:20]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series([9, Interval(0, 25)], index=["value", "D"], name=8)
 | 
						|
        result = df.loc[8]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_slicing_and_getting_ops(self):
 | 
						|
 | 
						|
        # systematically test the slicing operations:
 | 
						|
        #  for all slicing ops:
 | 
						|
        #   - returning a dataframe
 | 
						|
        #   - returning a column
 | 
						|
        #   - returning a row
 | 
						|
        #   - returning a single value
 | 
						|
 | 
						|
        cats = Categorical(
 | 
						|
            ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]
 | 
						|
        )
 | 
						|
        idx = Index(["h", "i", "j", "k", "l", "m", "n"])
 | 
						|
        values = [1, 2, 3, 4, 5, 6, 7]
 | 
						|
        df = DataFrame({"cats": cats, "values": values}, index=idx)
 | 
						|
 | 
						|
        # the expected values
 | 
						|
        cats2 = Categorical(["b", "c"], categories=["a", "b", "c"])
 | 
						|
        idx2 = Index(["j", "k"])
 | 
						|
        values2 = [3, 4]
 | 
						|
 | 
						|
        # 2:4,: | "j":"k",:
 | 
						|
        exp_df = DataFrame({"cats": cats2, "values": values2}, index=idx2)
 | 
						|
 | 
						|
        # :,"cats" | :,0
 | 
						|
        exp_col = Series(cats, index=idx, name="cats")
 | 
						|
 | 
						|
        # "j",: | 2,:
 | 
						|
        exp_row = Series(["b", 3], index=["cats", "values"], dtype="object", name="j")
 | 
						|
 | 
						|
        # "j","cats | 2,0
 | 
						|
        exp_val = "b"
 | 
						|
 | 
						|
        # iloc
 | 
						|
        # frame
 | 
						|
        res_df = df.iloc[2:4, :]
 | 
						|
        tm.assert_frame_equal(res_df, exp_df)
 | 
						|
        assert is_categorical_dtype(res_df["cats"].dtype)
 | 
						|
 | 
						|
        # row
 | 
						|
        res_row = df.iloc[2, :]
 | 
						|
        tm.assert_series_equal(res_row, exp_row)
 | 
						|
        assert isinstance(res_row["cats"], str)
 | 
						|
 | 
						|
        # col
 | 
						|
        res_col = df.iloc[:, 0]
 | 
						|
        tm.assert_series_equal(res_col, exp_col)
 | 
						|
        assert is_categorical_dtype(res_col.dtype)
 | 
						|
 | 
						|
        # single value
 | 
						|
        res_val = df.iloc[2, 0]
 | 
						|
        assert res_val == exp_val
 | 
						|
 | 
						|
        # loc
 | 
						|
        # frame
 | 
						|
        res_df = df.loc["j":"k", :]
 | 
						|
        tm.assert_frame_equal(res_df, exp_df)
 | 
						|
        assert is_categorical_dtype(res_df["cats"].dtype)
 | 
						|
 | 
						|
        # row
 | 
						|
        res_row = df.loc["j", :]
 | 
						|
        tm.assert_series_equal(res_row, exp_row)
 | 
						|
        assert isinstance(res_row["cats"], str)
 | 
						|
 | 
						|
        # col
 | 
						|
        res_col = df.loc[:, "cats"]
 | 
						|
        tm.assert_series_equal(res_col, exp_col)
 | 
						|
        assert is_categorical_dtype(res_col.dtype)
 | 
						|
 | 
						|
        # single value
 | 
						|
        res_val = df.loc["j", "cats"]
 | 
						|
        assert res_val == exp_val
 | 
						|
 | 
						|
        # single value
 | 
						|
        res_val = df.loc["j", df.columns[0]]
 | 
						|
        assert res_val == exp_val
 | 
						|
 | 
						|
        # iat
 | 
						|
        res_val = df.iat[2, 0]
 | 
						|
        assert res_val == exp_val
 | 
						|
 | 
						|
        # at
 | 
						|
        res_val = df.at["j", "cats"]
 | 
						|
        assert res_val == exp_val
 | 
						|
 | 
						|
        # fancy indexing
 | 
						|
        exp_fancy = df.iloc[[2]]
 | 
						|
 | 
						|
        res_fancy = df[df["cats"] == "b"]
 | 
						|
        tm.assert_frame_equal(res_fancy, exp_fancy)
 | 
						|
        res_fancy = df[df["values"] == 3]
 | 
						|
        tm.assert_frame_equal(res_fancy, exp_fancy)
