499 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import (
 | 
						|
    datetime,
 | 
						|
    timedelta,
 | 
						|
)
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas._libs.algos import (
 | 
						|
    Infinity,
 | 
						|
    NegInfinity,
 | 
						|
)
 | 
						|
import pandas.util._test_decorators as td
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
class TestRank:
 | 
						|
    s = Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
 | 
						|
    df = DataFrame({"A": s, "B": s})
 | 
						|
 | 
						|
    results = {
 | 
						|
        "average": np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5]),
 | 
						|
        "min": np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5]),
 | 
						|
        "max": np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6]),
 | 
						|
        "first": np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6]),
 | 
						|
        "dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
 | 
						|
    }
 | 
						|
 | 
						|
    @pytest.fixture(params=["average", "min", "max", "first", "dense"])
 | 
						|
    def method(self, request):
 | 
						|
        """
 | 
						|
        Fixture for trying all rank methods
 | 
						|
        """
 | 
						|
        return request.param
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_rank(self, float_frame):
 | 
						|
        import scipy.stats  # noqa:F401
 | 
						|
        from scipy.stats import rankdata
 | 
						|
 | 
						|
        float_frame["A"][::2] = np.nan
 | 
						|
        float_frame["B"][::3] = np.nan
 | 
						|
        float_frame["C"][::4] = np.nan
 | 
						|
        float_frame["D"][::5] = np.nan
 | 
						|
 | 
						|
        ranks0 = float_frame.rank()
 | 
						|
        ranks1 = float_frame.rank(1)
 | 
						|
        mask = np.isnan(float_frame.values)
 | 
						|
 | 
						|
        fvals = float_frame.fillna(np.inf).values
 | 
						|
 | 
						|
        exp0 = np.apply_along_axis(rankdata, 0, fvals)
 | 
						|
        exp0[mask] = np.nan
 | 
						|
 | 
						|
        exp1 = np.apply_along_axis(rankdata, 1, fvals)
 | 
						|
        exp1[mask] = np.nan
 | 
						|
 | 
						|
        tm.assert_almost_equal(ranks0.values, exp0)
 | 
						|
        tm.assert_almost_equal(ranks1.values, exp1)
 | 
						|
 | 
						|
        # integers
 | 
						|
        df = DataFrame(np.random.randint(0, 5, size=40).reshape((10, 4)))
 | 
						|
 | 
						|
        result = df.rank()
 | 
						|
        exp = df.astype(float).rank()
 | 
						|
        tm.assert_frame_equal(result, exp)
 | 
						|
 | 
						|
        result = df.rank(1)
 | 
						|
        exp = df.astype(float).rank(1)
 | 
						|
        tm.assert_frame_equal(result, exp)
 | 
						|
 | 
						|
    def test_rank2(self):
 | 
						|
        df = DataFrame([[1, 3, 2], [1, 2, 3]])
 | 
						|
        expected = DataFrame([[1.0, 3.0, 2.0], [1, 2, 3]]) / 3.0
 | 
						|
        result = df.rank(1, pct=True)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        df = DataFrame([[1, 3, 2], [1, 2, 3]])
 | 
						|
        expected = df.rank(0) / 2.0
 | 
						|
        result = df.rank(0, pct=True)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        df = DataFrame([["b", "c", "a"], ["a", "c", "b"]])
 | 
						|
        expected = DataFrame([[2.0, 3.0, 1.0], [1, 3, 2]])
 | 
						|
        result = df.rank(1, numeric_only=False)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        expected = DataFrame([[2.0, 1.5, 1.0], [1, 1.5, 2]])
 | 
						|
        result = df.rank(0, numeric_only=False)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        df = DataFrame([["b", np.nan, "a"], ["a", "c", "b"]])
 | 
						|
        expected = DataFrame([[2.0, np.nan, 1.0], [1.0, 3.0, 2.0]])
 | 
						|
        result = df.rank(1, numeric_only=False)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        expected = DataFrame([[2.0, np.nan, 1.0], [1.0, 1.0, 2.0]])
 | 
						|
        result = df.rank(0, numeric_only=False)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # f7u12, this does not work without extensive workaround
 | 
						|
        data = [
 | 
						|
            [datetime(2001, 1, 5), np.nan, datetime(2001, 1, 2)],
 | 
