157 lines
5.2 KiB
Python
157 lines
5.2 KiB
Python
"""Parallel util function."""
|
|
|
|
# Authors: The MNE-Python contributors.
|
|
# License: BSD-3-Clause
|
|
# Copyright the MNE-Python contributors.
|
|
|
|
import logging
|
|
import multiprocessing
|
|
import os
|
|
|
|
from .utils import (
|
|
ProgressBar,
|
|
_ensure_int,
|
|
_validate_type,
|
|
get_config,
|
|
logger,
|
|
use_log_level,
|
|
verbose,
|
|
warn,
|
|
)
|
|
|
|
|
|
@verbose
|
|
def parallel_func(
|
|
func,
|
|
n_jobs,
|
|
max_nbytes="auto",
|
|
pre_dispatch="n_jobs",
|
|
total=None,
|
|
prefer=None,
|
|
*,
|
|
max_jobs=None,
|
|
verbose=None,
|
|
):
|
|
"""Return parallel instance with delayed function.
|
|
|
|
Util function to use joblib only if available
|
|
|
|
Parameters
|
|
----------
|
|
func : callable
|
|
A function.
|
|
%(n_jobs)s
|
|
max_nbytes : int | str | None
|
|
Threshold on the minimum size of arrays passed to the workers that
|
|
triggers automated memory mapping. Can be an int in Bytes,
|
|
or a human-readable string, e.g., '1M' for 1 megabyte.
|
|
Use None to disable memmaping of large arrays. Use 'auto' to
|
|
use the value set using :func:`mne.set_memmap_min_size`.
|
|
pre_dispatch : int | str
|
|
See :class:`joblib.Parallel`.
|
|
total : int | None
|
|
If int, use a progress bar to display the progress of dispatched
|
|
jobs. This should only be used when directly iterating, not when
|
|
using ``split_list`` or :func:`np.array_split`.
|
|
If None (default), do not add a progress bar.
|
|
prefer : str | None
|
|
If str, can be ``"processes"`` or ``"threads"``.
|
|
See :class:`joblib.Parallel`.
|
|
|
|
.. versionadded:: 0.18
|
|
max_jobs : int | None
|
|
The upper limit of jobs to use. This is useful when you know ahead
|
|
of a the maximum number of calls into :class:`joblib.Parallel` that
|
|
you will possibly want or need, and the returned ``n_jobs`` should not
|
|
exceed this value regardless of how many jobs the user requests.
|
|
%(verbose)s INFO or DEBUG
|
|
will print parallel status, others will not.
|
|
|
|
Returns
|
|
-------
|
|
parallel: instance of joblib.Parallel or list
|
|
The parallel object.
|
|
my_func: callable
|
|
``func`` if not parallel or delayed(func).
|
|
n_jobs: int
|
|
Number of jobs >= 1.
|
|
"""
|
|
should_print = logger.level <= logging.INFO
|
|
# for a single job, we don't need joblib
|
|
_validate_type(n_jobs, ("int-like", None))
|
|
if n_jobs != 1:
|
|
try:
|
|
from joblib import Parallel, delayed
|
|
except ImportError:
|
|
if n_jobs is not None:
|
|
warn("joblib not installed. Cannot run in parallel.")
|
|
n_jobs = 1
|
|
if n_jobs == 1:
|
|
n_jobs = 1
|
|
my_func = func
|
|
parallel = list
|
|
else:
|
|
# check if joblib is recent enough to support memmaping
|
|
cache_dir = get_config("MNE_CACHE_DIR", None)
|
|
if isinstance(max_nbytes, str) and max_nbytes == "auto":
|
|
max_nbytes = get_config("MNE_MEMMAP_MIN_SIZE", None)
|
|
|
|
if max_nbytes is not None and cache_dir is None:
|
|
logger.info(
|
|
'joblib supports memapping pool but "MNE_CACHE_DIR" '
|
|
"is not set in MNE-Python config. To enable it, use, "
|
|
"e.g., mne.set_cache_dir('/tmp/shm'). This will "
|
|
"store temporary files under /dev/shm and can result "
|
|
"in large memory savings."
|
|
)
|
|
|
|
# create keyword arguments for Parallel
|
|
kwargs = {"verbose": 5 if should_print and total is None else 0}
|
|
kwargs["pre_dispatch"] = pre_dispatch
|
|
kwargs["prefer"] = prefer
|
|
if cache_dir is None:
|
|
max_nbytes = None # disable memmaping
|
|
kwargs["temp_folder"] = cache_dir
|
|
kwargs["max_nbytes"] = max_nbytes
|
|
n_jobs_orig = n_jobs
|
|
if n_jobs is not None: # https://github.com/joblib/joblib/issues/1473
|
|
kwargs["n_jobs"] = n_jobs
|
|
parallel = Parallel(**kwargs)
|
|
n_jobs = _check_n_jobs(parallel.n_jobs)
|
|
logger.debug(f"Got {n_jobs} parallel jobs after requesting {n_jobs_orig}")
|
|
if max_jobs is not None:
|
|
n_jobs = min(n_jobs, max(_ensure_int(max_jobs, "max_jobs"), 1))
|
|
|
|
def run_verbose(*args, verbose=logger.level, **kwargs):
|
|
with use_log_level(verbose=verbose):
|
|
return func(*args, **kwargs)
|
|
|
|
my_func = delayed(run_verbose)
|
|
|
|
if total is not None:
|
|
|
|
def parallel_progress(op_iter):
|
|
return parallel(ProgressBar(iterable=op_iter, max_value=total))
|
|
|
|
parallel_out = parallel_progress
|
|
else:
|
|
parallel_out = parallel
|
|
return parallel_out, my_func, n_jobs
|
|
|
|
|
|
def _check_n_jobs(n_jobs):
|
|
n_jobs = _ensure_int(n_jobs, "n_jobs", must_be="an int or None")
|
|
if os.getenv("MNE_FORCE_SERIAL", "").lower() in ("true", "1") and n_jobs != 1:
|
|
n_jobs = 1
|
|
logger.info("... MNE_FORCE_SERIAL set. Processing in forced serial mode.")
|
|
elif n_jobs <= 0:
|
|
n_cores = multiprocessing.cpu_count()
|
|
n_jobs_orig = n_jobs
|
|
n_jobs = min(n_cores + n_jobs + 1, n_cores)
|
|
if n_jobs <= 0:
|
|
raise ValueError(
|
|
f"If n_jobs has a non-positive value ({n_jobs_orig}) it must "
|
|
f"not be less than the number of CPUs present ({n_cores})"
|
|
)
|
|
return n_jobs
|