372 lines
14 KiB
Python
372 lines
14 KiB
Python
# Authors: The MNE-Python contributors.
|
|
# License: BSD-3-Clause
|
|
# Copyright the MNE-Python contributors.
|
|
|
|
|
|
_bst_license_text = """
|
|
License
|
|
-------
|
|
This tutorial dataset (EEG and MRI data) remains a property of the MEG Lab,
|
|
McConnell Brain Imaging Center, Montreal Neurological Institute,
|
|
McGill University, Canada. Its use and transfer outside the Brainstorm
|
|
tutorial, e.g. for research purposes, is prohibited without written consent
|
|
from the MEG Lab.
|
|
|
|
If you reference this dataset in your publications, please:
|
|
|
|
1) acknowledge its authors: Elizabeth Bock, Esther Florin, Francois Tadel
|
|
and Sylvain Baillet, and
|
|
2) cite Brainstorm as indicated on the website:
|
|
http://neuroimage.usc.edu/brainstorm
|
|
|
|
For questions, please contact Francois Tadel (francois.tadel@mcgill.ca).
|
|
"""
|
|
|
|
_hcp_mmp_license_text = """
|
|
License
|
|
-------
|
|
I request access to data collected by the Washington University - University
|
|
of Minnesota Consortium of the Human Connectome Project (WU-Minn HCP), and
|
|
I agree to the following:
|
|
|
|
1. I will not attempt to establish the identity of or attempt to contact any
|
|
of the included human subjects.
|
|
|
|
2. I understand that under no circumstances will the code that would link
|
|
these data to Protected Health Information be given to me, nor will any
|
|
additional information about individual human subjects be released to me
|
|
under these Open Access Data Use Terms.
|
|
|
|
3. I will comply with all relevant rules and regulations imposed by my
|
|
institution. This may mean that I need my research to be approved or
|
|
declared exempt by a committee that oversees research on human subjects,
|
|
e.g. my IRB or Ethics Committee. The released HCP data are not considered
|
|
de-identified, insofar as certain combinations of HCP Restricted Data
|
|
(available through a separate process) might allow identification of
|
|
individuals. Different committees operate under different national, state
|
|
and local laws and may interpret regulations differently, so it is
|
|
important to ask about this. If needed and upon request, the HCP will
|
|
provide a certificate stating that you have accepted the HCP Open Access
|
|
Data Use Terms.
|
|
|
|
4. I may redistribute original WU-Minn HCP Open Access data and any derived
|
|
data as long as the data are redistributed under these same Data Use Terms.
|
|
|
|
5. I will acknowledge the use of WU-Minn HCP data and data derived from
|
|
WU-Minn HCP data when publicly presenting any results or algorithms
|
|
that benefitted from their use.
|
|
|
|
1. Papers, book chapters, books, posters, oral presentations, and all
|
|
other printed and digital presentations of results derived from HCP
|
|
data should contain the following wording in the acknowledgments
|
|
section: "Data were provided [in part] by the Human Connectome
|
|
Project, WU-Minn Consortium (Principal Investigators: David Van Essen
|
|
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and
|
|
Centers that support the NIH Blueprint for Neuroscience Research; and
|
|
by the McDonnell Center for Systems Neuroscience at Washington
|
|
University."
|
|
|
|
2. Authors of publications or presentations using WU-Minn HCP data
|
|
should cite relevant publications describing the methods used by the
|
|
HCP to acquire and process the data. The specific publications that
|
|
are appropriate to cite in any given study will depend on what HCP
|
|
data were used and for what purposes. An annotated and appropriately
|
|
up-to-date list of publications that may warrant consideration is
|
|
available at http://www.humanconnectome.org/about/acknowledgehcp.html
|
|
|
|
3. The WU-Minn HCP Consortium as a whole should not be included as an
|
|
author of publications or presentations if this authorship would be
|
|
based solely on the use of WU-Minn HCP data.
