393 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			393 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import re
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    IndexSlice,
 | 
						|
    MultiIndex,
 | 
						|
    Series,
 | 
						|
    concat,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
import pandas.core.common as com
 | 
						|
 | 
						|
from pandas.tseries.offsets import BDay
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def four_level_index_dataframe():
 | 
						|
    arr = np.array(
 | 
						|
        [
 | 
						|
            [-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
 | 
						|
            [0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
 | 
						|
            [-0.6662, -0.5243, -0.358, 0.89145, 2.5838],
 | 
						|
        ]
 | 
						|
    )
 | 
						|
    index = MultiIndex(
 | 
						|
        levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]],
 | 
						|
        codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]],
 | 
						|
        names=["one", "two", "three", "four"],
 | 
						|
    )
 | 
						|
    return DataFrame(arr, index=index, columns=list("ABCDE"))
 | 
						|
 | 
						|
 | 
						|
class TestXS:
 | 
						|
    def test_xs(self, float_frame, datetime_frame):
 | 
						|
        idx = float_frame.index[5]
 | 
						|
        xs = float_frame.xs(idx)
 | 
						|
        for item, value in xs.items():
 | 
						|
            if np.isnan(value):
 | 
						|
                assert np.isnan(float_frame[item][idx])
 | 
						|
            else:
 | 
						|
                assert value == float_frame[item][idx]
 | 
						|
 | 
						|
        # mixed-type xs
 | 
						|
        test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
 | 
						|
        frame = DataFrame(test_data)
 | 
						|
        xs = frame.xs("1")
 | 
						|
        assert xs.dtype == np.object_
 | 
						|
        assert xs["A"] == 1
 | 
						|
        assert xs["B"] == "1"
 | 
						|
 | 
						|
        with pytest.raises(
 | 
						|
            KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00', freq='B')")
 | 
						|
        ):
 | 
						|
            datetime_frame.xs(datetime_frame.index[0] - BDay())
 | 
						|
 | 
						|
        # xs get column
 | 
						|
        series = float_frame.xs("A", axis=1)
 | 
						|
        expected = float_frame["A"]
 | 
						|
        tm.assert_series_equal(series, expected)
 | 
						|
 | 
						|
        # view is returned if possible
 | 
						|
        series = float_frame.xs("A", axis=1)
 | 
						|
        series[:] = 5
 | 
						|
        assert (expected == 5).all()
 | 
						|
 | 
						|
    def test_xs_corner(self):
 | 
						|
        # pathological mixed-type reordering case
 | 
						|
        df = DataFrame(index=[0])
 | 
						|
        df["A"] = 1.0
 | 
						|
        df["B"] = "foo"
 | 
						|
        df["C"] = 2.0
 | 
						|
        df["D"] = "bar"
 | 
						|
        df["E"] = 3.0
 | 
						|
 | 
						|
        xs = df.xs(0)
 | 
						|
        exp = Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0)
 | 
						|
        tm.assert_series_equal(xs, exp)
 | 
						|
 | 
						|
        # no columns but Index(dtype=object)
 | 
						|
        df = DataFrame(index=["a", "b", "c"])
 | 
						|
        result = df.xs("a")
 | 
						|
        expected = Series([], name="a", index=Index([]), dtype=np.float64)
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_duplicates(self):
 | 
						|
        df = DataFrame(np.random.randn(5, 2), index=["b", "b", "c", "b", "a"])
 | 
						|
 | 
						|
        cross = df.xs("c")
 | 
						|
        exp = df.iloc[2]
 | 
						|
        tm.assert_series_equal(cross, exp)
 | 
						|
 | 
						|
    def test_xs_keep_level(self):
 | 
						|
        df = DataFrame(
 | 
						|
            {
 | 
						|
                "day": {0: "sat", 1: "sun"},
 | 
						|
                "flavour": {0: "strawberry", 1: "strawberry"},
 | 
						|
                "sales": {0: 10, 1: 12},
 | 
						|
                "year": {0: 2008, 1: 2008},
 | 
						|
            }
 | 
						|
        ).set_index(["year", "flavour", "day"])
 | 
						|
        result = df.xs("sat", level="day", drop_level=False)
 | 
						|
        expected = df[:1]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(FutureWarning):
 | 
						|
