49 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas.core.arrays.floating import (
 | 
						|
    Float32Dtype,
 | 
						|
    Float64Dtype,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def test_dtypes(dtype):
 | 
						|
    # smoke tests on auto dtype construction
 | 
						|
 | 
						|
    np.dtype(dtype.type).kind == "f"
 | 
						|
    assert dtype.name is not None
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "dtype, expected",
 | 
						|
    [(Float32Dtype(), "Float32Dtype()"), (Float64Dtype(), "Float64Dtype()")],
 | 
						|
)
 | 
						|
def test_repr_dtype(dtype, expected):
 | 
						|
    assert repr(dtype) == expected
 | 
						|
 | 
						|
 | 
						|
def test_repr_array():
 | 
						|
    result = repr(pd.array([1.0, None, 3.0]))
 | 
						|
    expected = "<FloatingArray>\n[1.0, <NA>, 3.0]\nLength: 3, dtype: Float64"
 | 
						|
    assert result == expected
 | 
						|
 | 
						|
 | 
						|
def test_repr_array_long():
 | 
						|
    data = pd.array([1.0, 2.0, None] * 1000)
 | 
						|
    expected = """<FloatingArray>
 | 
						|
[ 1.0,  2.0, <NA>,  1.0,  2.0, <NA>,  1.0,  2.0, <NA>,  1.0,
 | 
						|
 ...
 | 
						|
 <NA>,  1.0,  2.0, <NA>,  1.0,  2.0, <NA>,  1.0,  2.0, <NA>]
 | 
						|
Length: 3000, dtype: Float64"""
 | 
						|
    result = repr(data)
 | 
						|
    assert result == expected
 | 
						|
 | 
						|
 | 
						|
def test_frame_repr(data_missing):
 | 
						|
 | 
						|
    df = pd.DataFrame({"A": data_missing})
 | 
						|
    result = repr(df)
 | 
						|
    expected = "      A\n0  <NA>\n1   0.1"
 | 
						|
    assert result == expected
 |