						|
            [datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)],
 | 
						|
        ]
 | 
						|
        df = DataFrame(data)
 | 
						|
 | 
						|
        # check the rank
 | 
						|
        expected = DataFrame([[2.0, np.nan, 1.0], [2.0, 3.0, 1.0]])
 | 
						|
        result = df.rank(1, numeric_only=False, ascending=True)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        expected = DataFrame([[1.0, np.nan, 2.0], [2.0, 1.0, 3.0]])
 | 
						|
        result = df.rank(1, numeric_only=False, ascending=False)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        df = DataFrame({"a": [1e-20, -5, 1e-20 + 1e-40, 10, 1e60, 1e80, 1e-30]})
 | 
						|
        exp = DataFrame({"a": [3.5, 1.0, 3.5, 5.0, 6.0, 7.0, 2.0]})
 | 
						|
        tm.assert_frame_equal(df.rank(), exp)
 | 
						|
 | 
						|
    def test_rank_does_not_mutate(self):
 | 
						|
        # GH#18521
 | 
						|
        # Check rank does not mutate DataFrame
 | 
						|
        df = DataFrame(np.random.randn(10, 3), dtype="float64")
 | 
						|
        expected = df.copy()
 | 
						|
        df.rank()
 | 
						|
        result = df
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_rank_mixed_frame(self, float_string_frame):
 | 
						|
        float_string_frame["datetime"] = datetime.now()
 | 
						|
        float_string_frame["timedelta"] = timedelta(days=1, seconds=1)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match="numeric_only=None"):
 | 
						|
            float_string_frame.rank(numeric_only=None)
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match="Dropping of nuisance"):
 | 
						|
            result = float_string_frame.rank(1)
 | 
						|
        expected = float_string_frame.rank(1, numeric_only=True)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_rank_na_option(self, float_frame):
 | 
						|
        import scipy.stats  # noqa:F401
 | 
						|
        from scipy.stats import rankdata
 | 
						|
 | 
						|
        float_frame["A"][::2] = np.nan
 | 
						|
        float_frame["B"][::3] = np.nan
 | 
						|
        float_frame["C"][::4] = np.nan
 | 
						|
        float_frame["D"][::5] = np.nan
 | 
						|
 | 
						|
        # bottom
 | 
						|
        ranks0 = float_frame.rank(na_option="bottom")
 | 
						|
        ranks1 = float_frame.rank(1, na_option="bottom")
 | 
						|
 | 
						|
        fvals = float_frame.fillna(np.inf).values
 | 
						|
 | 
						|
        exp0 = np.apply_along_axis(rankdata, 0, fvals)
 | 
						|
        exp1 = np.apply_along_axis(rankdata, 1, fvals)
 | 
						|
 | 
						|
        tm.assert_almost_equal(ranks0.values, exp0)
 | 
						|
        tm.assert_almost_equal(ranks1.values, exp1)
 | 
						|
 | 
						|
        # top
 | 
						|
        ranks0 = float_frame.rank(na_option="top")
 | 
						|
        ranks1 = float_frame.rank(1, na_option="top")
 | 
						|
 | 
						|
        fval0 = float_frame.fillna((float_frame.min() - 1).to_dict()).values
 | 
						|
        fval1 = float_frame.T
 | 
						|
        fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
 | 
						|
        fval1 = fval1.fillna(np.inf).values
 | 
						|
 | 
						|
        exp0 = np.apply_along_axis(rankdata, 0, fval0)
 | 
						|
        exp1 = np.apply_along_axis(rankdata, 1, fval1)
 | 
						|
 | 
						|
        tm.assert_almost_equal(ranks0.values, exp0)
 | 
						|
        tm.assert_almost_equal(ranks1.values, exp1)
 | 
						|
 | 
						|
        # descending
 | 
						|
 | 
						|
        # bottom
 | 
						|
        ranks0 = float_frame.rank(na_option="top", ascending=False)
 | 
						|
        ranks1 = float_frame.rank(1, na_option="top", ascending=False)
 | 
						|
 | 
						|
        fvals = float_frame.fillna(np.inf).values
 | 
						|
 | 
						|
        exp0 = np.apply_along_axis(rankdata, 0, -fvals)
 | 
						|
        exp1 = np.apply_along_axis(rankdata, 1, -fvals)
 | 
						|
 | 
						|
        tm.assert_almost_equal(ranks0.values, exp0)
 | 
						|
        tm.assert_almost_equal(ranks1.values, exp1)
 | 
						|
 | 
						|
        # descending
 | 
						|
 | 
						|
        # top
 | 
						|
        ranks0 = float_frame.rank(na_option="bottom", ascending=False)
 | 
						|