            result = df.xs([2008, "sat"], level=["year", "day"], drop_level=False)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_view(self, using_array_manager):
 | 
						|
        # in 0.14 this will return a view if possible a copy otherwise, but
 | 
						|
        # this is numpy dependent
 | 
						|
 | 
						|
        dm = DataFrame(np.arange(20.0).reshape(4, 5), index=range(4), columns=range(5))
 | 
						|
 | 
						|
        if using_array_manager:
 | 
						|
            # INFO(ArrayManager) with ArrayManager getting a row as a view is
 | 
						|
            # not possible
 | 
						|
            msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame"
 | 
						|
            with pytest.raises(com.SettingWithCopyError, match=msg):
 | 
						|
                dm.xs(2)[:] = 20
 | 
						|
            assert not (dm.xs(2) == 20).any()
 | 
						|
        else:
 | 
						|
            dm.xs(2)[:] = 20
 | 
						|
            assert (dm.xs(2) == 20).all()
 | 
						|
 | 
						|
 | 
						|
class TestXSWithMultiIndex:
 | 
						|
    def test_xs_doc_example(self):
 | 
						|
        # TODO: more descriptive name
 | 
						|
        # based on example in advanced.rst
 | 
						|
        arrays = [
 | 
						|
            ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
 | 
						|
            ["one", "two", "one", "two", "one", "two", "one", "two"],
 | 
						|
        ]
 | 
						|
        tuples = list(zip(*arrays))
 | 
						|
 | 
						|
        index = MultiIndex.from_tuples(tuples, names=["first", "second"])
 | 
						|
        df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
 | 
						|
 | 
						|
        result = df.xs(("one", "bar"), level=("second", "first"), axis=1)
 | 
						|
 | 
						|
        expected = df.iloc[:, [0]]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_integer_key(self):
 | 
						|
        # see GH#2107
 | 
						|
        dates = range(20111201, 20111205)
 | 
						|
        ids = list("abcde")
 | 
						|
        index = MultiIndex.from_product([dates, ids], names=["date", "secid"])
 | 
						|
        df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"])
 | 
						|
 | 
						|
        result = df.xs(20111201, level="date")
 | 
						|
        expected = df.loc[20111201, :]
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_level(self, multiindex_dataframe_random_data):
 | 
						|
        df = multiindex_dataframe_random_data
 | 
						|
        result = df.xs("two", level="second")
 | 
						|
        expected = df[df.index.get_level_values(1) == "two"]
 | 
						|
        expected.index = Index(["foo", "bar", "baz", "qux"], name="first")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_level_eq_2(self):
 | 
						|
        arr = np.random.randn(3, 5)
 | 
						|
        index = MultiIndex(
 | 
						|
            levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]],
 | 
						|
            codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]],
 | 
						|
        )
 | 
						|
        df = DataFrame(arr, index=index)
 | 
						|
        expected = DataFrame(arr[1:2], index=[["a"], ["b"]])
 | 
						|
        result = df.xs("c", level=2)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_setting_with_copy_error(self, multiindex_dataframe_random_data):
 | 
						|
        # this is a copy in 0.14
 | 
						|
        df = multiindex_dataframe_random_data
 | 
						|
        result = df.xs("two", level="second")
 | 
						|
 | 
						|
        # setting this will give a SettingWithCopyError
 | 
						|
        # as we are trying to write a view
 | 
						|
        msg = "A value is trying to be set on a copy of a slice from a DataFrame"
 | 
						|
        with pytest.raises(com.SettingWithCopyError, match=msg):
 | 
						|
            result[:] = 10
 | 
						|
 | 
						|
    def test_xs_setting_with_copy_error_multiple(self, four_level_index_dataframe):
 | 
						|
        # this is a copy in 0.14
 | 
						|
        df = four_level_index_dataframe
 | 
						|
        result = df.xs(("a", 4), level=["one", "four"])
 | 
						|
 | 
						|
        # setting this will give a SettingWithCopyError
 | 
						|
        # as we are trying to write a view
 | 
						|
        msg = "A value is trying to be set on a copy of a slice from a DataFrame"
 | 
						|
        with pytest.raises(com.SettingWithCopyError, match=msg):
 | 
						|
            result[:] = 10
 | 
						|