|
|
|
|
6. Failure to abide by these guidelines will result in termination of my
|
|
privileges to access WU-Minn HCP data.
|
|
"""
|
|
|
|
# To update the `testing` or `misc` datasets, push or merge commits to their
|
|
# respective repos, and make a new release of the dataset on GitHub. Then
|
|
# update the checksum in the MNE_DATASETS dict below, and change version
|
|
# here: ↓↓↓↓↓↓↓↓
|
|
RELEASES = dict(
|
|
testing="0.152",
|
|
misc="0.27",
|
|
phantom_kit="0.2",
|
|
ucl_opm_auditory="0.2",
|
|
)
|
|
TESTING_VERSIONED = f'mne-testing-data-{RELEASES["testing"]}'
|
|
MISC_VERSIONED = f'mne-misc-data-{RELEASES["misc"]}'
|
|
|
|
# To update any other dataset besides `testing` or `misc`, upload the new
|
|
# version of the data archive itself (e.g., to https://osf.io or wherever) and
|
|
# then update the corresponding checksum in the MNE_DATASETS dict entry below.
|
|
MNE_DATASETS = dict()
|
|
|
|
# MANDATORY KEYS:
|
|
# - archive_name : the name of the compressed file that is downloaded
|
|
# - hash : the checksum type followed by a colon and then the checksum value
|
|
# (examples: "sha256:19uheid...", "md5:upodh2io...")
|
|
# - url : URL from which the file can be downloaded
|
|
# - folder_name : the subfolder within the MNE data folder in which to save and
|
|
# uncompress (if needed) the file(s)
|
|
#
|
|
# OPTIONAL KEYS:
|
|
# - config_key : key to use with `mne.set_config` to store the on-disk location
|
|
# of the downloaded dataset (ex: "MNE_DATASETS_EEGBCI_PATH").
|
|
|
|
# Testing and misc are at the top as they're updated most often
|
|
MNE_DATASETS["testing"] = dict(
|
|
archive_name=f"{TESTING_VERSIONED}.tar.gz",
|
|
hash="md5:df48cdabcf13ebeaafc617cb8e55b6fc",
|
|
url=(
|
|
"https://codeload.github.com/mne-tools/mne-testing-data/"
|
|
f'tar.gz/{RELEASES["testing"]}'
|
|
),
|
|
# In case we ever have to resort to osf.io again...
|
|
# archive_name='mne-testing-data.tar.gz',
|
|
# hash='md5:c805a5fed8ca46f723e7eec828d90824',
|
|
# url='https://osf.io/dqfgy/download?version=1', # 0.136
|
|
folder_name="MNE-testing-data",
|
|
config_key="MNE_DATASETS_TESTING_PATH",
|
|
)
|
|
MNE_DATASETS["misc"] = dict(
|
|
archive_name=f"{MISC_VERSIONED}.tar.gz", # 'mne-misc-data',
|
|
hash="md5:e343d3a00cb49f8a2f719d14f4758afe",
|
|
url=(
|
|
"https://codeload.github.com/mne-tools/mne-misc-data/tar.gz/"
|
|
f'{RELEASES["misc"]}'
|
|
),
|
|
folder_name="MNE-misc-data",
|
|
config_key="MNE_DATASETS_MISC_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["fnirs_motor"] = dict(
|
|
archive_name="MNE-fNIRS-motor-data.tgz",
|
|
hash="md5:c4935d19ddab35422a69f3326a01fef8",
|
|
url="https://osf.io/dj3eh/download?version=1",
|
|
folder_name="MNE-fNIRS-motor-data",
|
|
config_key="MNE_DATASETS_FNIRS_MOTOR_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["ucl_opm_auditory"] = dict(
|
|
archive_name="auditory_OPM_stationary.zip",
|
