# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import copy import os.path as op import warnings import numpy as np from scipy import sparse from .fixes import _eye_array, _get_img_fdata from .morph_map import read_morph_map from .parallel import parallel_func from .source_estimate import ( _BaseSourceEstimate, _BaseSurfaceSourceEstimate, _BaseVolSourceEstimate, _get_ico_tris, ) from .source_space._source_space import SourceSpaces, _ensure_src, _grid_interp from .surface import _compute_nearest, mesh_edges, read_surface from .utils import ( BunchConst, ProgressBar, _check_fname, _check_option, _custom_lru_cache, _ensure_int, _import_h5io_funcs, _import_nibabel, _validate_type, check_version, fill_doc, get_subjects_dir, logger, use_log_level, verbose, warn, ) from .utils import ( warn as warn_, ) @verbose def compute_source_morph( src, subject_from=None, subject_to="fsaverage", subjects_dir=None, zooms="auto", niter_affine=(100, 100, 10), niter_sdr=(5, 5, 3), spacing=5, smooth=None, warn=True, xhemi=False, sparse=False, src_to=None, precompute=False, verbose=None, ): """Create a SourceMorph from one subject to another. Method is based on spherical morphing by FreeSurfer for surface cortical estimates :footcite:`GreveEtAl2013` and Symmetric Diffeomorphic Registration for volumic data :footcite:`AvantsEtAl2008`. Parameters ---------- src : instance of SourceSpaces | instance of SourceEstimate The SourceSpaces of subject_from (can be a SourceEstimate if only using a surface source space). subject_from : str | None Name of the original subject as named in the SUBJECTS_DIR. If None (default), then ``src[0]['subject_his_id]'`` will be used. subject_to : str | None Name of the subject to which to morph as named in the SUBJECTS_DIR. Default is ``'fsaverage'``. If None, ``src_to[0]['subject_his_id']`` will be used. .. versionchanged:: 0.20 Support for subject_to=None. %(subjects_dir)s zooms : float | tuple | str | None The voxel size of volume for each spatial dimension in mm. If spacing is None, MRIs won't be resliced, and both volumes must have the same number of spatial dimensions. Can also be ``'auto'`` to use ``5.`` if ``src_to is None`` and the zooms from ``src_to`` otherwise. .. versionchanged:: 0.20 Support for 'auto' mode. niter_affine : tuple of int Number of levels (``len(niter_affine)``) and number of iterations per level - for each successive stage of iterative refinement - to perform the affine transform. Default is niter_affine=(100, 100, 10). niter_sdr : tuple of int Number of levels (``len(niter_sdr)``) and number of iterations per level - for each successive stage of iterative refinement - to perform the Symmetric Diffeomorphic Registration (sdr) transform. Default is niter_sdr=(5, 5, 3). spacing : int | list | None The resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, then values will be morphed to the set of vertices specified in in ``spacing[0]`` and ``spacing[1]``. This will be ignored if ``src_to`` is supplied. .. versionchanged:: 0.21 src_to, if provided, takes precedence. smooth : int | str | None Number of iterations for the smoothing of the surface data. If None, smooth is automatically defined to fill the surface with non-zero values. Can also be ``'nearest'`` to use the nearest vertices on the surface. .. versionchanged:: 0.20 Added support for 'nearest'. warn : bool If True, warn if not all vertices were used. The default is warn=True. xhemi : bool Morph across hemisphere. Currently only implemented for ``subject_to == subject_from``. See notes below. The default is xhemi=False. sparse : bool Morph as a sparse source estimate. Works only with (Vector) SourceEstimate. If True the only parameters used are subject_to and subject_from, and spacing has to be None. Default is sparse=False. src_to : instance of SourceSpaces | None The destination source space. - For surface-based morphing, this is the preferred over ``spacing`` for providing the vertices. - For volumetric morphing, this should be passed so that 1) the resultingmorph volume is properly constrained to the brain volume, and 2) STCs from multiple subjects morphed to the same destination subject/source space have the vertices. - For mixed (surface + volume) morphing, this is required. .. versionadded:: 0.20 precompute : bool If True (default False), compute the sparse matrix representation of the volumetric morph (if present). This takes a long time to compute, but can make morphs faster when thousands of points are used. See :meth:`mne.SourceMorph.compute_vol_morph_mat` (which can be called later if desired) for more information. .. versionadded:: 0.22 %(verbose)s Returns ------- morph : instance of SourceMorph The :class:`mne.SourceMorph` object. Notes ----- This function can be used to morph surface data between hemispheres by setting ``xhemi=True``. The full cross-hemisphere morph matrix maps left to right and right to left. A matrix for cross-mapping only one hemisphere can be constructed by specifying the appropriate vertices, for example, to map the right hemisphere to the left:: vertices_from=[[], vert_rh], vertices_to=[vert_lh, []] Cross-hemisphere mapping requires appropriate ``sphere.left_right`` morph-maps in the subject's directory. These morph maps are included with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other subjects with the ``mris_left_right_register`` FreeSurfer command. The ``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be obtained as described `here `_. For statistical comparisons between hemispheres, use of the symmetric ``fsaverage_sym`` model is recommended to minimize bias :footcite:`GreveEtAl2013`. .. versionadded:: 0.17.0 .. versionadded:: 0.21.0 Support for morphing mixed source estimates. References ---------- .. footbibliography:: """ src_data, kind, src_subject = _get_src_data(src) subject_from = _check_subject_src(subject_from, src_subject, warn_none=True) del src _validate_type(src_to, (SourceSpaces, None), "src_to") _validate_type(subject_to, (str, None), "subject_to") if src_to is None and subject_to is None: raise ValueError("subject_to cannot be None when src_to is None") subject_to = _check_subject_src(subject_to, src_to, "subject_to") # Params warn = False if sparse else warn if kind not in "surface" and xhemi: raise ValueError( "Inter-hemispheric morphing can only be used " "with surface source estimates." ) if sparse and kind != "surface": raise ValueError("Only surface source estimates can compute a sparse morph.") subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True)) shape = affine = pre_affine = sdr_morph = morph_mat = None vertices_to_surf, vertices_to_vol = list(), list() if kind in ("volume", "mixed"): _check_dep(nibabel="2.1.0", dipy="0.10.1") nib = _import_nibabel("work with a volume source space") logger.info("Volume source space(s) present...") # load moving MRI mri_subpath = op.join("mri", "brain.mgz") mri_path_from = op.join(subjects_dir, subject_from, mri_subpath) logger.info(f' Loading {mri_path_from} as "from" volume') with warnings.catch_warnings(): mri_from = nib.load(mri_path_from) # eventually we could let this be some other volume, but for now # let's KISS and use `brain.mgz`, too mri_path_to = op.join(subjects_dir, subject_to, mri_subpath) if not op.isfile(mri_path_to): raise OSError(f"cannot read file: {mri_path_to}") logger.info(f' Loading {mri_path_to} as "to" volume') with warnings.catch_warnings(): mri_to = nib.load(mri_path_to) # deal with `src_to` subsampling zooms_src_to = None if src_to is None: if kind == "mixed": raise ValueError( "src_to must be provided when using a mixed source space" ) else: surf_offset = 2 if src_to.kind == "mixed" else 0 # All of our computations are in RAS (like img.affine), so we need # to get the transformation from RAS to the source space # subsampling of vox (src), not MRI (FreeSurfer surface RAS) to src src_ras_t = np.dot( src_to[-1]["mri_ras_t"]["trans"], src_to[-1]["src_mri_t"]["trans"] ) src_ras_t[:3] *= 1e3 src_data["to_vox_map"] = (src_to[-1]["shape"], src_ras_t) vertices_to_vol = [s["vertno"] for s in src_to[surf_offset:]] zooms_src_to = np.diag(src_to[-1]["src_mri_t"]["trans"])[:3] * 1000 zooms_src_to = tuple(zooms_src_to) # pre-compute non-linear morph zooms = _check_zooms(mri_from, zooms, zooms_src_to) shape, zooms, affine, pre_affine, sdr_morph = _compute_morph_sdr( mri_from, mri_to, niter_affine, niter_sdr, zooms ) if kind in ("surface", "mixed"): logger.info("surface source space present ...") vertices_from = src_data["vertices_from"] if sparse: if spacing is not None: raise ValueError("spacing must be set to None if sparse=True.") if xhemi: raise ValueError("xhemi=True can only be used with sparse=False") vertices_to_surf, morph_mat = _compute_sparse_morph( vertices_from, subject_from, subject_to, subjects_dir ) else: if src_to is not None: assert src_to.kind in ("surface", "mixed") vertices_to_surf = [s["vertno"].copy() for s in src_to[:2]] else: vertices_to_surf = grade_to_vertices( subject_to, spacing, subjects_dir, 1 ) morph_mat = _compute_morph_matrix( subject_from=subject_from, subject_to=subject_to, vertices_from=vertices_from, vertices_to=vertices_to_surf, subjects_dir=subjects_dir, smooth=smooth, warn=warn, xhemi=xhemi, ) n_verts = sum(len(v) for v in vertices_to_surf) assert morph_mat.shape[0] == n_verts vertices_to = vertices_to_surf + vertices_to_vol if src_to is not None: assert len(vertices_to) == len(src_to) morph = SourceMorph( subject_from, subject_to, kind, zooms, niter_affine, niter_sdr, spacing, smooth, xhemi, morph_mat, vertices_to, shape, affine, pre_affine, sdr_morph, src_data, None, ) if precompute: morph.compute_vol_morph_mat() logger.info("[done]") return morph def _compute_sparse_morph(vertices_from, subject_from, subject_to, subjects_dir=None): """Get nearest vertices from one subject to another.""" from scipy import sparse maps = read_morph_map(subject_to, subject_from, subjects_dir) cnt = 0 vertices = list() cols = list() for verts, map_hemi in zip(vertices_from, maps): vertno_h = _sparse_argmax_nnz_row(map_hemi[verts]) order = np.argsort(vertno_h) cols.append(cnt + order) vertices.append(vertno_h[order]) cnt += len(vertno_h) cols = np.concatenate(cols) rows = np.arange(len(cols)) data = np.ones(len(cols)) morph_mat = sparse.coo_array( (data, (rows, cols)), shape=(len(cols), len(cols)) ).tocsr() return vertices, morph_mat _SOURCE_MORPH_ATTRIBUTES = [ # used in writing "subject_from", "subject_to", "kind", "zooms", "niter_affine", "niter_sdr", "spacing", "smooth", "xhemi", "morph_mat", "vertices_to", "shape", "affine", "pre_affine", "sdr_morph", "src_data", "vol_morph_mat", ] @fill_doc class SourceMorph: """Morph source space data from one subject to another. .. note:: This class should not be instantiated directly via ``mne.SourceMorph(...)``. Instead, use one of the functions listed in the See Also section below. Parameters ---------- subject_from : str | None Name of the subject from which to morph as named in the SUBJECTS_DIR. subject_to : str | array | list of array Name of the subject on which to morph as named in the SUBJECTS_DIR. The default is 'fsaverage'. If morphing a volume source space, subject_to can be the path to a MRI volume. Can also be a list of two arrays if morphing to hemisphere surfaces. kind : str | None Kind of source estimate. E.g. ``'volume'`` or ``'surface'``. zooms : float | tuple See :func:`mne.compute_source_morph`. niter_affine : tuple of int Number of levels (``len(niter_affine)``) and number of iterations per level - for each successive stage of iterative refinement - to perform the affine transform. niter_sdr : tuple of int Number of levels (``len(niter_sdr)``) and number of iterations per level - for each successive