37 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			37 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
For cython types that cannot be represented precisely, closest-available
 | 
						|
python equivalents are used, and the precise types kept as adjacent comments.
 | 
						|
"""
 | 
						|
from datetime import tzinfo
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from pandas._libs.tslibs.dtypes import Resolution
 | 
						|
from pandas._libs.tslibs.offsets import BaseOffset
 | 
						|
from pandas._typing import npt
 | 
						|
 | 
						|
def dt64arr_to_periodarr(
 | 
						|
    stamps: npt.NDArray[np.int64],  # const int64_t[:]
 | 
						|
    freq: int,
 | 
						|
    tz: tzinfo | None,
 | 
						|
) -> npt.NDArray[np.int64]: ...  # np.ndarray[np.int64, ndim=1]
 | 
						|
def is_date_array_normalized(
 | 
						|
    stamps: npt.NDArray[np.int64],  # const int64_t[:]
 | 
						|
    tz: tzinfo | None = ...,
 | 
						|
) -> bool: ...
 | 
						|
def normalize_i8_timestamps(
 | 
						|
    stamps: npt.NDArray[np.int64],  # const int64_t[:]
 | 
						|
    tz: tzinfo | None,
 | 
						|
) -> npt.NDArray[np.int64]: ...
 | 
						|
def get_resolution(
 | 
						|
    stamps: npt.NDArray[np.int64],  # const int64_t[:]
 | 
						|
    tz: tzinfo | None = ...,
 | 
						|
) -> Resolution: ...
 | 
						|
def ints_to_pydatetime(
 | 
						|
    arr: npt.NDArray[np.int64],  # const int64_t[:}]
 | 
						|
    tz: tzinfo | None = ...,
 | 
						|
    freq: str | BaseOffset | None = ...,
 | 
						|
    fold: bool = ...,
 | 
						|
    box: str = ...,
 | 
						|
) -> npt.NDArray[np.object_]: ...
 |