194 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import re
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas._libs import index as libindex
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(
 | 
						|
    params=[
 | 
						|
        (libindex.Int64Engine, np.int64),
 | 
						|
        (libindex.Int32Engine, np.int32),
 | 
						|
        (libindex.Int16Engine, np.int16),
 | 
						|
        (libindex.Int8Engine, np.int8),
 | 
						|
        (libindex.UInt64Engine, np.uint64),
 | 
						|
        (libindex.UInt32Engine, np.uint32),
 | 
						|
        (libindex.UInt16Engine, np.uint16),
 | 
						|
        (libindex.UInt8Engine, np.uint8),
 | 
						|
        (libindex.Float64Engine, np.float64),
 | 
						|
        (libindex.Float32Engine, np.float32),
 | 
						|
    ],
 | 
						|
    ids=lambda x: x[0].__name__,
 | 
						|
)
 | 
						|
def numeric_indexing_engine_type_and_dtype(request):
 | 
						|
    return request.param
 | 
						|
 | 
						|
 | 
						|
class TestDatetimeEngine:
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "scalar",
 | 
						|
        [
 | 
						|
            pd.Timedelta(pd.Timestamp("2016-01-01").asm8.view("m8[ns]")),
 | 
						|
            pd.Timestamp("2016-01-01").value,
 | 
						|
            pd.Timestamp("2016-01-01").to_pydatetime(),
 | 
						|
            pd.Timestamp("2016-01-01").to_datetime64(),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_not_contains_requires_timestamp(self, scalar):
 | 
						|
        dti1 = pd.date_range("2016-01-01", periods=3)
 | 
						|
        dti2 = dti1.insert(1, pd.NaT)  # non-monotonic
 | 
						|
        dti3 = dti1.insert(3, dti1[0])  # non-unique
 | 
						|
        dti4 = pd.date_range("2016-01-01", freq="ns", periods=2_000_000)
 | 
						|
        dti5 = dti4.insert(0, dti4[0])  # over size threshold, not unique
 | 
						|
 | 
						|
        msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
 | 
						|
        for dti in [dti1, dti2, dti3, dti4, dti5]:
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                scalar in dti._engine
 | 
						|
 | 
						|
            with pytest.raises(KeyError, match=msg):
 | 
						|
                dti._engine.get_loc(scalar)
 | 
						|
 | 
						|
 | 
						|
class TestTimedeltaEngine:
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "scalar",
 | 
						|
        [
 | 
						|
            pd.Timestamp(pd.Timedelta(days=42).asm8.view("datetime64[ns]")),
 | 
						|
            pd.Timedelta(days=42).value,
 | 
						|
            pd.Timedelta(days=42).to_pytimedelta(),
 | 
						|
            pd.Timedelta(days=42).to_timedelta64(),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_not_contains_requires_timedelta(self, scalar):
 | 
						|
        tdi1 = pd.timedelta_range("42 days", freq="9h", periods=1234)
 | 
						|
        tdi2 = tdi1.insert(1, pd.NaT)  # non-monotonic
 | 
						|
        tdi3 = tdi1.insert(3, tdi1[0])  # non-unique
 | 
						|
        tdi4 = pd.timedelta_range("42 days", freq="ns", periods=2_000_000)
 | 
						|
        tdi5 = tdi4.insert(0, tdi4[0])  # over size threshold, not unique
 | 
						|
 | 
						|
        msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
 | 
						|
        for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]:
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                scalar in tdi._engine
 | 
						|
 | 
						|
            with pytest.raises(KeyError, match=msg):
 | 
						|
                tdi._engine.get_loc(scalar)
 | 
						|
 | 
						|
 | 
						|
class TestNumericEngine:
 | 
						|
    def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype):
 | 
						|
        engine_type, dtype = numeric_indexing_engine_type_and_dtype
 | 
						|
        num = 1000
 | 
						|
        arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)
 | 
						|
 | 
						|
        # monotonic increasing
 | 
						|
        engine = engine_type(arr)
 | 
						|
        assert engine.is_monotonic_increasing is True
 | 
						|
        assert engine.is_monotonic_decreasing is False
 | 
						|
 | 
						|
        # monotonic decreasing
 | 
						|
        engine = engine_type(arr[::-1])
 | 
						|
        assert engine.is_monotonic_increasing is False
 | 
						|
        assert engine.is_monotonic_decreasing is True
 | 
						|
 | 
						|
        # neither monotonic increasing or decreasing