stage of iterative refinement - to perform the Symmetric Diffeomorphic Registration (sdr) transform :footcite:`AvantsEtAl2008`. spacing : int | list | None See :func:`mne.compute_source_morph`. smooth : int | str | None See :func:`mne.compute_source_morph`. xhemi : bool Morph across hemisphere. morph_mat : scipy.sparse.csr_array The sparse surface morphing matrix for spherical surface based morphing :footcite:`GreveEtAl2013`. vertices_to : list of ndarray The destination surface vertices. shape : tuple The volume MRI shape. affine : ndarray The volume MRI affine. pre_affine : instance of dipy.align.AffineMap The transformation that is applied before the before ``sdr_morph``. sdr_morph : instance of dipy.align.DiffeomorphicMap The class that applies the the symmetric diffeomorphic registration (SDR) morph. src_data : dict Additional source data necessary to perform morphing. vol_morph_mat : scipy.sparse.csr_array | None The volumetric morph matrix, if :meth:`compute_vol_morph_mat` was used. %(verbose)s See Also -------- compute_source_morph read_source_morph Notes ----- .. versionadded:: 0.17 References ---------- .. footbibliography:: """ @verbose def __init__( self, subject_from, subject_to, kind, zooms, niter_affine, niter_sdr, spacing, smooth, xhemi, morph_mat, vertices_to, shape, affine, pre_affine, sdr_morph, src_data, vol_morph_mat, *, verbose=None, ): # universal self.subject_from = subject_from self.subject_to = subject_to self.kind = kind # vol input self.zooms = zooms self.niter_affine = niter_affine self.niter_sdr = niter_sdr # surf input self.spacing = spacing self.smooth = smooth self.xhemi = xhemi # surf computed self.morph_mat = morph_mat # vol computed self.shape = shape self.affine = affine self.sdr_morph = sdr_morph self.pre_affine = pre_affine # used by both self.src_data = src_data self.vol_morph_mat = vol_morph_mat # compute vertices_to here (partly for backward compat and no src # provided) if vertices_to is None or len(vertices_to) == 0 and kind == "volume": assert src_data["to_vox_map"] is None vertices_to = self._get_vol_vertices_to_nz() self.vertices_to = vertices_to @property def _vol_vertices_from(self): assert isinstance(self.src_data["inuse"], list) vertices_from = [np.where(in_)[0] for in_ in self.src_data["inuse"]] return vertices_from @property def _vol_vertices_to(self): return self.vertices_to[0 if self.kind == "volume" else 2 :] def _get_vol_vertices_to_nz(self): logger.info("Computing nonzero vertices after morph ...") n_vertices = sum(len(v) for v in self._vol_vertices_from) ones = np.ones((n_vertices, 1)) with use_log_level(False): return [np.where(self._morph_vols(ones, "", subselect=False))[0]] @verbose def apply( self, stc_from, output="stc", mri_resolution=False, mri_space=None, verbose=None ): """Morph source space data. Parameters ---------- stc_from : VolSourceEstimate | VolVectorSourceEstimate | SourceEstimate | VectorSourceEstimate The source estimate to morph. output : str Can be ``'stc'`` (default) or possibly ``'nifti1'``, or ``'nifti2'`` when working with a volume source space defined on a regular grid. mri_resolution : bool | tuple | int | float If True the image is saved in MRI resolution. Default False. .. warning: If you have many time points the file produced can be huge. The default is ``mri_resolution=False``. mri_space : bool | None Whether the image to world registration should be in mri space. The default (None) is mri_space=mri_resolution. %(verbose)s Returns ------- stc_to : VolSourceEstimate | SourceEstimate | VectorSourceEstimate | Nifti1Image | Nifti2Image The morphed source estimates. """ # noqa: E501 _validate_type(output, str, "output") _validate_type(stc_from, _BaseSourceEstimate, "stc_from", "source estimate") if isinstance(stc_from, _BaseSurfaceSourceEstimate): allowed_kinds = ("stc",) extra = "when stc is a surface source estimate" else: allowed_kinds = ("stc", "nifti1", "nifti2") extra = "" _check_option("output", output, allowed_kinds, extra) stc = copy.deepcopy(stc_from) mri_space = mri_resolution if mri_space is None else mri_space if stc.subject is None: stc.subject = self.subject_from if self.subject_from is None: self.subject_from = stc.subject if stc.subject != self.subject_from: raise ValueError( "stc_from.subject and " "morph.subject_from " f"must match. ({stc.subject} != {self.subject_from})" ) out = _apply_morph_data(self, stc) if output != "stc": # convert to volume out = _morphed_stc_as_volume( self, out, mri_resolution=mri_resolution, mri_space=mri_space, output=output, ) return out @verbose def compute_vol_morph_mat(self, *, verbose=None): """Compute the sparse matrix representation of the volumetric morph. Parameters ---------- %(verbose)s Returns ------- morph : instance of SourceMorph The instance (modified in-place). Notes ----- For a volumetric morph, this will compute the morph for an identity source volume, i.e., with one source vertex active at a time, and store the result as a :class:`sparse ` morphing matrix. This takes a long time (minutes) to compute initially, but drastically speeds up :meth:`apply` for STCs, so it can be beneficial when many time points or many morphs (i.e., greater than the number of volumetric ``src_from`` vertices) will be performed. When calling :meth:`save`, this sparse morphing matrix is saved with the instance, so this only needs to be called once. This function does nothing if the morph matrix has already been computed, or if there is no volume morphing necessary. .. versionadded:: 0.22 """ if self.affine is None or self.vol_morph_mat is not None: return logger.info("Computing sparse volumetric morph matrix (will take some time...)") self.vol_morph_mat = self._morph_vols(None, "Vertex") return self def _morph_vols(self, vols, mesg, subselect=True): from dipy.align.reslice import reslice interp = self.src_data["interpolator"].tocsc()[ :, np.concatenate(self._vol_vertices_from) ] n_vols = interp.shape[1] if vols is None else vols.shape[1] attrs = ("real", "imag") if np.iscomplexobj(vols) else ("real",) dtype = np.complex128 if len(attrs) == 2 else np.float64 if vols is None: # sparse -> sparse mode img_to = (list(), list(), [0]) # data, indices, indptr assert subselect else: # dense -> dense mode img_to = None if subselect: vol_verts = np.concatenate(self._vol_vertices_to) else: vol_verts = slice(None) # morph data from_affine = np.dot( self.src_data["src_affine_ras"], # mri_ras_t self.src_data["src_affine_vox"], ) # vox_mri_t from_affine[:3] *= 1000.0 # equivalent of: # _resample_from_to(img_real, from_affine, # (self.pre_affine.codomain_shape, # (self.pre_affine.codomain_grid2world)) src_shape = self.src_data["src_shape_full"][::-1] resamp_0 = _grid_interp( src_shape, self.pre_affine.codomain_shape, np.linalg.inv(from_affine) @ self.pre_affine.codomain_grid2world, ) # reslice to match what was used during the morph # (brain.mgz and whatever was used to create the source space # will not necessarily have the same domain/zooms) # equivalent of: # pre_affine.transform(img_real) resamp_1 = _grid_interp( self.pre_affine.codomain_shape, self.pre_affine.domain_shape, np.linalg.inv(self.pre_affine.codomain_grid2world) @ self.pre_affine.affine @ self.pre_affine.domain_grid2world, ) resamp_0_1 = resamp_1 @ resamp_0 resamp_2 = None for ii in ProgressBar(list(range(n_vols)), mesg=mesg): for attr in attrs: # transform from source space to mri_from resolution/space if vols is None: img_real = interp[:, [ii]] else: img_real = interp @ getattr(vols[:, ii], attr) _debug_img(img_real, from_affine, "From", src_shape) img_real = resamp_0_1 @ img_real if sparse.issparse(img_real): img_real = img_real.toarray() img_real = img_real.reshape(self.pre_affine.domain_shape, order="F") if self.sdr_morph is not None: img_real = self.sdr_morph.transform(img_real) _debug_img(img_real, self.affine, "From-reslice-transform") # subselect the correct cube if src_to is provided if self.src_data["to_vox_map"] is not None: affine = self.affine to_zooms = np.diag(self.src_data["to_vox_map"][1])[:3] # There might be some sparse equivalent to this but # not sure... if not np.allclose(self.zooms, to_zooms, atol=1e-3): img_real, affine = reslice( img_real, self.affine, self.zooms, to_zooms ) _debug_img(img_real, affine, "From-reslice-transform-src") if resamp_2 is None: resamp_2 = _grid_interp( img_real.shape, self.src_data["to_vox_map"][0], np.linalg.inv(affine) @ self.src_data["to_vox_map"][1], ) # Equivalent to: # _resample_from_to( # img_real, affine, self.src_data['to_vox_map']) img_real = resamp_2 @ img_real.ravel(order="F") _debug_img( img_real, self.src_data["to_vox_map"][1], "From-reslice-transform-src-subselect", self.src_data["to_vox_map"][0], ) # This can be used to help debug, but it really should just # show the brain filling the volume: # img_want = np.zeros(np.prod(img_real.shape)) # img_want[np.concatenate(self._vol_vertices_to)] = 1. # img_want = np.reshape( # img_want, self.src_data['src_shape'][::-1], order='F') # _debug_img(img_want, self.src_data['to_vox_map'][1], # 'To mask') # raise RuntimeError('Check') # combine real and complex parts img_real = img_real.ravel(order="F")[vol_verts] # initialize output if img_to is None and vols is not None: img_to = np.zeros((img_real.size, n_vols), dtype=dtype) if vols is None: idx = np.where(img_real)[0] img_to[0].extend(img_real[idx]) img_to[1].extend(idx) img_to[2].append(img_to[2][-1] + len(idx)) else: if attr == "real": img_to[:, ii] = img_to[:, ii] + img_real else: img_to[:, ii] = img_to[:, ii] + 1j * img_real if vols is None: img_to = sparse.csc_array(img_to, shape=(len(vol_verts), n_vols)).tocsr() return img_to def __repr__(self): # noqa: D105 s = f"{self.kind}" s += f", {self.subject_from} -> {self.subject_to}" if self.kind == "volume": s += f", zooms : {self.zooms}" s += f", niter_affine : {self.niter_affine}" s += f", niter_sdr : {self.niter_sdr}" elif self.kind in ("surface", "vector"): s += f", spacing : {self.spacing}" s += f", smooth : {self.smooth}" s += ", xhemi" if self.xhemi else "" return f"" @verbose def save(self, fname, overwrite=False, verbose=None): """Save the morph for source estimates to a file. Parameters ---------- fname : path-like The path to the file. ``'-morph.h5'`` will be added if fname does not end with ``'.h5'``. %(overwrite)s %(verbose)s """ _, write_hdf5 = _import_h5io_funcs() fname = _check_fname(fname, overwrite=overwrite, must_exist=False) if fname.suffix != ".h5": fname = fname.with_name(f"{fname.name}-morph.h5") out_dict = {k: getattr(self, k) for k in _SOURCE_MORPH_ATTRIBUTES} for key in ("pre_affine", "sdr_morph"): # classes if out_dict[key] is not None: out_dict[key] = out_dict[key].__dict__ write_hdf5(fname, out_dict, overwrite=overwrite) _slicers = list() def _debug_img(data, affine, title, shape=None): # Uncomment these lines for debugging help with volume morph: # # import nibabel as nib # if sparse.issparse(data): # data = data.toarray() # data = np.asarray(data) # if shape is not None: # data = np.reshape(data, shape, order='F') # _slicers.append(nib.viewers.OrthoSlicer3D( # data, affine, axes=None, title=title)) # _slicers[-1].figs[0].suptitle(title, color='r') return def _check_zooms(mri_from, zooms, zooms_src_to): # use voxel size of mri_from if isinstance(zooms, str) and zooms == "auto": zooms = zooms_src_to if zooms_src_to is not None else 5.0 if zooms is None: zooms = mri_from.header.get_zooms()[:3] zooms = np.atleast_1d(zooms).astype(float) if zooms.shape == (1,): zooms = np.repeat(zooms, 3) if zooms.shape != (3,): raise ValueError( "zooms must be None, a singleton, or have shape (3,)," f" got shape {zooms.shape}" ) zooms = tuple(zooms) return zooms # def _resample_from_to(img, affine, to_vox_map): # # Wrap