 | 
						|
    @pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])])
 | 
						|
    def test_xs_with_duplicates(self, key, level, multiindex_dataframe_random_data):
 | 
						|
        # see GH#13719
 | 
						|
        frame = multiindex_dataframe_random_data
 | 
						|
        df = concat([frame] * 2)
 | 
						|
        assert df.index.is_unique is False
 | 
						|
        expected = concat([frame.xs("one", level="second")] * 2)
 | 
						|
 | 
						|
        if isinstance(key, list):
 | 
						|
            with tm.assert_produces_warning(FutureWarning):
 | 
						|
                result = df.xs(key, level=level)
 | 
						|
        else:
 | 
						|
            result = df.xs(key, level=level)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_missing_values_in_index(self):
 | 
						|
        # see GH#6574
 | 
						|
        # missing values in returned index should be preserved
 | 
						|
        acc = [
 | 
						|
            ("a", "abcde", 1),
 | 
						|
            ("b", "bbcde", 2),
 | 
						|
            ("y", "yzcde", 25),
 | 
						|
            ("z", "xbcde", 24),
 | 
						|
            ("z", None, 26),
 | 
						|
            ("z", "zbcde", 25),
 | 
						|
            ("z", "ybcde", 26),
 | 
						|
        ]
 | 
						|
        df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"])
 | 
						|
        expected = DataFrame(
 | 
						|
            {"cnt": [24, 26, 25, 26]},
 | 
						|
            index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"),
 | 
						|
        )
 | 
						|
 | 
						|
        result = df.xs("z", level="a1")
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "key, level, exp_arr, exp_index",
 | 
						|
        [
 | 
						|
            ("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")),
 | 
						|
            ("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_xs_named_levels_axis_eq_1(self, key, level, exp_arr, exp_index):
 | 
						|
        # see GH#2903
 | 
						|
        arr = np.random.randn(4, 4)
 | 
						|
        index = MultiIndex(
 | 
						|
            levels=[["a", "b"], ["bar", "foo", "hello", "world"]],
 | 
						|
            codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
 | 
						|
            names=["lvl0", "lvl1"],
 | 
						|
        )
 | 
						|
        df = DataFrame(arr, columns=index)
 | 
						|
        result = df.xs(key, level=level, axis=1)
 | 
						|
        expected = DataFrame(exp_arr(arr), columns=exp_index)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "indexer",
 | 
						|
        [
 | 
						|
            lambda df: df.xs(("a", 4), level=["one", "four"]),
 | 
						|
            lambda df: df.xs("a").xs(4, level="four"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_xs_level_multiple(self, indexer, four_level_index_dataframe):
 | 
						|
        df = four_level_index_dataframe
 | 
						|
        expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
 | 
						|
        expected_index = MultiIndex(
 | 
						|
            levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"]
 | 
						|
        )
 | 
						|
        expected = DataFrame(
 | 
						|
            expected_values, index=expected_index, columns=list("ABCDE")
 | 
						|
        )
 | 
						|
        result = indexer(df)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")]
 | 
						|
    )
 | 
						|
    def test_xs_level0(self, indexer, four_level_index_dataframe):
 | 
						|
        df = four_level_index_dataframe
 | 
						|
        expected_values = [
 | 
						|
            [-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
 | 
						|
            [0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
 | 
						|
        ]
 | 
						|
        expected_index = MultiIndex(
 | 
						|
            levels=[["b", "q"], [10.0032, 20.0], [4, 5]],
 | 
						|
            codes=[[0, 1], [0, 1], [1, 0]],
 | 
						|
            names=["two", "three", "four"],
 | 
						|
        )
 | 
						|
        expected = DataFrame(
 | 
						|
            expected_values, index=expected_index, columns=list("ABCDE")
 | 
						|
        )
 | 
						|
 | 
						|
        result = indexer(df)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_values(self, multiindex_dataframe_random_data):
 | 
						|
        df = multiindex_dataframe_random_data
 | 
						|
        result = df.xs(("bar", "two")).values
 | 