        ranks1 = float_frame.rank(1, na_option="bottom", ascending=False)
 | 
						|
 | 
						|
        fval0 = float_frame.fillna((float_frame.min() - 1).to_dict()).values
 | 
						|
        fval1 = float_frame.T
 | 
						|
        fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
 | 
						|
        fval1 = fval1.fillna(np.inf).values
 | 
						|
 | 
						|
        exp0 = np.apply_along_axis(rankdata, 0, -fval0)
 | 
						|
        exp1 = np.apply_along_axis(rankdata, 1, -fval1)
 | 
						|
 | 
						|
        tm.assert_numpy_array_equal(ranks0.values, exp0)
 | 
						|
        tm.assert_numpy_array_equal(ranks1.values, exp1)
 | 
						|
 | 
						|
        # bad values throw error
 | 
						|
        msg = "na_option must be one of 'keep', 'top', or 'bottom'"
 | 
						|
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            float_frame.rank(na_option="bad", ascending=False)
 | 
						|
 | 
						|
        # invalid type
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            float_frame.rank(na_option=True, ascending=False)
 | 
						|
 | 
						|
    def test_rank_axis(self):
 | 
						|
        # check if using axes' names gives the same result
 | 
						|
        df = DataFrame([[2, 1], [4, 3]])
 | 
						|
        tm.assert_frame_equal(df.rank(axis=0), df.rank(axis="index"))
 | 
						|
        tm.assert_frame_equal(df.rank(axis=1), df.rank(axis="columns"))
 | 
						|
 | 
						|
    @td.skip_if_no_scipy
 | 
						|
    def test_rank_methods_frame(self):
 | 
						|
        import scipy.stats  # noqa:F401
 | 
						|
        from scipy.stats import rankdata
 | 
						|
 | 
						|
        xs = np.random.randint(0, 21, (100, 26))
 | 
						|
        xs = (xs - 10.0) / 10.0
 | 
						|
        cols = [chr(ord("z") - i) for i in range(xs.shape[1])]
 | 
						|
 | 
						|
        for vals in [xs, xs + 1e6, xs * 1e-6]:
 | 
						|
            df = DataFrame(vals, columns=cols)
 | 
						|
 | 
						|
            for ax in [0, 1]:
 | 
						|
                for m in ["average", "min", "max", "first", "dense"]:
 | 
						|
                    result = df.rank(axis=ax, method=m)
 | 
						|
                    sprank = np.apply_along_axis(
 | 
						|
                        rankdata, ax, vals, m if m != "first" else "ordinal"
 | 
						|
                    )
 | 
						|
                    sprank = sprank.astype(np.float64)
 | 
						|
                    expected = DataFrame(sprank, columns=cols).astype("float64")
 | 
						|
                    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
 | 
						|
    @pytest.mark.filterwarnings("ignore:.*Select only valid:FutureWarning")
 | 
						|
    def test_rank_descending(self, method, dtype):
 | 
						|
        if "i" in dtype:
 | 
						|
            df = self.df.dropna().astype(dtype)
 | 
						|
        else:
 | 
						|
            df = self.df.astype(dtype)
 | 
						|
 | 
						|
        res = df.rank(ascending=False)
 | 
						|
        expected = (df.max() - df).rank()
 | 
						|
        tm.assert_frame_equal(res, expected)
 | 
						|
 | 
						|
        expected = (df.max() - df).rank(method=method)
 | 
						|
 | 
						|
        if dtype != "O":
 | 
						|
            res2 = df.rank(method=method, ascending=False, numeric_only=True)
 | 
						|
            tm.assert_frame_equal(res2, expected)
 | 
						|
 | 
						|
        res3 = df.rank(method=method, ascending=False, numeric_only=False)
 | 
						|
        tm.assert_frame_equal(res3, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("axis", [0, 1])
 | 
						|
    @pytest.mark.parametrize("dtype", [None, object])
 | 
						|
    def test_rank_2d_tie_methods(self, method, axis, dtype):
 | 
						|
        df = self.df
 | 
						|
 | 
						|
        def _check2d(df, expected, method="average", axis=0):
 | 
						|
            exp_df = DataFrame({"A": expected, "B": expected})
 | 
						|
 | 
						|
            if axis == 1:
 | 
						|
                df = df.T
 | 
						|
                exp_df = exp_df.T
 | 
						|
 | 
						|
            result = df.rank(method=method, axis=axis)
 | 
						|
            tm.assert_frame_equal(result, exp_df)
 | 
						|
 | 
						|
        frame = df if dtype is None else df.astype(dtype)
 | 
						|
