# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. # The computations in this code were primarily derived from Matti Hämäläinen's # C code. import glob import json import os import os.path as op import shutil from collections import OrderedDict from copy import deepcopy from functools import partial from pathlib import Path import numpy as np from scipy.optimize import fmin_cobyla from ._fiff._digitization import _dig_kind_dict, _dig_kind_ints, _dig_kind_rev from ._fiff.constants import FIFF, FWD from ._fiff.open import fiff_open from ._fiff.tag import find_tag from ._fiff.tree import dir_tree_find from ._fiff.write import ( end_block, start_and_end_file, start_block, write_float, write_float_matrix, write_int, write_int_matrix, write_string, ) from .fixes import _compare_version, _safe_svd from .surface import ( _complete_sphere_surf, _compute_nearest, _fast_cross_nd_sum, _get_ico_surface, _get_solids, complete_surface_info, decimate_surface, read_surface, read_tri, transform_surface_to, write_surface, ) from .transforms import Transform, _ensure_trans, apply_trans from .utils import ( _check_fname, _check_freesurfer_home, _check_head_radius, _check_option, _ensure_int, _import_h5io_funcs, _import_nibabel, _on_missing, _path_like, _pl, _TempDir, _validate_type, _verbose_safe_false, get_subjects_dir, logger, path_like, run_subprocess, verbose, warn, ) from .viz.misc import plot_bem # ############################################################################ # Compute BEM solution # The following approach is based on: # # de Munck JC: "A linear discretization of the volume conductor boundary # integral equation using analytically integrated elements", # IEEE Trans Biomed Eng. 1992 39(9) : 986 - 990 # class ConductorModel(dict): """BEM or sphere model. See :func:`~mne.make_bem_model` and :func:`~mne.make_bem_solution` to create a :class:`mne.bem.ConductorModel`. """ def __repr__(self): # noqa: D105 if self["is_sphere"]: center = ", ".join(f"{x * 1000.:.1f}" for x in self["r0"]) rad = self.radius if rad is None: # no radius / MEG only extra = f"Sphere (no layers): r0=[{center}] mm" else: extra = ( f"Sphere ({len(self['layers']) - 1} layer{_pl(self['layers'])}): " f"r0=[{center}] R={rad * 1000.0:1.0f} mm" ) else: extra = f"BEM ({len(self['surfs'])} layer{_pl(self['surfs'])})" extra += f" solver={self['solver']}" return f"" def copy(self): """Return copy of ConductorModel instance.""" return deepcopy(self) @property def radius(self): """Sphere radius if an EEG sphere model.""" if not self["is_sphere"]: raise RuntimeError("radius undefined for BEM") return None if len(self["layers"]) == 0 else self["layers"][-1]["rad"] def _calc_beta(rk, rk_norm, rk1, rk1_norm): """Compute coefficients for calculating the magic vector omega.""" rkk1 = rk1[0] - rk[0] size = np.linalg.norm(rkk1) rkk1 /= size num = rk_norm + np.dot(rk, rkk1) den = rk1_norm + np.dot(rk1, rkk1) res = np.log(num / den) / size return res def _lin_pot_coeff(fros, tri_rr, tri_nn, tri_area): """Compute the linear potential matrix element computations.""" omega = np.zeros((len(fros), 3)) # we replicate a little bit of the _get_solids code here for speed # (we need some of the intermediate values later) v1 = tri_rr[np.newaxis, 0, :] - fros v2 = tri_rr[np.newaxis, 1, :] - fros v3 = tri_rr[np.newaxis, 2, :] - fros triples = _fast_cross_nd_sum(v1, v2, v3) l1 = np.linalg.norm(v1, axis=1) l2 = np.linalg.norm(v2, axis=1) l3 = np.linalg.norm(v3, axis=1) ss = l1 * l2 * l3 ss += np.einsum("ij,ij,i->i", v1, v2, l3) ss += np.einsum("ij,ij,i->i", v1, v3, l2) ss += np.einsum("ij,ij,i->i", v2, v3, l1) solids = np.arctan2(triples, ss) # We *could* subselect the good points from v1, v2, v3, triples, solids, # l1, l2, and l3, but there are *very* few bad points. So instead we do # some unnecessary calculations, and then omit them from the final # solution. These three lines ensure we don't get invalid values in # _calc_beta. bad_mask = np.abs(solids) < np.pi / 1e6 l1[bad_mask] = 1.0 l2[bad_mask] = 1.0 l3[bad_mask] = 1.0 # Calculate the magic vector vec_omega beta = [ _calc_beta(v1, l1, v2, l2)[:, np.newaxis], _calc_beta(v2, l2, v3, l3)[:, np.newaxis], _calc_beta(v3, l3, v1, l1)[:, np.newaxis], ] vec_omega = (beta[2] - beta[0]) * v1 vec_omega += (beta[0] - beta[1]) * v2 vec_omega += (beta[1] - beta[2]) * v3 area2 = 2.0 * tri_area n2 = 1.0 / (area2 * area2) # leave omega = 0 otherwise # Put it all together... yys = [v1, v2, v3] idx = [0, 1, 2, 0, 