220 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    MultiIndex,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
class TestDataFrameIsIn:
 | 
						|
    def test_isin(self):
 | 
						|
        # GH#4211
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "vals": [1, 2, 3, 4],
 | 
						|
                "ids": ["a", "b", "f", "n"],
 | 
						|
                "ids2": ["a", "n", "c", "n"],
 | 
						|
            },
 | 
						|
            index=["foo", "bar", "baz", "qux"],
 | 
						|
        )
 | 
						|
        other = ["a", "b", "c"]
 | 
						|
 | 
						|
        result = df.isin(other)
 | 
						|
        expected = DataFrame([df.loc[s].isin(other) for s in df.index])
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
 | 
						|
    def test_isin_empty(self, empty):
 | 
						|
        # GH#16991
 | 
						|
        df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]})
 | 
						|
        expected = DataFrame(False, df.index, df.columns)
 | 
						|
 | 
						|
        result = df.isin(empty)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_dict(self):
 | 
						|
        df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]})
 | 
						|
        d = {"A": ["a"]}
 | 
						|
 | 
						|
        expected = DataFrame(False, df.index, df.columns)
 | 
						|
        expected.loc[0, "A"] = True
 | 
						|
 | 
						|
        result = df.isin(d)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # non unique columns
 | 
						|
        df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]})
 | 
						|
        df.columns = ["A", "A"]
 | 
						|
        expected = DataFrame(False, df.index, df.columns)
 | 
						|
        expected.loc[0, "A"] = True
 | 
						|
        result = df.isin(d)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_with_string_scalar(self):
 | 
						|
        # GH#4763
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "vals": [1, 2, 3, 4],
 | 
						|
                "ids": ["a", "b", "f", "n"],
 | 
						|
                "ids2": ["a", "n", "c", "n"],
 | 
						|
            },
 | 
						|
            index=["foo", "bar", "baz", "qux"],
 | 
						|
        )
 | 
						|
        msg = (
 | 
						|
            r"only list-like or dict-like objects are allowed "
 | 
						|
            r"to be passed to DataFrame.isin\(\), you passed a 'str'"
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df.isin("a")
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df.isin("aaa")
 | 
						|
 | 
						|
    def test_isin_df(self):
 | 
						|
        df1 = DataFrame({"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]})
 | 
						|
        df2 = DataFrame({"A": [0, 2, 12, 4], "B": [2, np.nan, 4, 5]})
 | 
						|
        expected = DataFrame(False, df1.index, df1.columns)
 | 
						|
        result = df1.isin(df2)
 | 
						|
        expected.loc[[1, 3], "A"] = True
 | 
						|
        expected.loc[[0, 2], "B"] = True
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # partial overlapping columns
 | 
						|
        df2.columns = ["A", "C"]
 | 
						|
        result = df1.isin(df2)
 | 
						|
        expected["B"] = False
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_tuples(self):
 | 
						|
        # GH#16394
 | 
						|
        df = DataFrame({"A": [1, 2, 3], "B": ["a", "b", "f"]})
 | 
						|
        df["C"] = list(zip(df["A"], df["B"]))
 | 
						|
        result = df["C"].isin([(1, "a")])
 | 
						|
        tm.assert_series_equal(result, Series([True, False, False], name="C"))
 | 
						|
 | 
						|
    def test_isin_df_dupe_values(self):
 | 
						|
        df1 = DataFrame({"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]})
 | 
						|
        # just cols duped
 | 
						|
        df2 = DataFrame([[0, 2], [12, 4], [2, np.nan], [4, 5]], columns=["B", "B"])
 | 
						|
        msg = r"cannot compute isin with a duplicate axis\."