        _check2d(frame, self.results[method], method=method, axis=axis)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "method,exp",
 | 
						|
        [
 | 
						|
            ("dense", [[1.0, 1.0, 1.0], [1.0, 0.5, 2.0 / 3], [1.0, 0.5, 1.0 / 3]]),
 | 
						|
            (
 | 
						|
                "min",
 | 
						|
                [
 | 
						|
                    [1.0 / 3, 1.0, 1.0],
 | 
						|
                    [1.0 / 3, 1.0 / 3, 2.0 / 3],
 | 
						|
                    [1.0 / 3, 1.0 / 3, 1.0 / 3],
 | 
						|
                ],
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "max",
 | 
						|
                [[1.0, 1.0, 1.0], [1.0, 2.0 / 3, 2.0 / 3], [1.0, 2.0 / 3, 1.0 / 3]],
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "average",
 | 
						|
                [[2.0 / 3, 1.0, 1.0], [2.0 / 3, 0.5, 2.0 / 3], [2.0 / 3, 0.5, 1.0 / 3]],
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                "first",
 | 
						|
                [
 | 
						|
                    [1.0 / 3, 1.0, 1.0],
 | 
						|
                    [2.0 / 3, 1.0 / 3, 2.0 / 3],
 | 
						|
                    [3.0 / 3, 2.0 / 3, 1.0 / 3],
 | 
						|
                ],
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_rank_pct_true(self, method, exp):
 | 
						|
        # see gh-15630.
 | 
						|
 | 
						|
        df = DataFrame([[2012, 66, 3], [2012, 65, 2], [2012, 65, 1]])
 | 
						|
        result = df.rank(method=method, pct=True)
 | 
						|
 | 
						|
        expected = DataFrame(exp)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.single_cpu
 | 
						|
    @pytest.mark.high_memory
 | 
						|
    def test_pct_max_many_rows(self):
 | 
						|
        # GH 18271
 | 
						|
        df = DataFrame(
 | 
						|
            {"A": np.arange(2**24 + 1), "B": np.arange(2**24 + 1, 0, -1)}
 | 
						|
        )
 | 
						|
        result = df.rank(pct=True).max()
 | 
						|
        assert (result == 1).all()
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "contents,dtype",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                [
 | 
						|
                    -np.inf,
 | 
						|
                    -50,
 | 
						|
                    -1,
 | 
						|
                    -1e-20,
 | 
						|
                    -1e-25,
 | 
						|
                    -1e-50,
 | 
						|
                    0,
 | 
						|
                    1e-40,
 | 
						|
                    1e-20,
 | 
						|
                    1e-10,
 | 
						|
                    2,
 | 
						|
                    40,
 | 
						|
                    np.inf,
 | 
						|
                ],
 | 
						|
                "float64",
 | 
						|
            ),
 | 
						|
            (
 | 
						|
                [
 | 
						|
                    -np.inf,
 | 
						|
                    -50,
 | 
						|
                    -1,
 | 
						|
                    -1e-20,
 | 
						|
                    -1e-25,
 | 
						|
                    -1e-45,
 | 
						|
                    0,
 | 
						|
                    1e-40,
 | 
						|
                    1e-20,
 | 
						|
                    1e-10,
 | 
						|
                    2,
 | 
						|
                    40,
 | 
						|
                    np.inf,
 | 
						|
                ],
 | 
						|
                "float32",
 | 
						|
            ),
 | 
						|
            ([np.iinfo(np.uint8).min, 1, 2, 100, np.iinfo(np.uint8).max], "uint8"),
 | 
						|
            (
 | 
						|
                [
 | 
						|
                    np.iinfo(np.int64).min,
 | 
						|
                    -100,
 | 
						|
                    0,
 | 
						|
                    1,
 | 
						|
                    9999,
 | 
						|
                    100000,
 | 
						|
                    1e10,
 | 
						|
                    np.iinfo(np.int64).max,
 | 
						|
                ],
 | 
						|
                "int64",
 | 
						|
            ),
 | 
						|
            ([NegInfinity(), "1", "A", "BA", "Ba", "C", Infinity()], "object"),
 | 
						|
            (
 | 
						|
                [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 5)],
 | 
						|
                "datetime64",
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_rank_inf_and_nan(self, contents, dtype, frame_or_series):