 | 
						|
 | 
						|
        # get_value
 | 
						|
        res_val = df.at["j", "cats"]
 | 
						|
        assert res_val == exp_val
 | 
						|
 | 
						|
        # i : int, slice, or sequence of integers
 | 
						|
        res_row = df.iloc[2]
 | 
						|
        tm.assert_series_equal(res_row, exp_row)
 | 
						|
        assert isinstance(res_row["cats"], str)
 | 
						|
 | 
						|
        res_df = df.iloc[slice(2, 4)]
 | 
						|
        tm.assert_frame_equal(res_df, exp_df)
 | 
						|
        assert is_categorical_dtype(res_df["cats"].dtype)
 | 
						|
 | 
						|
        res_df = df.iloc[[2, 3]]
 | 
						|
        tm.assert_frame_equal(res_df, exp_df)
 | 
						|
        assert is_categorical_dtype(res_df["cats"].dtype)
 | 
						|
 | 
						|
        res_col = df.iloc[:, 0]
 | 
						|
        tm.assert_series_equal(res_col, exp_col)
 | 
						|
        assert is_categorical_dtype(res_col.dtype)
 | 
						|
 | 
						|
        res_df = df.iloc[:, slice(0, 2)]
 | 
						|
        tm.assert_frame_equal(res_df, df)
 | 
						|
        assert is_categorical_dtype(res_df["cats"].dtype)
 | 
						|
 | 
						|
        res_df = df.iloc[:, [0, 1]]
 | 
						|
        tm.assert_frame_equal(res_df, df)
 | 
						|
        assert is_categorical_dtype(res_df["cats"].dtype)
 | 
						|
 | 
						|
    def test_slicing_doc_examples(self):
 | 
						|
 | 
						|
        # GH 7918
 | 
						|
        cats = Categorical(
 | 
						|
            ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]
 | 
						|
        )
 | 
						|
        idx = Index(["h", "i", "j", "k", "l", "m", "n"])
 | 
						|
        values = [1, 2, 2, 2, 3, 4, 5]
 | 
						|
        df = DataFrame({"cats": cats, "values": values}, index=idx)
 | 
						|
 | 
						|
        result = df.iloc[2:4, :]
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                "cats": Categorical(["b", "b"], categories=["a", "b", "c"]),
 | 
						|
                "values": [2, 2],
 | 
						|
            },
 | 
						|
            index=["j", "k"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = df.iloc[2:4, :].dtypes
 | 
						|
        expected = Series(["category", "int64"], ["cats", "values"])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = df.loc["h":"j", "cats"]
 | 
						|
        expected = Series(
 | 
						|
            Categorical(["a", "b", "b"], categories=["a", "b", "c"]),
 | 
						|
            index=["h", "i", "j"],
 | 
						|
            name="cats",
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        result = df.loc["h":"j", df.columns[0:1]]
 | 
						|
        expected = DataFrame(
 | 
						|
            {"cats": Categorical(["a", "b", "b"], categories=["a", "b", "c"])},
 | 
						|
            index=["h", "i", "j"],
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_loc_getitem_listlike_labels(self):
 | 
						|
        # list of labels
 | 
						|
        result = self.df.loc[["c", "a"]]
 | 
						|
        expected = self.df.iloc[[4, 0, 1, 5]]
 | 
						|
        tm.assert_frame_equal(result, expected, check_index_type=True)
 | 
						|
 | 
						|
    def test_loc_getitem_listlike_unused_category(self):
 | 
						|
        # GH#37901 a label that is in index.categories but not in index
 | 
						|
        # listlike containing an element in the categories but not in the values
 | 
						|
        with pytest.raises(KeyError, match=re.escape("['e'] not in index")):
 | 
						|
            self.df2.loc[["a", "b", "e"]]
 | 
						|
 | 
						|
    def test_loc_getitem_label_unused_category(self):
 | 
						|
        # element in the categories but not in the values
 | 
						|
        with pytest.raises(KeyError, match=r"^'e'$"):
 | 
						|
            self.df2.loc["e"]
 | 
						|
 | 
						|
    def test_loc_getitem_non_category(self):
 | 
						|
        # not all labels in the categories
 | 
						|
        with pytest.raises(KeyError, match=re.escape("['d'] not in index")):