|
hash="md5:b2d69aa2d656b960bd0c18968dc1a14d",
|
|
url="https://osf.io/download/tp324/?version=1", # original is mwrt3
|
|
folder_name="auditory_OPM_stationary",
|
|
config_key="MNE_DATASETS_UCL_OPM_AUDITORY_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["kiloword"] = dict(
|
|
archive_name="MNE-kiloword-data.tar.gz",
|
|
hash="md5:3a124170795abbd2e48aae8727e719a8",
|
|
url="https://osf.io/qkvf9/download?version=1",
|
|
folder_name="MNE-kiloword-data",
|
|
config_key="MNE_DATASETS_KILOWORD_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["multimodal"] = dict(
|
|
archive_name="MNE-multimodal-data.tar.gz",
|
|
hash="md5:26ec847ae9ab80f58f204d09e2c08367",
|
|
url="https://ndownloader.figshare.com/files/5999598",
|
|
folder_name="MNE-multimodal-data",
|
|
config_key="MNE_DATASETS_MULTIMODAL_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["opm"] = dict(
|
|
archive_name="MNE-OPM-data.tar.gz",
|
|
hash="md5:370ad1dcfd5c47e029e692c85358a374",
|
|
url="https://osf.io/p6ae7/download?version=2",
|
|
folder_name="MNE-OPM-data",
|
|
config_key="MNE_DATASETS_OPM_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["phantom_kit"] = dict(
|
|
archive_name="MNE-phantom-KIT-data.tar.gz",
|
|
hash="md5:7bfdf40bbeaf17a66c99c695640e0740",
|
|
url="https://osf.io/fb6ya/download?version=1",
|
|
folder_name="MNE-phantom-KIT-data",
|
|
config_key="MNE_DATASETS_PHANTOM_KIT_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["phantom_4dbti"] = dict(
|
|
archive_name="MNE-phantom-4DBTi.zip",
|
|
hash="md5:938a601440f3ffa780d20a17bae039ff",
|
|
url="https://osf.io/v2brw/download?version=2",
|
|
folder_name="MNE-phantom-4DBTi",
|
|
config_key="MNE_DATASETS_PHANTOM_4DBTI_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["phantom_kernel"] = dict(
|
|
archive_name="MNE-phantom-kernel.tar.gz",
|
|
hash="md5:4e2ad987dac1a20f95bae8ffeb2d41d6",
|
|
url="https://osf.io/dj7wz/download?version=1",
|
|
folder_name="MNE-phantom-kernel-data",
|
|
config_key="MNE_DATASETS_PHANTOM_KERNEL_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["sample"] = dict(
|
|
archive_name="MNE-sample-data-processed.tar.gz",
|
|
hash="md5:e8f30c4516abdc12a0c08e6bae57409c",
|
|
url="https://osf.io/86qa2/download?version=6",
|
|
folder_name="MNE-sample-data",
|
|
config_key="MNE_DATASETS_SAMPLE_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["somato"] = dict(
|
|
archive_name="MNE-somato-data.tar.gz",
|
|
hash="md5:32fd2f6c8c7eb0784a1de6435273c48b",
|
|
url="https://osf.io/tp4sg/download?version=7",
|
|
folder_name="MNE-somato-data",
|
|
config_key="MNE_DATASETS_SOMATO_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["spm"] = dict(
|
|
archive_name="MNE-spm-face.tar.gz",
|
|
hash="md5:9f43f67150e3b694b523a21eb929ea75",
|
|
url="https://osf.io/je4s8/download?version=2",
|
|
folder_name="MNE-spm-face",
|
|
config_key="MNE_DATASETS_SPM_FACE_PATH",
|
|
)
