66 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "to_concat_dtypes, result_dtype",
 | 
						|
    [
 | 
						|
        (["Int64", "Int64"], "Int64"),
 | 
						|
        (["UInt64", "UInt64"], "UInt64"),
 | 
						|
        (["Int8", "Int8"], "Int8"),
 | 
						|
        (["Int8", "Int16"], "Int16"),
 | 
						|
        (["UInt8", "Int8"], "Int16"),
 | 
						|
        (["Int32", "UInt32"], "Int64"),
 | 
						|
        (["Int64", "UInt64"], "Float64"),
 | 
						|
        (["Int64", "boolean"], "Int64"),
 | 
						|
        (["UInt8", "boolean"], "UInt8"),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_concat_series(to_concat_dtypes, result_dtype):
 | 
						|
 | 
						|
    result = pd.concat([pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes])
 | 
						|
    expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
 | 
						|
        result_dtype
 | 
						|
    )
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # order doesn't matter for result
 | 
						|
    result = pd.concat(
 | 
						|
        [pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes[::-1]]
 | 
						|
    )
 | 
						|
    expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
 | 
						|
        result_dtype
 | 
						|
    )
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "to_concat_dtypes, result_dtype",
 | 
						|
    [
 | 
						|
        (["Int64", "int64"], "Int64"),
 | 
						|
        (["UInt64", "uint64"], "UInt64"),
 | 
						|
        (["Int8", "int8"], "Int8"),
 | 
						|
        (["Int8", "int16"], "Int16"),
 | 
						|
        (["UInt8", "int8"], "Int16"),
 | 
						|
        (["Int32", "uint32"], "Int64"),
 | 
						|
        (["Int64", "uint64"], "Float64"),
 | 
						|
        (["Int64", "bool"], "Int64"),
 | 
						|
        (["UInt8", "bool"], "UInt8"),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_concat_series_with_numpy(to_concat_dtypes, result_dtype):
 | 
						|
 | 
						|
    s1 = pd.Series([0, 1, pd.NA], dtype=to_concat_dtypes[0])
 | 
						|
    s2 = pd.Series(np.array([0, 1], dtype=to_concat_dtypes[1]))
 | 
						|
    result = pd.concat([s1, s2], ignore_index=True)
 | 
						|
    expected = pd.Series([0, 1, pd.NA, 0, 1], dtype=object).astype(result_dtype)
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # order doesn't matter for result
 | 
						|
    result = pd.concat([s2, s1], ignore_index=True)
 | 
						|
    expected = pd.Series([0, 1, 0, 1, pd.NA], dtype=object).astype(result_dtype)
 | 
						|
    tm.assert_series_equal(result, expected)
 |