 | 
						|
            self.df2.loc[["a", "d"]]
 | 
						|
 | 
						|
    def test_loc_setitem_expansion_label_unused_category(self):
 | 
						|
        # assigning with a label that is in the categories but not in the index
 | 
						|
        df = self.df2.copy()
 | 
						|
        df.loc["e"] = 20
 | 
						|
        result = df.loc[["a", "b", "e"]]
 | 
						|
        exp_index = CategoricalIndex(list("aaabbe"), categories=list("cabe"), name="B")
 | 
						|
        expected = DataFrame({"A": [0, 1, 5, 2, 3, 20]}, index=exp_index)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_loc_listlike_dtypes(self):
 | 
						|
        # GH 11586
 | 
						|
 | 
						|
        # unique categories and codes
 | 
						|
        index = CategoricalIndex(["a", "b", "c"])
 | 
						|
        df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=index)
 | 
						|
 | 
						|
        # unique slice
 | 
						|
        res = df.loc[["a", "b"]]
 | 
						|
        exp_index = CategoricalIndex(["a", "b"], categories=index.categories)
 | 
						|
        exp = DataFrame({"A": [1, 2], "B": [4, 5]}, index=exp_index)
 | 
						|
        tm.assert_frame_equal(res, exp, check_index_type=True)
 | 
						|
 | 
						|
        # duplicated slice
 | 
						|
        res = df.loc[["a", "a", "b"]]
 | 
						|
 | 
						|
        exp_index = CategoricalIndex(["a", "a", "b"], categories=index.categories)
 | 
						|
        exp = DataFrame({"A": [1, 1, 2], "B": [4, 4, 5]}, index=exp_index)
 | 
						|
        tm.assert_frame_equal(res, exp, check_index_type=True)
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
 | 
						|
            df.loc[["a", "x"]]
 | 
						|
 | 
						|
    def test_loc_listlike_dtypes_duplicated_categories_and_codes(self):
 | 
						|
        # duplicated categories and codes
 | 
						|
        index = CategoricalIndex(["a", "b", "a"])
 | 
						|
        df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=index)
 | 
						|
 | 
						|
        # unique slice
 | 
						|
        res = df.loc[["a", "b"]]
 | 
						|
        exp = DataFrame(
 | 
						|
            {"A": [1, 3, 2], "B": [4, 6, 5]}, index=CategoricalIndex(["a", "a", "b"])
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(res, exp, check_index_type=True)
 | 
						|
 | 
						|
        # duplicated slice
 | 
						|
        res = df.loc[["a", "a", "b"]]
 | 
						|
        exp = DataFrame(
 | 
						|
            {"A": [1, 3, 1, 3, 2], "B": [4, 6, 4, 6, 5]},
 | 
						|
            index=CategoricalIndex(["a", "a", "a", "a", "b"]),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(res, exp, check_index_type=True)
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
 | 
						|
            df.loc[["a", "x"]]
 | 
						|
 | 
						|
    def test_loc_listlike_dtypes_unused_category(self):
 | 
						|
        # contains unused category
 | 
						|
        index = CategoricalIndex(["a", "b", "a", "c"], categories=list("abcde"))
 | 
						|
        df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}, index=index)
 | 
						|
 | 
						|
        res = df.loc[["a", "b"]]
 | 
						|
        exp = DataFrame(
 | 
						|
            {"A": [1, 3, 2], "B": [5, 7, 6]},
 | 
						|
            index=CategoricalIndex(["a", "a", "b"], categories=list("abcde")),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(res, exp, check_index_type=True)
 | 
						|
 | 
						|
        # duplicated slice
 | 
						|
        res = df.loc[["a", "a", "b"]]
 | 
						|
        exp = DataFrame(
 | 
						|
            {"A": [1, 3, 1, 3, 2], "B": [5, 7, 5, 7, 6]},
 | 
						|
            index=CategoricalIndex(["a", "a", "a", "a", "b"], categories=list("abcde")),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(res, exp, check_index_type=True)
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
 | 
						|
            df.loc[["a", "x"]]
 | 
						|
 | 
						|