|
|
|
|
# Visual 92 categories has the dataset split into 2 files.
|
|
# We define a dictionary holding the items with the same
|
|
# value across both files: folder name and configuration key.
|
|
MNE_DATASETS["visual_92_categories"] = dict(
|
|
folder_name="MNE-visual_92_categories-data",
|
|
config_key="MNE_DATASETS_VISUAL_92_CATEGORIES_PATH",
|
|
)
|
|
MNE_DATASETS["visual_92_categories_1"] = dict(
|
|
archive_name="MNE-visual_92_categories-data-part1.tar.gz",
|
|
hash="md5:74f50bbeb65740903eadc229c9fa759f",
|
|
url="https://osf.io/8ejrs/download?version=1",
|
|
folder_name="MNE-visual_92_categories-data",
|
|
config_key="MNE_DATASETS_VISUAL_92_CATEGORIES_PATH",
|
|
)
|
|
MNE_DATASETS["visual_92_categories_2"] = dict(
|
|
archive_name="MNE-visual_92_categories-data-part2.tar.gz",
|
|
hash="md5:203410a98afc9df9ae8ba9f933370e20",
|
|
url="https://osf.io/t4yjp/download?version=1",
|
|
folder_name="MNE-visual_92_categories-data",
|
|
config_key="MNE_DATASETS_VISUAL_92_CATEGORIES_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["mtrf"] = dict(
|
|
archive_name="mTRF_1.5.zip",
|
|
hash="md5:273a390ebbc48da2c3184b01a82e4636",
|
|
url="https://osf.io/h85s2/download?version=1",
|
|
folder_name="mTRF_1.5",
|
|
config_key="MNE_DATASETS_MTRF_PATH",
|
|
)
|
|
MNE_DATASETS["refmeg_noise"] = dict(
|
|
archive_name="sample_reference_MEG_noise-raw.zip",
|
|
hash="md5:779fecd890d98b73a4832e717d7c7c45",
|
|
url="https://osf.io/drt6v/download?version=1",
|
|
folder_name="MNE-refmeg-noise-data",
|
|
config_key="MNE_DATASETS_REFMEG_NOISE_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["ssvep"] = dict(
|
|
archive_name="ssvep_example_data.zip",
|
|
hash="md5:af866bbc0f921114ac9d683494fe87d6",
|
|
url="https://osf.io/z8h6k/download?version=5",
|
|
folder_name="ssvep-example-data",
|
|
config_key="MNE_DATASETS_SSVEP_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["erp_core"] = dict(
|
|
archive_name="MNE-ERP-CORE-data.tar.gz",
|
|
hash="md5:5866c0d6213bd7ac97f254c776f6c4b1",
|
|
url="https://osf.io/rzgba/download?version=1",
|
|
folder_name="MNE-ERP-CORE-data",
|
|
config_key="MNE_DATASETS_ERP_CORE_PATH",
|
|
)
|
|
|
|
MNE_DATASETS["epilepsy_ecog"] = dict(
|
|
archive_name="MNE-epilepsy-ecog-data.tar.gz",
|
|
hash="md5:ffb139174afa0f71ec98adbbb1729dea",
|
|
url="https://osf.io/z4epq/download?version=1",
|
|
folder_name="MNE-epilepsy-ecog-data",
|
|
config_key="MNE_DATASETS_EPILEPSY_ECOG_PATH",
|
|
)
|
|
|
|
# Fieldtrip CMC dataset
|
|
MNE_DATASETS["fieldtrip_cmc"] = dict(
|
|
archive_name="SubjectCMC.zip",
|
|
hash="md5:6f9fd6520f9a66e20994423808d2528c",
|
|
url="https://osf.io/j9b6s/download?version=1",
|
|
folder_name="MNE-fieldtrip_cmc-data",
|
|