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df1.isin(df2)
 | 
						|
 | 
						|
        # just index duped
 | 
						|
        df2 = DataFrame(
 | 
						|
            [[0, 2], [12, 4], [2, np.nan], [4, 5]],
 | 
						|
            columns=["A", "B"],
 | 
						|
            index=[0, 0, 1, 1],
 | 
						|
        )
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df1.isin(df2)
 | 
						|
 | 
						|
        # cols and index:
 | 
						|
        df2.columns = ["B", "B"]
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            df1.isin(df2)
 | 
						|
 | 
						|
    def test_isin_dupe_self(self):
 | 
						|
        other = DataFrame({"A": [1, 0, 1, 0], "B": [1, 1, 0, 0]})
 | 
						|
        df = DataFrame([[1, 1], [1, 0], [0, 0]], columns=["A", "A"])
 | 
						|
        result = df.isin(other)
 | 
						|
        expected = DataFrame(False, index=df.index, columns=df.columns)
 | 
						|
        expected.loc[0] = True
 | 
						|
        expected.iloc[1, 1] = True
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_against_series(self):
 | 
						|
        df = DataFrame(
 | 
						|
            {"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]}, index=["a", "b", "c", "d"]
 | 
						|
        )
 | 
						|
        s = Series([1, 3, 11, 4], index=["a", "b", "c", "d"])
 | 
						|
        expected = DataFrame(False, index=df.index, columns=df.columns)
 | 
						|
        expected.loc["a", "A"] = True
 | 
						|
        expected.loc["d"] = True
 | 
						|
        result = df.isin(s)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_multiIndex(self):
 | 
						|
        idx = MultiIndex.from_tuples(
 | 
						|
            [
 | 
						|
                (0, "a", "foo"),
 | 
						|
                (0, "a", "bar"),
 | 
						|
                (0, "b", "bar"),
 | 
						|
                (0, "b", "baz"),
 | 
						|
                (2, "a", "foo"),
 | 
						|
                (2, "a", "bar"),
 | 
						|
                (2, "c", "bar"),
 | 
						|
                (2, "c", "baz"),
 | 
						|
                (1, "b", "foo"),
 | 
						|
                (1, "b", "bar"),
 | 
						|
                (1, "c", "bar"),
 | 
						|
                (1, "c", "baz"),
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        df1 = DataFrame({"A": np.ones(12), "B": np.zeros(12)}, index=idx)
 | 
						|
        df2 = DataFrame(
 | 
						|
            {
 | 
						|
                "A": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
 | 
						|
                "B": [1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1],
 | 
						|
            }
 | 
						|
        )
 | 
						|
        # against regular index
 | 
						|
        expected = DataFrame(False, index=df1.index, columns=df1.columns)
 | 
						|
        result = df1.isin(df2)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        df2.index = idx
 | 
						|
        expected = df2.values.astype(bool)
 | 
						|
        expected[:, 1] = ~expected[:, 1]
 | 
						|
        expected = DataFrame(expected, columns=["A", "B"], index=idx)
 | 
						|
 | 
						|
        result = df1.isin(df2)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_empty_datetimelike(self):
 | 
						|
        # GH#15473
 | 
						|
        df1_ts = DataFrame({"date": pd.to_datetime(["2014-01-01", "2014-01-02"])})
 | 
						|
        df1_td = DataFrame({"date": [pd.Timedelta(1, "s"), pd.Timedelta(2, "s")]})
 | 
						|
        df2 = DataFrame({"date": []})
 | 
						|
        df3 = DataFrame()
 | 
						|
 | 
						|
        expected = DataFrame({"date": [False, False]})
 | 
						|
 | 
						|
        result = df1_ts.isin(df2)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
        result = df1_ts.isin(df3)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        result = df1_td.isin(df2)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
        result = df1_td.isin(df3)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "values",
 | 
						|
        [
 | 
						|
            DataFrame({"a": [1, 2, 3]}, dtype="category"),
 | 
						|
            Series([1, 2, 3], dtype="category"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_isin_category_frame(self, values):
 | 
						|
        # GH#34256
 | 
						|
        df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
 | 
						|
        expected = DataFrame({"a": [True, True, True], "b": [False, False, False]})
 | 
						|
 | 
						|
        result = df.isin(values)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_isin_read_only(self):
 | 
						|
        # https://github.com/pandas-dev/pandas/issues/37174
 | 
						|
        arr = np.array([1, 2, 3])
 | 
						|
        arr.setflags(write=False)
 | 
						|
        df = DataFrame([1, 2, 3])
 | 
						|
        result = df.isin(arr)
 | 
						|
        expected = DataFrame([True, True, True])
 | 
						|
        tm.assert_frame_equal(result, expected)
 |