    def test_loc_getitem_listlike_unused_category_raises_keyerror(self):
 | 
						|
        # key that is an *unused* category raises
 | 
						|
        index = CategoricalIndex(["a", "b", "a", "c"], categories=list("abcde"))
 | 
						|
        df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}, index=index)
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match="e"):
 | 
						|
            # For comparison, check the scalar behavior
 | 
						|
            df.loc["e"]
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match=re.escape("['e'] not in index")):
 | 
						|
            df.loc[["a", "e"]]
 | 
						|
 | 
						|
    def test_ix_categorical_index(self):
 | 
						|
        # GH 12531
 | 
						|
        df = DataFrame(np.random.randn(3, 3), index=list("ABC"), columns=list("XYZ"))
 | 
						|
        cdf = df.copy()
 | 
						|
        cdf.index = CategoricalIndex(df.index)
 | 
						|
        cdf.columns = CategoricalIndex(df.columns)
 | 
						|
 | 
						|
        expect = Series(df.loc["A", :], index=cdf.columns, name="A")
 | 
						|
        tm.assert_series_equal(cdf.loc["A", :], expect)
 | 
						|
 | 
						|
        expect = Series(df.loc[:, "X"], index=cdf.index, name="X")
 | 
						|
        tm.assert_series_equal(cdf.loc[:, "X"], expect)
 | 
						|
 | 
						|
        exp_index = CategoricalIndex(list("AB"), categories=["A", "B", "C"])
 | 
						|
        expect = DataFrame(df.loc[["A", "B"], :], columns=cdf.columns, index=exp_index)
 | 
						|
        tm.assert_frame_equal(cdf.loc[["A", "B"], :], expect)
 | 
						|
 | 
						|
        exp_columns = CategoricalIndex(list("XY"), categories=["X", "Y", "Z"])
 | 
						|
        expect = DataFrame(df.loc[:, ["X", "Y"]], index=cdf.index, columns=exp_columns)
 | 
						|
        tm.assert_frame_equal(cdf.loc[:, ["X", "Y"]], expect)
 | 
						|
 | 
						|
    def test_ix_categorical_index_non_unique(self):
 | 
						|
 | 
						|
        # non-unique
 | 
						|
        df = DataFrame(np.random.randn(3, 3), index=list("ABA"), columns=list("XYX"))
 | 
						|
        cdf = df.copy()
 | 
						|
        cdf.index = CategoricalIndex(df.index)
 | 
						|
        cdf.columns = CategoricalIndex(df.columns)
 | 
						|
 | 
						|
        exp_index = CategoricalIndex(list("AA"), categories=["A", "B"])
 | 
						|
        expect = DataFrame(df.loc["A", :], columns=cdf.columns, index=exp_index)
 | 
						|
        tm.assert_frame_equal(cdf.loc["A", :], expect)
 | 
						|
 | 
						|
        exp_columns = CategoricalIndex(list("XX"), categories=["X", "Y"])
 | 
						|
        expect = DataFrame(df.loc[:, "X"], index=cdf.index, columns=exp_columns)
 | 
						|
        tm.assert_frame_equal(cdf.loc[:, "X"], expect)
 | 
						|
 | 
						|
        expect = DataFrame(
 | 
						|
            df.loc[["A", "B"], :],
 | 
						|
            columns=cdf.columns,
 | 
						|
            index=CategoricalIndex(list("AAB")),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(cdf.loc[["A", "B"], :], expect)
 | 
						|
 | 
						|
        expect = DataFrame(
 | 
						|
            df.loc[:, ["X", "Y"]],
 | 
						|
            index=cdf.index,
 | 
						|
            columns=CategoricalIndex(list("XXY")),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(cdf.loc[:, ["X", "Y"]], expect)
 | 
						|
 | 
						|
    def test_loc_slice(self):
 | 
						|
        # GH9748
 | 
						|
        msg = (
 | 
						|
            "cannot do slice indexing on CategoricalIndex with these "
 | 
						|
            r"indexers \[1\] of type int"
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            self.df.loc[1:5]
 | 
						|
 | 
						|
        result = self.df.loc["b":"c"]
 | 
						|
        expected = self.df.iloc[[2, 3, 4]]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_loc_and_at_with_categorical_index(self):
 | 
						|
        # GH 20629
 | 
						|
        df = DataFrame(
 | 
						|