 | 
						|
        arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype)
 | 
						|
        engine = engine_type(arr[::-1])
 | 
						|
        assert engine.is_monotonic_increasing is False
 | 
						|
        assert engine.is_monotonic_decreasing is False
 | 
						|
 | 
						|
    def test_is_unique(self, numeric_indexing_engine_type_and_dtype):
 | 
						|
        engine_type, dtype = numeric_indexing_engine_type_and_dtype
 | 
						|
 | 
						|
        # unique
 | 
						|
        arr = np.array([1, 3, 2], dtype=dtype)
 | 
						|
        engine = engine_type(arr)
 | 
						|
        assert engine.is_unique is True
 | 
						|
 | 
						|
        # not unique
 | 
						|
        arr = np.array([1, 2, 1], dtype=dtype)
 | 
						|
        engine = engine_type(arr)
 | 
						|
        assert engine.is_unique is False
 | 
						|
 | 
						|
    def test_get_loc(self, numeric_indexing_engine_type_and_dtype):
 | 
						|
        engine_type, dtype = numeric_indexing_engine_type_and_dtype
 | 
						|
 | 
						|
        # unique
 | 
						|
        arr = np.array([1, 2, 3], dtype=dtype)
 | 
						|
        engine = engine_type(arr)
 | 
						|
        assert engine.get_loc(2) == 1
 | 
						|
 | 
						|
        # monotonic
 | 
						|
        num = 1000
 | 
						|
        arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)
 | 
						|
        engine = engine_type(arr)
 | 
						|
        assert engine.get_loc(2) == slice(1000, 2000)
 | 
						|
 | 
						|
        # not monotonic
 | 
						|
        arr = np.array([1, 2, 3] * num, dtype=dtype)
 | 
						|
        engine = engine_type(arr)
 | 
						|
        expected = np.array([False, True, False] * num, dtype=bool)
 | 
						|
        result = engine.get_loc(2)
 | 
						|
        assert (result == expected).all()
 | 
						|
 | 
						|
 | 
						|
class TestObjectEngine:
 | 
						|
    engine_type = libindex.ObjectEngine
 | 
						|
    dtype = np.object_
 | 
						|
    values = list("abc")
 | 
						|
 | 
						|
    def test_is_monotonic(self):
 | 
						|
 | 
						|
        num = 1000
 | 
						|
        arr = np.array(["a"] * num + ["a"] * num + ["c"] * num, dtype=self.dtype)
 | 
						|
 | 
						|
        # monotonic increasing
 | 
						|
        engine = self.engine_type(arr)
 | 
						|
        assert engine.is_monotonic_increasing is True
 | 
						|
        assert engine.is_monotonic_decreasing is False
 | 
						|
 | 
						|
        # monotonic decreasing
 | 
						|
        engine = self.engine_type(arr[::-1])
 | 
						|
        assert engine.is_monotonic_increasing is False
 | 
						|
        assert engine.is_monotonic_decreasing is True
 | 
						|
 | 
						|
        # neither monotonic increasing or decreasing
 | 
						|
        arr = np.array(["a"] * num + ["b"] * num + ["a"] * num, dtype=self.dtype)
 | 
						|
        engine = self.engine_type(arr[::-1])
 | 
						|
        assert engine.is_monotonic_increasing is False
 | 
						|
        assert engine.is_monotonic_decreasing is False
 | 
						|
 | 
						|
    def test_is_unique(self):
 | 
						|
        # unique
 | 
						|
        arr = np.array(self.values, dtype=self.dtype)
 | 
						|
        engine = self.engine_type(arr)
 | 
						|
        assert engine.is_unique is True
 | 
						|
 | 
						|
        # not unique
 | 
						|
        arr = np.array(["a", "b", "a"], dtype=self.dtype)
 | 
						|
        engine = self.engine_type(arr)
 | 
						|
        assert engine.is_unique is False
 | 
						|
 | 
						|
    def test_get_loc(self):
 | 
						|
        # unique
 | 
						|
        arr = np.array(self.values, dtype=self.dtype)
 | 
						|
        engine = self.engine_type(arr)
 | 
						|
        assert engine.get_loc("b") == 1
 | 
						|
 | 
						|
        # monotonic
 | 
						|
        num = 1000
 | 
						|
        arr = np.array(["a"] * num + ["b"] * num + ["c"] * num, dtype=self.dtype)
 | 
						|
        engine = self.engine_type(arr)
 | 
						|
        assert engine.get_loc("b") == slice(1000, 2000)
 | 
						|
 | 
						|
        # not monotonic
 | 
						|
        arr = np.array(self.values * num, dtype=self.dtype)
 | 
						|
        engine = self.engine_type(arr)
 | 
						|
        expected = np.array([False, True, False] * num, dtype=bool)
 | 
						|
        result = engine.get_loc("b")
 | 
						|
        assert (result == expected).all()
 |