						|
        expected = df.values[4]
 | 
						|
        tm.assert_almost_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_loc_equality(self, multiindex_dataframe_random_data):
 | 
						|
        df = multiindex_dataframe_random_data
 | 
						|
        result = df.xs(("bar", "two"))
 | 
						|
        expected = df.loc[("bar", "two")]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("klass", [DataFrame, Series])
 | 
						|
    def test_xs_IndexSlice_argument_not_implemented(self, klass):
 | 
						|
        # GH#35301
 | 
						|
 | 
						|
        index = MultiIndex(
 | 
						|
            levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
 | 
						|
            codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
 | 
						|
        )
 | 
						|
 | 
						|
        obj = DataFrame(np.random.randn(6, 4), index=index)
 | 
						|
        if klass is Series:
 | 
						|
            obj = obj[0]
 | 
						|
 | 
						|
        expected = obj.iloc[-2:].droplevel(0)
 | 
						|
 | 
						|
        result = obj.xs(IndexSlice[("foo", "qux", 0), :])
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = obj.loc[IndexSlice[("foo", "qux", 0), :]]
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("klass", [DataFrame, Series])
 | 
						|
    def test_xs_levels_raises(self, klass):
 | 
						|
        obj = DataFrame({"A": [1, 2, 3]})
 | 
						|
        if klass is Series:
 | 
						|
            obj = obj["A"]
 | 
						|
 | 
						|
        msg = "Index must be a MultiIndex"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            obj.xs(0, level="as")
 | 
						|
 | 
						|
    def test_xs_multiindex_droplevel_false(self):
 | 
						|
        # GH#19056
 | 
						|
        mi = MultiIndex.from_tuples(
 | 
						|
            [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
 | 
						|
        )
 | 
						|
        df = DataFrame([[1, 2, 3]], columns=mi)
 | 
						|
        result = df.xs("a", axis=1, drop_level=False)
 | 
						|
        expected = DataFrame(
 | 
						|
            [[1, 2]],
 | 
						|
            columns=MultiIndex.from_tuples(
 | 
						|
                [("a", "x"), ("a", "y")], names=["level1", "level2"]
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_droplevel_false(self):
 | 
						|
        # GH#19056
 | 
						|
        df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
 | 
						|
        result = df.xs("a", axis=1, drop_level=False)
 | 
						|
        expected = DataFrame({"a": [1]})
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_droplevel_false_view(self, using_array_manager):
 | 
						|
        # GH#37832
 | 
						|
        df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
 | 
						|
        result = df.xs("a", axis=1, drop_level=False)
 | 
						|
        # check that result still views the same data as df
 | 
						|
        assert np.shares_memory(result.iloc[:, 0]._values, df.iloc[:, 0]._values)
 | 
						|
        # modifying original df also modifies result when having a single block
 | 
						|
        df.iloc[0, 0] = 2
 | 
						|
        expected = DataFrame({"a": [2]})
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # with mixed dataframe, modifying the parent doesn't modify result
 | 
						|
        # TODO the "split" path behaves differently here as with single block
 | 
						|
        df = DataFrame([[1, 2.5, "a"]], columns=Index(["a", "b", "c"]))
 | 
						|
        result = df.xs("a", axis=1, drop_level=False)
 | 
						|
        df.iloc[0, 0] = 2
 | 
						|
        if using_array_manager:
 | 
						|
            # Here the behavior is consistent
 | 
						|
            expected = DataFrame({"a": [2]})
 | 
						|
        else:
 | 
						|
            # FIXME: iloc does not update the array inplace using
 | 
						|
            # "split" path
 | 
						|
            expected = DataFrame({"a": [1]})
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    def test_xs_list_indexer_droplevel_false(self):
 | 
						|
        # GH#41760
 | 
						|
        mi = MultiIndex.from_tuples([("x", "m", "a"), ("x", "n", "b"), ("y", "o", "c")])
 | 
						|
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=mi)
 | 
						|
        with tm.assert_produces_warning(FutureWarning):
 | 
						|
            with pytest.raises(KeyError, match="y"):
 | 
						|
                df.xs(["x", "y"], drop_level=False, axis=1)
 |