to dipy for speed, equivalent to: # # from nibabel.processing import resample_from_to # # from nibabel.spatialimages import SpatialImage # # return _get_img_fdata( # # resample_from_to(SpatialImage(img, affine), to_vox_map, order=1)) # import dipy.align.imaffine # # return dipy.align.imaffine.AffineMap( # None, to_vox_map[0], to_vox_map[1], img.shape, affine # ).transform(img, resample_only=True) ############################################################################### # I/O def _check_subject_src( subject, src, name="subject_from", src_name="src", *, warn_none=False ): if isinstance(src, str): subject_check = src elif src is None: # assume it's correct although dangerous but unlikely subject_check = subject else: subject_check = src._subject warn_none = True if subject_check is None and warn_none: warn( "The source space does not contain the subject name, we " "recommend regenerating the source space (and forward / " "inverse if applicable) for better code reliability" ) if subject is None: subject = subject_check elif subject_check is not None and subject != subject_check: raise ValueError( f"{name} does not match {src_name} subject ({subject} != {subject_check})" ) if subject is None: raise ValueError( f"{name} could not be inferred from {src_name}, it must be specified" ) return subject def read_source_morph(fname): """Load the morph for source estimates from a file. Parameters ---------- fname : path-like Path to the file containing the morph source estimates. Returns ------- source_morph : instance of SourceMorph The loaded morph. """ read_hdf5, _ = _import_h5io_funcs() vals = read_hdf5(fname) if vals["pre_affine"] is not None: # reconstruct from dipy.align.imaffine import AffineMap affine = vals["pre_affine"] vals["pre_affine"] = AffineMap(None) vals["pre_affine"].__dict__ = affine if vals["sdr_morph"] is not None: from dipy.align.imwarp import DiffeomorphicMap morph = vals["sdr_morph"] vals["sdr_morph"] = DiffeomorphicMap(None, []) vals["sdr_morph"].__dict__ = morph # Backward compat with when it used to be a list if isinstance(vals["vertices_to"], np.ndarray): vals["vertices_to"] = [vals["vertices_to"]] # Backward compat with when it used to be a single array if isinstance(vals["src_data"].get("inuse", None), np.ndarray): vals["src_data"]["inuse"] = [vals["src_data"]["inuse"]] # added with compute_vol_morph_mat in 0.22: vals["vol_morph_mat"] = vals.get("vol_morph_mat", None) return SourceMorph(**vals) ############################################################################### # Helper functions for SourceMorph methods def _check_dep(nibabel="2.1.0", dipy="0.10.1"): """Check dependencies.""" for lib, ver in zip(["nibabel", "dipy"], [nibabel, dipy]): passed = True if not ver else check_version(lib, ver) if not passed: raise ImportError( f"{lib} {ver} or higher must be correctly " "installed and accessible from Python" ) def _morphed_stc_as_volume(morph, stc, mri_resolution, mri_space, output): """Return volume source space as Nifti1Image and/or save to disk.""" assert isinstance(stc, _BaseVolSourceEstimate) # should be guaranteed if stc._data_ndim == 3: stc = stc.magnitude() _check_dep(nibabel="2.1.0", dipy=False) NiftiImage, NiftiHeader = _triage_output(output) # if MRI resolution is set manually as a single value, convert to tuple if isinstance(mri_resolution, (int, float)): # use iso voxel size new_zooms = (float(mri_resolution),) * 3 elif isinstance(mri_resolution, tuple): new_zooms = mri_resolution # if full MRI resolution, compute zooms from shape and MRI zooms if isinstance(mri_resolution, bool): new_zooms = _get_zooms_orig(morph) if mri_resolution else None # create header hdr = NiftiHeader() hdr.set_xyzt_units("mm", "msec") hdr["pixdim"][4] = 1e3 * stc.tstep # setup empty volume if morph.src_data["to_vox_map"] is not None: shape = morph.src_data["to_vox_map"][0] affine = morph.src_data["to_vox_map"][1] else: shape = morph.shape affine = morph.affine assert stc.data.ndim == 2 n_times = stc.data.shape[1] img = np.zeros((np.prod(shape), n_times)) img[stc.vertices[0], :] = stc.data img = img.reshape(shape + (n_times,), order="F") # match order='F' above del shape # make nifti from data with warnings.catch_warnings(): # nibabel<->numpy warning img = NiftiImage(img, affine, header=hdr) # reslice in case of manually defined voxel size zooms = morph.zooms[:3] if new_zooms is not None: from dipy.align.reslice import reslice new_zooms = new_zooms[:3] img, affine = reslice( _get_img_fdata(img), img.affine, # MRI to world registration zooms, # old voxel size in mm new_zooms, ) # new voxel size in mm with warnings.catch_warnings(): # nibabel<->numpy warning img = NiftiImage(img, affine) zooms = new_zooms # set zooms in header img.header.set_zooms(tuple(zooms) + (1,)) return img def _get_src_data(src, mri_resolution=True): # copy data to avoid conflicts _validate_type( src, (_BaseSurfaceSourceEstimate, "path-like", SourceSpaces), "src", "source space or surface source estimate", ) if isinstance(src, _BaseSurfaceSourceEstimate): src_t = [dict(vertno=src.vertices[0]), dict(vertno=src.vertices[1])] src_kind = "surface" src_subject = src.subject else: src_t = _ensure_src(src).copy() src_kind = src_t.kind src_subject = src_t._subject del src _check_option("src kind", src_kind, ("surface", "volume", "mixed")) # extract all relevant data for volume operations src_data = dict() if src_kind in ("volume", "mixed"): use_src = src_t[-1] shape = use_src["shape"] start = 0 if src_kind == "volume" else 2 for si, s in enumerate(src_t[start:], start): if s.get("interpolator", None) is None: if mri_resolution: raise RuntimeError( f"MRI interpolator not present in src[{si}], " "cannot use mri_resolution=True" ) interpolator = None break else: interpolator = sum((s["interpolator"] for s in src_t[start:]), 0.0) inuses = [s["inuse"] for s in