            [[1, 2], [3, 4], [5, 6]], index=CategoricalIndex(["A", "B", "C"])
 | 
						|
        )
 | 
						|
 | 
						|
        s = df[0]
 | 
						|
        assert s.loc["A"] == 1
 | 
						|
        assert s.at["A"] == 1
 | 
						|
 | 
						|
        assert df.loc["B", 1] == 4
 | 
						|
        assert df.at["B", 1] == 4
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "idx_values",
 | 
						|
        [
 | 
						|
            # python types
 | 
						|
            [1, 2, 3],
 | 
						|
            [-1, -2, -3],
 | 
						|
            [1.5, 2.5, 3.5],
 | 
						|
            [-1.5, -2.5, -3.5],
 | 
						|
            # numpy int/uint
 | 
						|
            *(np.array([1, 2, 3], dtype=dtype) for dtype in tm.ALL_INT_NUMPY_DTYPES),
 | 
						|
            # numpy floats
 | 
						|
            *(np.array([1.5, 2.5, 3.5], dtype=dtyp) for dtyp in tm.FLOAT_NUMPY_DTYPES),
 | 
						|
            # numpy object
 | 
						|
            np.array([1, "b", 3.5], dtype=object),
 | 
						|
            # pandas scalars
 | 
						|
            [Interval(1, 4), Interval(4, 6), Interval(6, 9)],
 | 
						|
            [Timestamp(2019, 1, 1), Timestamp(2019, 2, 1), Timestamp(2019, 3, 1)],
 | 
						|
            [Timedelta(1, "d"), Timedelta(2, "d"), Timedelta(3, "D")],
 | 
						|
            # pandas Integer arrays
 | 
						|
            *(pd.array([1, 2, 3], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES),
 | 
						|
            # other pandas arrays
 | 
						|
            pd.IntervalIndex.from_breaks([1, 4, 6, 9]).array,
 | 
						|
            pd.date_range("2019-01-01", periods=3).array,
 | 
						|
            pd.timedelta_range(start="1d", periods=3).array,
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_loc_getitem_with_non_string_categories(self, idx_values, ordered):
 | 
						|
        # GH-17569
 | 
						|
        cat_idx = CategoricalIndex(idx_values, ordered=ordered)
 | 
						|
        df = DataFrame({"A": ["foo", "bar", "baz"]}, index=cat_idx)
 | 
						|
        sl = slice(idx_values[0], idx_values[1])
 | 
						|
 | 
						|
        # scalar selection
 | 
						|
        result = df.loc[idx_values[0]]
 | 
						|
        expected = Series(["foo"], index=["A"], name=idx_values[0])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # list selection
 | 
						|
        result = df.loc[idx_values[:2]]
 | 
						|
        expected = DataFrame(["foo", "bar"], index=cat_idx[:2], columns=["A"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # slice selection
 | 
						|
        result = df.loc[sl]
 | 
						|
        expected = DataFrame(["foo", "bar"], index=cat_idx[:2], columns=["A"])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # scalar assignment
 | 
						|
        result = df.copy()
 | 
						|
        result.loc[idx_values[0]] = "qux"
 | 
						|
        expected = DataFrame({"A": ["qux", "bar", "baz"]}, index=cat_idx)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # list assignment
 | 
						|
        result = df.copy()
 | 
						|
        result.loc[idx_values[:2], "A"] = ["qux", "qux2"]
 | 
						|
        expected = DataFrame({"A": ["qux", "qux2", "baz"]}, index=cat_idx)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # slice assignment
 | 
						|
        result = df.copy()
 | 
						|
        result.loc[sl, "A"] = ["qux", "qux2"]
 | 
						|
        expected = DataFrame({"A": ["qux", "qux2", "baz"]}, index=cat_idx)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_getitem_categorical_with_nan(self):
 | 
						|
        # GH#41933
 | 
						|
        ci = CategoricalIndex(["A", "B", np.nan])
 | 
						|
 | 
						|
        ser = Series(range(3), index=ci)
 | 
						|
 | 
						|
        assert ser[np.nan] == 2
 | 
						|
        assert ser.loc[np.nan] == 2
 | 
						|
 | 
						|
        df = DataFrame(ser)
 | 
						|
        assert df.loc[np.nan, 0] == 2
 | 
						|
        assert df.loc[np.nan][0] == 2
 |