config_key="MNE_DATASETS_FIELDTRIP_CMC_PATH",
|
|
)
|
|
|
|
# brainstorm datasets:
|
|
MNE_DATASETS["bst_auditory"] = dict(
|
|
archive_name="bst_auditory.tar.gz",
|
|
hash="md5:fa371a889a5688258896bfa29dd1700b",
|
|
url="https://osf.io/5t9n8/download?version=1",
|
|
folder_name="MNE-brainstorm-data",
|
|
config_key="MNE_DATASETS_BRAINSTORM_PATH",
|
|
)
|
|
MNE_DATASETS["bst_phantom_ctf"] = dict(
|
|
archive_name="bst_phantom_ctf.tar.gz",
|
|
hash="md5:80819cb7f5b92d1a5289db3fb6acb33c",
|
|
url="https://osf.io/sxr8y/download?version=1",
|
|
folder_name="MNE-brainstorm-data",
|
|
config_key="MNE_DATASETS_BRAINSTORM_PATH",
|
|
)
|
|
MNE_DATASETS["bst_phantom_elekta"] = dict(
|
|
archive_name="bst_phantom_elekta.tar.gz",
|
|
hash="md5:1badccbe17998d18cc373526e86a7aaf",
|
|
url="https://osf.io/dpcku/download?version=1",
|
|
folder_name="MNE-brainstorm-data",
|
|
config_key="MNE_DATASETS_BRAINSTORM_PATH",
|
|
)
|
|
MNE_DATASETS["bst_raw"] = dict(
|
|
archive_name="bst_raw.tar.gz",
|
|
hash="md5:fa2efaaec3f3d462b319bc24898f440c",
|
|
url="https://osf.io/9675n/download?version=2",
|
|
folder_name="MNE-brainstorm-data",
|
|
config_key="MNE_DATASETS_BRAINSTORM_PATH",
|
|
)
|
|
MNE_DATASETS["bst_resting"] = dict(
|
|
archive_name="bst_resting.tar.gz",
|
|
hash="md5:70fc7bf9c3b97c4f2eab6260ee4a0430",
|
|
url="https://osf.io/m7bd3/download?version=3",
|
|
folder_name="MNE-brainstorm-data",
|
|
config_key="MNE_DATASETS_BRAINSTORM_PATH",
|
|
)
|
|
|
|
# HF-SEF
|
|
MNE_DATASETS["hf_sef_raw"] = dict(
|
|
archive_name="hf_sef_raw.tar.gz",
|
|
hash="md5:33934351e558542bafa9b262ac071168",
|
|
url="https://zenodo.org/record/889296/files/hf_sef_raw.tar.gz",
|
|
folder_name="hf_sef",
|
|
config_key="MNE_DATASETS_HF_SEF_PATH",
|
|
)
|
|
MNE_DATASETS["hf_sef_evoked"] = dict(
|
|
archive_name="hf_sef_evoked.tar.gz",
|
|
hash="md5:13d34cb5db584e00868677d8fb0aab2b",
|
|
# Zenodo can be slow, so we use the OSF mirror
|
|
# url=('https://zenodo.org/record/3523071/files/'
|
|
# 'hf_sef_evoked.tar.gz'),
|
|
url="https://osf.io/25f8d/download?version=2",
|
|
folder_name="hf_sef",
|
|
config_key="MNE_DATASETS_HF_SEF_PATH",
|
|
)
|
|
|
|
# "fake" dataset (for testing)
|
|
MNE_DATASETS["fake"] = dict(
|
|
archive_name="foo.tgz",
|
|
hash="md5:3194e9f7b46039bb050a74f3e1ae9908",
|
|
url="https://github.com/mne-tools/mne-testing-data/raw/master/datasets/foo.tgz",
|
|
folder_name="foo",
|
|
config_key="MNE_DATASETS_FAKE_PATH",
|
|
)
|
|
|
|
# eyelink dataset
|
|
MNE_DATASETS["eyelink"] = dict(
|
|
archive_name="MNE-eyelink-data.zip",
|
|
hash="md5:68a6323ef17d655f1a659c3290ee1c3f",
|
|
url=("https://osf.io/xsu4g/download?version=1"),
|
|
folder_name="MNE-eyelink-data",
|
|
config_key="MNE_DATASETS_EYELINK_PATH",
|
|
)
|