src_t[start:]] src_data.update( { "src_shape": (shape[2], shape[1], shape[0]), # SAR "src_affine_vox": use_src["vox_mri_t"]["trans"], "src_affine_src": use_src["src_mri_t"]["trans"], "src_affine_ras": use_src["mri_ras_t"]["trans"], "src_shape_full": ( # SAR use_src["mri_height"], use_src["mri_depth"], use_src["mri_width"], ), "interpolator": interpolator, "inuse": inuses, "to_vox_map": None, } ) if src_kind in ("surface", "mixed"): src_data.update(vertices_from=[s["vertno"].copy() for s in src_t[:2]]) # delete copy return src_data, src_kind, src_subject def _triage_output(output): _check_option("output", output, ["nifti", "nifti1", "nifti2"]) if output in ("nifti", "nifti1"): from nibabel import Nifti1Header as NiftiHeader from nibabel import Nifti1Image as NiftiImage else: assert output == "nifti2" from nibabel import Nifti2Header as NiftiHeader from nibabel import Nifti2Image as NiftiImage return NiftiImage, NiftiHeader def _interpolate_data(stc, morph, mri_resolution, mri_space, output): """Interpolate source estimate data to MRI.""" _check_dep(nibabel="2.1.0", dipy=False) NiftiImage, NiftiHeader = _triage_output(output) _validate_type(stc, _BaseVolSourceEstimate, "stc", "volume source estimate") assert morph.kind in ("volume", "mixed") voxel_size_defined = False if isinstance(mri_resolution, (int, float)) and not isinstance( mri_resolution, bool ): # use iso voxel size mri_resolution = (float(mri_resolution),) * 3 if isinstance(mri_resolution, tuple): _check_dep(nibabel=False, dipy="0.10.1") # nibabel was already checked from dipy.align.reslice import reslice voxel_size = mri_resolution voxel_size_defined = True mri_resolution = True # if data wasn't morphed yet - necessary for call of # stc_unmorphed.as_volume. Since only the shape of src is known, it cannot # be resliced to a given voxel size without knowing the original. if isinstance(morph, SourceSpaces): assert morph.kind in ("volume", "mixed") offset = 2 if morph.kind == "mixed" else 0 if voxel_size_defined: raise ValueError( "Cannot infer original voxel size for reslicing... " "set mri_resolution to boolean value or apply morph first." ) # Now deal with the fact that we may have multiple sub-volumes inuse = [s["inuse"] for s in morph[offset:]] src_shape = [s["shape"] for s in morph[offset:]] assert len(set(map(tuple, src_shape))) == 1 src_subject = morph._subject morph = BunchConst(src_data=_get_src_data(morph, mri_resolution)[0]) else: # Make a list as we may have many inuse when using multiple sub-volumes inuse = morph.src_data["inuse"] src_subject = morph.subject_from assert isinstance(inuse, list) if stc.subject is not None: _check_subject_src(stc.subject, src_subject, "stc.subject") n_times = stc.data.shape[1] shape = morph.src_data["src_shape"][::-1] + (n_times,) # SAR->RAST dtype = np.complex128 if np.iscomplexobj(stc.data) else np.float64 # order='F' so that F-order flattening is faster vols = np.zeros((np.prod(shape[:3]), shape[3]), dtype=dtype, order="F") n_vertices_seen = 0 for this_inuse in inuse: this_inuse = this_inuse.astype(bool) n_vertices = np.sum(this_inuse) stc_slice = slice(n_vertices_seen, n_vertices_seen + n_vertices) vols[this_inuse] = stc.data[stc_slice] n_vertices_seen += n_vertices # use mri resolution as represented in src if mri_resolution: if morph.src_data["interpolator"] is None: raise RuntimeError( "Cannot morph with mri_resolution when add_interpolator=False " "was used with setup_volume_source_space" ) shape = morph.src_data["src_shape_full"][::-1] + (n_times,) vols = morph.src_data["interpolator"] @ vols # reshape back to proper shape vols = np.reshape(vols, shape, order="F") # set correct space if mri_resolution: affine = morph.src_data["src_affine_vox"] else: affine = morph.src_data["src_affine_src"] if mri_space: affine = np.dot(morph.src_data["src_affine_ras"], affine) affine[:3] *= 1e3 # pre-define header header = NiftiHeader() header.set_xyzt_units("mm", "msec") header["pixdim"][4] = 1e3 * stc.tstep # if a specific voxel size was targeted (only possible after morphing) if voxel_size_defined: # reslice mri vols, affine = reslice(vols, affine, _get_zooms_orig(morph), voxel_size) with warnings.catch_warnings(): # nibabel<->numpy warning vols = NiftiImage(vols, affine, header=header) return vols ############################################################################### # Morph for VolSourceEstimate def _compute_morph_sdr(mri_from, mri_to, niter_affine, niter_sdr, zooms): """Get a matrix that morphs data from one subject to another.""" from dipy.align.imaffine import AffineMap from .transforms import _compute_volume_registration pipeline = "all" if niter_sdr else "affines" niter = dict( translation=niter_affine, rigid=niter_affine, affine=niter_affine, sdr=niter_sdr if niter_sdr else (1,), ) ( pre_affine, sdr_morph, to_shape, to_affine, from_shape, from_affine, ) = _compute_volume_registration( mri_from, mri_to, zooms=zooms, niter=niter, pipeline=pipeline ) pre_affine = AffineMap(pre_affine, to_shape, to_affine, from_shape, from_affine) return to_shape, zooms, to_affine, pre_affine, sdr_morph def _compute_morph_matrix( subject_from, subject_to, vertices_from, vertices_to, smooth=None, subjects_dir=None, warn=True, xhemi=False, ): """Compute morph matrix.""" logger.info("Computing morph matrix...") subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) tris = _get_subject_sphere_tris(subject_from, subjects_dir) maps = read_morph_map(subject_from, subject_to, subjects_dir, xhemi) # morph the data morpher = [] for hemi_to in range(2): # iterate over to / block-rows of CSR matrix hemi_from = (1 - hemi_to) if xhemi else hemi_to morpher.append( _hemi_morph( tris[hemi_from], vertices_to[hemi_to], vertices_from[hemi_from], smooth, maps[hemi_from], warn, ) ) shape = (sum(len(v) for v in vertices_to), sum(len(v) for v in vertices_from)) data = [m.data for m in morpher] indices = [m.indices.copy() for m in morpher] indptr = [m.indptr.copy() for m in morpher] # column indices need to be adjusted indices[0 if xhemi else 1] += len(vertices_from[0]) indices = np.concatenate(indices) # row index pointers need to be adjusted indptr[1] = indptr[1][1:] + len(data[0]) indptr = np.concatenate(indptr) # data does not need to be adjusted data = np.concatenate(data) # this is equivalent to morpher = sparse_block_diag(morpher).tocsr(), # but works for xhemi mode morpher = sparse.csr_array((data, indices, indptr), shape=shape) logger.info("[done]") return morpher def _hemi_morph(tris, vertices_to, vertices_from, smooth, maps, warn): _validate_type(smooth, (str, None, "int-like"), "smoothing steps") if len(vertices_from) == 0: return sparse.csr_array((len(vertices_to), 0)) e = mesh_edges(tris) e.data[e.data == 2] = 1 n_vertices = e.shape[0] e += _eye_array(n_vertices, format="csr") if isinstance(smooth, str): _check_option("smooth", smooth, ("nearest",), extra=" when used as a string.") mm = _surf_nearest(vertices_from, e).tocsr() elif smooth == 0: mm = sparse.csc_array( ( np.ones(len(vertices_from)), # data, indices, indptr vertices_from, np.arange(len(vertices_from) + 1), ), shape=(e.shape[0], len(vertices_from)), ).tocsr() else: mm, n_missing, n_iter = _surf_upsampling_mat(vertices_from, e, smooth) if n_missing and warn: warn_( f"{n_missing}/{e.shape[0]} vertices not included in " "smoothing, consider increasing the number of steps" ) logger.info(f" {n_iter} smooth iterations done.") assert mm.shape == (n_vertices, len(vertices_from)) if maps is not None: mm = maps[vertices_to] @ mm else: # to == from mm = mm[vertices_to] assert mm.shape == (len(vertices_to), len(vertices_from)) return mm @verbose def grade_to_vertices(subject, grade, subjects_dir=None, n_jobs=None, verbose=None): """Convert a grade to source space vertices for a given subject. Parameters ---------- subject : str Name of the subject. grade : int | list Resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, then values will be morphed to the set of vertices specified in in grade[0] and grade[1]. Note that specifying the vertices (e.g., grade=[np.arange(10242), np.arange(10242)] for fsaverage on a standard grade 5 source space) can be substantially faster than computing vertex locations. Note that if subject='fsaverage' and 'grade=5', this set of vertices will automatically be used (instead of computed) for speed, since this is a common morph. %(subjects_dir)s %(n_jobs)s %(verbose)s Returns ------- vertices : list of array of int Vertex numbers for LH and RH. """ _validate_type(grade, (list, "int-like", None), "grade") # add special case for fsaverage for speed if subject == "fsaverage" and isinstance(grade, int) and grade == 5: return [np.arange(10242), np.arange(10242)] subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) spheres_to = [ subjects_dir / subject / "surf" / (xh + ".sphere.reg") for xh in ["lh", "rh"] ] lhs, rhs = (read_surface(s)[0] for s in spheres_to) if grade is not None: # fill a subset of vertices if isinstance(grade, list): if not len(grade) == 2: raise ValueError( "grade as a list must have two elements " "(arrays of output vertices)" ) vertices = grade else: grade = _ensure_int(grade) # find which vertices to use in "to mesh" ico = _get_ico_tris(grade, return_surf=True) lhs /= np.sqrt(np.sum(lhs**2, axis=1))[:, None] rhs /= np.sqrt(np.sum(rhs**2, axis=1))[:, None] # Compute nearest vertices in high dim mesh parallel, my_compute_nearest, _ = parallel_func(_compute_nearest, n_jobs) lhs, rhs, rr = (a.astype(np.float32) for a in [lhs, rhs, ico["rr"]]) vertices = parallel(my_compute_nearest(xhs, rr) for xhs in [lhs, rhs]) # Make sure the vertices are ordered vertices = [np.sort(verts) for verts in vertices] for verts in vertices: if (np.diff(verts) == 0).any(): raise ValueError( f"Cannot use icosahedral grade {grade} with subject " f"{subject}, mapping {len(verts)} vertices onto the " "high-resolution mesh " "yields repeated vertices, use a lower grade or a " "list of vertices from an existing source space" ) else: # potentially fill the surface vertices = [np.arange(lhs.shape[0]), np.arange(rhs.shape[0])] return vertices # Takes ~20 ms to hash, ~100 ms to compute (5x speedup) @_custom_lru_cache(20) def _surf_nearest(vertices, adj_mat): # Vertices can be out of order, so sort them to start ... order = np.argsort(vertices) vertices = vertices[order] # work around https://github.com/scipy/scipy/issues/20904 adj_mat = sparse.csr_array( ( adj_mat.data, adj_mat.indices.astype(np.int32), adj_mat.indptr.astype(np.int32), ), shape=adj_mat.shape, ) _, _, sources = sparse.csgraph.dijkstra( adj_mat, False, indices=vertices, min_only=True, return_predecessors=True ) col = np.searchsorted(vertices, sources) # ... then get things back to the correct configuration. col = order[col] row = np.arange(len(col)) data = np.ones(len(col)) mat = sparse.coo_array((data, (row, col))) assert mat.shape == (adj_mat.shape[0], len(vertices)), mat.shape return mat def _csr_row_norm(data, row_norm): assert row_norm.shape == (data.shape[0],) data.data /= np.where(row_norm, row_norm, 1).repeat(np.diff(data.indptr)) # upsamplers are generally not very big (< 1 MB), and users might have a lot # For 5 smoothing steps for example: # smoothing_steps=5 takes ~20 ms to hash, ~100 ms to compute (5x speedup) # smoothing_steps=None takes ~20 ms to hash, ~400 ms to compute (20x speedup) @_custom_lru_cache(20) def _surf_upsampling_mat(idx_from, e, smooth): """Upsample data on a subject's surface given mesh edges.""" # we're in CSR format and it's to==from assert isinstance(e, sparse.csr_array) n_tot = e.shape[0] assert e.shape == (n_tot, n_tot) # our output matrix starts out as a smaller matrix, and will gradually # increase in size data = _eye_array(len(idx_from), format="csr") _validate_type(smooth, ("int-like", str, None), "smoothing