 | 
						|
        dtype_na_map = {
 | 
						|
            "float64": np.nan,
 | 
						|
            "float32": np.nan,
 | 
						|
            "object": None,
 | 
						|
            "datetime64": np.datetime64("nat"),
 | 
						|
        }
 | 
						|
        # Insert nans at random positions if underlying dtype has missing
 | 
						|
        # value. Then adjust the expected order by adding nans accordingly
 | 
						|
        # This is for testing whether rank calculation is affected
 | 
						|
        # when values are interwined with nan values.
 | 
						|
        values = np.array(contents, dtype=dtype)
 | 
						|
        exp_order = np.array(range(len(values)), dtype="float64") + 1.0
 | 
						|
        if dtype in dtype_na_map:
 | 
						|
            na_value = dtype_na_map[dtype]
 | 
						|
            nan_indices = np.random.choice(range(len(values)), 5)
 | 
						|
            values = np.insert(values, nan_indices, na_value)
 | 
						|
            exp_order = np.insert(exp_order, nan_indices, np.nan)
 | 
						|
 | 
						|
        # Shuffle the testing array and expected results in the same way
 | 
						|
        random_order = np.random.permutation(len(values))
 | 
						|
        obj = frame_or_series(values[random_order])
 | 
						|
        expected = frame_or_series(exp_order[random_order], dtype="float64")
 | 
						|
        result = obj.rank()
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_df_series_inf_nan_consistency(self):
 | 
						|
        # GH#32593
 | 
						|
        index = [5, 4, 3, 2, 1, 6, 7, 8, 9, 10]
 | 
						|
        col1 = [5, 4, 3, 5, 8, 5, 2, 1, 6, 6]
 | 
						|
        col2 = [5, 4, np.nan, 5, 8, 5, np.inf, np.nan, 6, -np.inf]
 | 
						|
        df = DataFrame(
 | 
						|
            data={
 | 
						|
                "col1": col1,
 | 
						|
                "col2": col2,
 | 
						|
            },
 | 
						|
            index=index,
 | 
						|
            dtype="f8",
 | 
						|
        )
 | 
						|
        df_result = df.rank()
 | 
						|
 | 
						|
        series_result = df.copy()
 | 
						|
        series_result["col1"] = df["col1"].rank()
 | 
						|
        series_result["col2"] = df["col2"].rank()
 | 
						|
 | 
						|
        tm.assert_frame_equal(df_result, series_result)
 | 
						|
 | 
						|
    def test_rank_both_inf(self):
 | 
						|
        # GH#32593
 | 
						|
        df = DataFrame({"a": [-np.inf, 0, np.inf]})
 | 
						|
        expected = DataFrame({"a": [1.0, 2.0, 3.0]})
 | 
						|
        result = df.rank()
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "na_option,ascending,expected",
 | 
						|
        [
 | 
						|
            ("top", True, [3.0, 1.0, 2.0]),
 | 
						|
            ("top", False, [2.0, 1.0, 3.0]),
 | 
						|
            ("bottom", True, [2.0, 3.0, 1.0]),
 | 
						|
            ("bottom", False, [1.0, 3.0, 2.0]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_rank_inf_nans_na_option(
 | 
						|
        self, frame_or_series, method, na_option, ascending, expected
 | 
						|
    ):
 | 
						|
        obj = frame_or_series([np.inf, np.nan, -np.inf])
 | 
						|
        result = obj.rank(method=method, na_option=na_option, ascending=ascending)
 | 
						|
        expected = frame_or_series(expected)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "na_option,ascending,expected",
 | 
						|
        [
 | 
						|
            ("bottom", True, [1.0, 2.0, 4.0, 3.0]),
 | 
						|
            ("bottom", False, [1.0, 2.0, 4.0, 3.0]),
 | 
						|
            ("top", True, [2.0, 3.0, 1.0, 4.0]),
 | 
						|
            ("top", False, [2.0, 3.0, 1.0, 4.0]),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_rank_object_first(self, frame_or_series, na_option, ascending, expected):
 | 
						|
        obj = frame_or_series(["foo", "foo", None, "foo"])
 | 
						|
        result = obj.rank(method="first", na_option=na_option, ascending=ascending)
 | 
						|
        expected = frame_or_series(expected)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "data,expected",
 | 
						|
        [
 | 
						|
            ({"a": [1, 2, "a"], "b": [4, 5, 6]}, DataFrame({"b": [1.0, 2.0, 3.0]})),
 | 
						|
            ({"a": [1, 2, "a"]}, DataFrame(index=range(3))),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_rank_mixed_axis_zero(self, data, expected):
 | 
						|
        df = DataFrame(data)
 | 
						|
        msg = "Dropping of nuisance columns"
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            result = df.rank()
 | 
						|
        tm.assert_frame_equal(result, expected)
 |