146 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import timedelta
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    Index,
 | 
						|
    NaT,
 | 
						|
    Series,
 | 
						|
    Timedelta,
 | 
						|
    TimedeltaIndex,
 | 
						|
    timedelta_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core.indexes.api import Int64Index
 | 
						|
from pandas.tests.indexes.datetimelike import DatetimeLike
 | 
						|
 | 
						|
randn = np.random.randn
 | 
						|
 | 
						|
 | 
						|
class TestTimedeltaIndex(DatetimeLike):
 | 
						|
    _index_cls = TimedeltaIndex
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def simple_index(self) -> TimedeltaIndex:
 | 
						|
        index = pd.to_timedelta(range(5), unit="d")._with_freq("infer")
 | 
						|
        assert index.freq == "D"
 | 
						|
        ret = index + pd.offsets.Hour(1)
 | 
						|
        assert ret.freq == "D"
 | 
						|
        return ret
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def index(self):
 | 
						|
        return tm.makeTimedeltaIndex(10)
 | 
						|
 | 
						|
    def test_numeric_compat(self):
 | 
						|
        # Dummy method to override super's version; this test is now done
 | 
						|
        # in test_arithmetic.py
 | 
						|
        pass
 | 
						|
 | 
						|
    def test_shift(self):
 | 
						|
        pass  # this is handled in test_arithmetic.py
 | 
						|
 | 
						|
    def test_misc_coverage(self):
 | 
						|
 | 
						|
        rng = timedelta_range("1 day", periods=5)
 | 
						|
        result = rng.groupby(rng.days)
 | 
						|
        assert isinstance(list(result.values())[0][0], Timedelta)
 | 
						|
 | 
						|
    def test_map(self):
 | 
						|
        # test_map_dictlike generally tests
 | 
						|
 | 
						|
        rng = timedelta_range("1 day", periods=10)
 | 
						|
 | 
						|
        f = lambda x: x.days
 | 
						|
        result = rng.map(f)
 | 
						|
        exp = Int64Index([f(x) for x in rng])
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
    def test_pass_TimedeltaIndex_to_index(self):
 | 
						|
 | 
						|
        rng = timedelta_range("1 days", "10 days")
 | 
						|
        idx = Index(rng, dtype=object)
 | 
						|
 | 
						|
        expected = Index(rng.to_pytimedelta(), dtype=object)
 | 
						|
 | 
						|
        tm.assert_numpy_array_equal(idx.values, expected.values)
 | 
						|
 | 
						|
    def test_fields(self):
 | 
						|
        rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
 | 
						|
        tm.assert_index_equal(rng.days, Index([1, 1], dtype="int64"))
 | 
						|
        tm.assert_index_equal(
 | 
						|
            rng.seconds,
 | 
						|
            Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype="int64"),
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(
 | 
						|
            rng.microseconds, Index([100 * 1000 + 123, 100 * 1000 + 123], dtype="int64")
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype="int64"))
 | 
						|
 | 
						|
        msg = "'TimedeltaIndex' object has no attribute '{}'"
 | 
						|
        with pytest.raises(AttributeError, match=msg.format("hours")):
 | 
						|
            rng.hours
 | 
						|
        with pytest.raises(AttributeError, match=msg.format("minutes")):
 | 
						|
            rng.minutes
 | 
						|
        with pytest.raises(AttributeError, match=msg.format("milliseconds")):
 | 
						|
            rng.milliseconds
 | 
						|
 | 
						|
        # with nat
 | 
						|
        s = Series(rng)
 | 
						|
        s[1] = np.nan
 | 
						|
 | 
						|
        tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
 | 
						|
        tm.assert_series_equal(
 | 
						|
            s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
 | 
						|
        )
 | 
						|
 | 
						|
        # preserve name (GH15589)
 | 
						|
        rng.name = "name"
 | 
						|
        assert rng.days.name == "name"
 | 
						|
 | 
						|
    def test_freq_conversion_always_floating(self):
 | 
						|
        # even if we have no NaTs, we get back float64; this matches TDA and Series
 | 
						|
        tdi = timedelta_range("1 Day", periods=30)
 | 
						|
 | 
						|
        res = tdi.astype("m8[s]")
 | 
						|
        expected = Index((tdi.view("i8") / 10**9).astype(np.float64))
 | 
						|
        tm.assert_index_equal(res, expected)
 | 
						|
 | 
						|
        # check this matches Series and TimedeltaArray
 | 
						|
        res = tdi._data.astype("m8[s]")
 | 
						|
        tm.assert_numpy_array_equal(res, expected._values)
 | 
						|
 | 
						|
        res = tdi.to_series().astype("m8[s]")
 | 
						|
        tm.assert_numpy_array_equal(res._values, expected._values)
 | 
						|
 | 
						|
    def test_freq_conversion(self, index_or_series):
 | 
						|
 | 
						|
        # doc example
 | 
						|
 | 
						|
        scalar = Timedelta(days=31)
 | 
						|
        td = index_or_series(
 | 
						|
            [scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
 | 
						|
            dtype="m8[ns]",
 | 
						|
        )
 | 
						|
 | 
						|
        result = td / np.timedelta64(1, "D")
 | 
						|
        expected = index_or_series(
 | 
						|
            [31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]
 | 
						|
        )
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = td.astype("timedelta64[D]")
 | 
						|
        expected = index_or_series([31, 31, 31, np.nan])
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = td / np.timedelta64(1, "s")
 | 
						|
        expected = index_or_series(
 | 
						|
            [31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]
 | 
						|
        )
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = td.astype("timedelta64[s]")
 | 
						|
        tm.assert_equal(result, expected)
 |