steps") if smooth is not None: # number of steps smooth = _ensure_int(smooth, "smoothing steps") if smooth <= 0: # == 0 is handled in a shortcut above raise ValueError( "The number of smoothing operations has to be at least 0, got " f"{smooth}" ) smooth = smooth - 1 # idx will gradually expand from idx_from -> np.arange(n_tot) idx = idx_from recompute_idx_sum = True # always compute at least once mult = np.zeros(n_tot) for k in range(100): # the maximum allowed # on first iteration it's already restricted, so we need to re-restrict if k != 0 and len(idx) < n_tot: data = data[idx] # smoothing multiplication use_e = e[:, idx] if len(idx) < n_tot else e data = use_e @ data del use_e # compute row sums + output indices if recompute_idx_sum: if len(idx) == n_tot: row_sum = np.asarray(e.sum(-1)) idx = np.arange(n_tot) recompute_idx_sum = False else: mult[idx] = 1 row_sum = e @ mult idx = np.where(row_sum)[0] # do row normalization _csr_row_norm(data, row_sum) if k == smooth or (smooth is None and len(idx) == n_tot): break # last iteration / done assert data.shape == (n_tot, len(idx_from)) n_missing = n_tot - len(idx) n_iter = k + 1 return data, n_missing, n_iter def _sparse_argmax_nnz_row(csr_mat): """Return index of the maximum non-zero index in each row.""" n_rows = csr_mat.shape[0] idx = np.empty(n_rows, dtype=np.int64) for k in range(n_rows): row = csr_mat[[k]].tocoo() idx[k] = row.col[np.argmax(row.data)] return idx def _get_subject_sphere_tris(subject, subjects_dir): spheres = [ subjects_dir / subject / "surf" / (xh + ".sphere.reg") for xh in ["lh", "rh"] ] tris = [read_surface(s)[1] for s in spheres] return tris ############################################################################### # Apply morph to source estimate def _get_zooms_orig(morph): """Compute src zooms from morph zooms, morph shape and src shape.""" # zooms_to = zooms_from / shape_to * shape_from for each spatial dimension return [ mz / ss * ms for mz, ms, ss in zip( morph.zooms, morph.shape, morph.src_data["src_shape_full"][::-1] ) ] def _check_vertices_match(v1, v2, name): if not np.array_equal(v1, v2): ext = "" if np.isin(v2, v1).all(): ext = " Vertices were likely excluded during forward computation." raise ValueError( f"vertices do not match between morph ({len(v1)}) and stc ({len(v2)}) " 'for {name}:\n{v1}\n{v2}\nPerhaps src_to=fwd["src"] needs to be passed ' f"when calling compute_source_morph.{ext}" ) _VOL_MAT_CHECK_RATIO = 1.0 def _apply_morph_data(morph, stc_from): """Morph a source estimate from one subject to another.""" if stc_from.subject is not None and stc_from.subject != morph.subject_from: raise ValueError( f"stc.subject ({stc_from.subject}) != morph.subject_from " f"({morph.subject_from})" ) _check_option("morph.kind", morph.kind, ("surface", "volume", "mixed")) if morph.kind == "surface": _validate_type( stc_from, _BaseSurfaceSourceEstimate, "stc_from", "volume source estimate when using a surface morph", ) elif morph.kind == "volume": _validate_type( stc_from, _BaseVolSourceEstimate, "stc_from", "surface source estimate when using a volume morph", ) else: assert morph.kind == "mixed" # can handle any _validate_type( stc_from, _BaseSourceEstimate, "stc_from", "source estimate when using a mixed source morph", ) # figure out what to actually morph do_vol = not isinstance(stc_from, _BaseSurfaceSourceEstimate) do_surf = not isinstance(stc_from, _BaseVolSourceEstimate) vol_src_offset = 2 if do_surf else 0 from_surf_stop = sum(len(v) for v in stc_from.vertices[:vol_src_offset]) to_surf_stop = sum(len(v) for v in morph.vertices_to[:vol_src_offset]) from_vol_stop = stc_from.data.shape[0] vertices_to = morph.vertices_to if morph.kind == "mixed": vertices_to = vertices_to[0 if do_surf else 2 : None if do_vol else 2] to_vol_stop = sum(len(v) for v in vertices_to) mesg = "Ori × Time" if stc_from.data.ndim == 3 else "Time" data_from = np.reshape(stc_from.data, (stc_from.data.shape[0], -1)) n_times = data_from.shape[1] # oris treated as times data = np.empty((to_vol_stop, n_times), stc_from.data.dtype) to_used = np.zeros(data.shape[0], bool) from_used = np.zeros(data_from.shape[0], bool) if do_vol: stc_from_vertices = stc_from.vertices[vol_src_offset:] vertices_from = morph._vol_vertices_from for ii, (v1, v2) in enumerate(zip(vertices_from, stc_from_vertices)): _check_vertices_match(v1, v2, f"volume[{ii}]") from_sl = slice(from_surf_stop, from_vol_stop) assert not from_used[from_sl].any() from_used[from_sl] = True to_sl = slice(to_surf_stop, to_vol_stop) assert not to_used[to_sl].any() to_used[to_sl] = True # Loop over time points to save memory if morph.vol_morph_mat is None and n_times >= _VOL_MAT_CHECK_RATIO * ( to_vol_stop - to_surf_stop ): warn( "Computing a sparse volume morph matrix will save time over " "directly morphing, calling morph.compute_vol_morph_mat(). " "Consider (re-)saving your instance to disk to avoid " "subsequent recomputation." ) morph.compute_vol_morph_mat() if morph.vol_morph_mat is None: logger.debug("Using individual volume morph") data[to_sl, :] = morph._morph_vols(data_from[from_sl], mesg) else: logger.debug("Using sparse volume morph matrix") data[to_sl, :] = morph.vol_morph_mat @ data_from[from_sl] if do_surf: for hemi, v1, v2 in zip( ("left", "right"), morph.src_data["vertices_from"], stc_from.vertices[:2] ): _check_vertices_match(v1, v2, f"{hemi} hemisphere") from_sl = slice(0, from_surf_stop) assert not from_used[from_sl].any() from_used[from_sl] = True to_sl = slice(0, to_surf_stop) assert not to_used[to_sl].any() to_used[to_sl] = True data[to_sl] = morph.morph_mat @ data_from[from_sl] assert to_used.all() assert from_used.all() data.shape = (data.shape[0],) + stc_from.data.shape[1:] klass = stc_from.__class__ stc_to = klass(data, vertices_to, stc_from.tmin, stc_from.tstep, morph.subject_to) return stc_to