145 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from operator import methodcaller
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    MultiIndex,
 | 
						|
    Series,
 | 
						|
    date_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
class TestSeries:
 | 
						|
    @pytest.mark.parametrize("func", ["rename_axis", "_set_axis_name"])
 | 
						|
    def test_set_axis_name_mi(self, func):
 | 
						|
        ser = Series(
 | 
						|
            [11, 21, 31],
 | 
						|
            index=MultiIndex.from_tuples(
 | 
						|
                [("A", x) for x in ["a", "B", "c"]], names=["l1", "l2"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        result = methodcaller(func, ["L1", "L2"])(ser)
 | 
						|
        assert ser.index.name is None
 | 
						|
        assert ser.index.names == ["l1", "l2"]
 | 
						|
        assert result.index.name is None
 | 
						|
        assert result.index.names, ["L1", "L2"]
 | 
						|
 | 
						|
    def test_set_axis_name_raises(self):
 | 
						|
        ser = Series([1])
 | 
						|
        msg = "No axis named 1 for object type Series"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            ser._set_axis_name(name="a", axis=1)
 | 
						|
 | 
						|
    def test_get_bool_data_preserve_dtype(self):
 | 
						|
        ser = Series([True, False, True])
 | 
						|
        result = ser._get_bool_data()
 | 
						|
        tm.assert_series_equal(result, ser)
 | 
						|
 | 
						|
    def test_nonzero_single_element(self):
 | 
						|
 | 
						|
        # allow single item via bool method
 | 
						|
        ser = Series([True])
 | 
						|
        assert ser.bool()
 | 
						|
 | 
						|
        ser = Series([False])
 | 
						|
        assert not ser.bool()
 | 
						|
 | 
						|
    @pytest.mark.parametrize("data", [np.nan, pd.NaT, True, False])
 | 
						|
    def test_nonzero_single_element_raise_1(self, data):
 | 
						|
        # single item nan to raise
 | 
						|
        series = Series([data])
 | 
						|
 | 
						|
        msg = "The truth value of a Series is ambiguous"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            bool(series)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("data", [np.nan, pd.NaT])
 | 
						|
    def test_nonzero_single_element_raise_2(self, data):
 | 
						|
        series = Series([data])
 | 
						|
 | 
						|
        msg = "bool cannot act on a non-boolean single element Series"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            series.bool()
 | 
						|
 | 
						|
    @pytest.mark.parametrize("data", [(True, True), (False, False)])
 | 
						|
    def test_nonzero_multiple_element_raise(self, data):
 | 
						|
        # multiple bool are still an error
 | 
						|
        series = Series([data])
 | 
						|
 | 
						|
        msg = "The truth value of a Series is ambiguous"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            bool(series)
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            series.bool()
 | 
						|
 | 
						|
    @pytest.mark.parametrize("data", [1, 0, "a", 0.0])
 | 
						|
    def test_nonbool_single_element_raise(self, data):
 | 
						|
        # single non-bool are an error
 | 
						|
        series = Series([data])
 | 
						|
 | 
						|
        msg = "The truth value of a Series is ambiguous"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            bool(series)
 | 
						|
 | 
						|
        msg = "bool cannot act on a non-boolean single element Series"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            series.bool()
 | 
						|
 | 
						|
    def test_metadata_propagation_indiv_resample(self):
 | 
						|
        # resample
 | 
						|
        ts = Series(
 | 
						|
            np.random.rand(1000),
 | 
						|
            index=date_range("20130101", periods=1000, freq="s"),
 | 
						|
            name="foo",
 | 
						|
        )
 | 
						|
        result = ts.resample("1T").mean()
 | 
						|
        tm.assert_metadata_equivalent(ts, result)
 | 
						|
 | 
						|
        result = ts.resample("1T").min()
 | 
						|
        tm.assert_metadata_equivalent(ts, result)
 | 
						|
 | 
						|
        result = ts.resample("1T").apply(lambda x: x.sum())
 | 
						|
        tm.assert_metadata_equivalent(ts, result)
 | 
						|
 | 
						|
    def test_metadata_propagation_indiv(self, monkeypatch):
 | 
						|
        # check that the metadata matches up on the resulting ops
 | 
						|
 | 
						|
        ser = Series(range(3), range(3))
 | 
						|
        ser.name = "foo"
 | 
						|
        ser2 = Series(range(3), range(3))
 | 
						|
        ser2.name = "bar"
 | 
						|
 | 
						|
        result = ser.T
 | 
						|
        tm.assert_metadata_equivalent(ser, result)
 | 
						|
 | 
						|
        def finalize(self, other, method=None, **kwargs):
 | 
						|
            for name in self._metadata:
 | 
						|
                if method == "concat" and name == "filename":
 | 
						|
                    value = "+".join(
 | 
						|
                        [
 | 
						|
                            getattr(obj, name)
 | 
						|
                            for obj in other.objs
 | 
						|
                            if getattr(obj, name, None)
 | 
						|
                        ]
 | 
						|
                    )
 | 
						|
                    object.__setattr__(self, name, value)
 | 
						|
                else:
 | 
						|
                    object.__setattr__(self, name, getattr(other, name, None))
 | 
						|
 | 
						|
            return self
 | 
						|
 | 
						|
        with monkeypatch.context() as m:
 | 
						|
            m.setattr(Series, "_metadata", ["name", "filename"])
 | 
						|
            m.setattr(Series, "__finalize__", finalize)
 | 
						|
 | 
						|
            ser.filename = "foo"
 | 
						|
            ser2.filename = "bar"
 | 
						|
 | 
						|
            result = pd.concat([ser, ser2])
 | 
						|
            assert result.filename == "foo+bar"
 | 
						|
            assert result.name is None
 |