2] for k in range(3): diff = yys[idx[k - 1]] - yys[idx[k + 1]] zdots = _fast_cross_nd_sum(yys[idx[k + 1]], yys[idx[k - 1]], tri_nn) omega[:, k] = -n2 * ( area2 * zdots * 2.0 * solids - triples * (diff * vec_omega).sum(axis=-1) ) # omit the bad points from the solution omega[bad_mask] = 0.0 return omega def _correct_auto_elements(surf, mat): """Improve auto-element approximation.""" pi2 = 2.0 * np.pi tris_flat = surf["tris"].ravel() misses = pi2 - mat.sum(axis=1) for j, miss in enumerate(misses): # How much is missing? n_memb = len(surf["neighbor_tri"][j]) assert n_memb > 0 # should be guaranteed by our surface checks # The node itself receives one half mat[j, j] = miss / 2.0 # The rest is divided evenly among the member nodes... miss /= 4.0 * n_memb members = np.where(j == tris_flat)[0] mods = members % 3 offsets = np.array([[1, 2], [-1, 1], [-1, -2]]) tri_1 = members + offsets[mods, 0] tri_2 = members + offsets[mods, 1] for t1, t2 in zip(tri_1, tri_2): mat[j, tris_flat[t1]] += miss mat[j, tris_flat[t2]] += miss return def _fwd_bem_lin_pot_coeff(surfs): """Calculate the coefficients for linear collocation approach.""" # taken from fwd_bem_linear_collocation.c nps = [surf["np"] for surf in surfs] np_tot = sum(nps) coeff = np.zeros((np_tot, np_tot)) offsets = np.cumsum(np.concatenate(([0], nps))) for si_1, surf1 in enumerate(surfs): rr_ord = np.arange(nps[si_1]) for si_2, surf2 in enumerate(surfs): logger.info( f" {_bem_surf_name[surf1['id']]} ({nps[si_1]:d}) -> " f"{_bem_surf_name[surf2['id']]} ({nps[si_2]}) ..." ) tri_rr = surf2["rr"][surf2["tris"]] tri_nn = surf2["tri_nn"] tri_area = surf2["tri_area"] submat = coeff[ offsets[si_1] : offsets[si_1 + 1], offsets[si_2] : offsets[si_2 + 1] ] # view for k in range(surf2["ntri"]): tri = surf2["tris"][k] if si_1 == si_2: skip_idx = ( (rr_ord == tri[0]) | (rr_ord == tri[1]) | (rr_ord == tri[2]) ) else: skip_idx = list() # No contribution from a triangle that # this vertex belongs to # if sidx1 == sidx2 and (tri == j).any(): # continue # Otherwise do the hard job coeffs = _lin_pot_coeff( fros=surf1["rr"], tri_rr=tri_rr[k], tri_nn=tri_nn[k], tri_area=tri_area[k], ) coeffs[skip_idx] = 0.0 submat[:, tri] -= coeffs if si_1 == si_2: _correct_auto_elements(surf1, submat) return coeff def _fwd_bem_multi_solution(solids, gamma, nps): """Do multi surface solution. * Invert I - solids/(2*M_PI) * Take deflation into account * The matrix is destroyed after inversion * This is the general multilayer case """ pi2 = 1.0 / (2 * np.pi) n_tot = np.sum(nps) assert solids.shape == (n_tot, n_tot) nsurf = len(nps) defl = 1.0 / n_tot # Modify the matrix offsets = np.cumsum(np.concatenate(([0], nps))) for si_1 in range(nsurf): for si_2 in range(nsurf): mult = pi2 if gamma is None else pi2 * gamma[si_1, si_2] slice_j = slice(offsets[si_1], offsets[si_1 + 1]) slice_k = slice(offsets[si_2], offsets[si_2 + 1]) solids[slice_j, slice_k] = defl - solids[slice_j, slice_k] * mult solids += np.eye(n_tot) return np.linalg.inv(solids) def _fwd_bem_homog_solution(solids, nps): """Make a homogeneous solution.""" return _fwd_bem_multi_solution(solids, gamma=None, nps=nps) def _fwd_bem_ip_modify_solution(solution, ip_solution, ip_mult, n_tri): """Modify the solution according to the IP approach.""" n_last = n_tri[-1] mult = (1.0 + ip_mult) / ip_mult logger.info(" Combining...") offsets = np.cumsum(np.concatenate(([0], n_tri))) for si in range(len(n_tri)): # Pick the correct submatrix (right column) and multiply sub = solution[offsets[si] : offsets[si + 1], np.sum(n_tri[:-1]) :] # Multiply sub -= 2 * np.dot(sub, ip_solution) # The lower right corner is a special case sub[-n_last:, -n_last:] += mult * ip_solution # Final scaling logger.info(" Scaling...") solution *= ip_mult return def _check_complete_surface(surf, copy=False, incomplete="raise", extra=""): surf = complete_surface_info(surf, copy=copy, verbose=_verbose_safe_false()) fewer = np.where([len(t) < 3 for t in surf["neighbor_tri"]])[0] if len(fewer) > 0: fewer = list(fewer) fewer = (fewer[:80] + ["..."]) if len(fewer) > 80 else fewer fewer = ", ".join(str(f) for f in fewer) msg = ( f"Surface {_bem_surf_name[surf['id']]} has topological defects: " f"{len(fewer)} / {len(surf['rr'])} vertices have fewer than three " f"neighboring triangles [{fewer}]{extra}" ) _on_missing(on_missing=incomplete, msg=msg, name="on_defects") return surf def _fwd_bem_linear_collocation_solution(bem): """Compute the linear collocation potential solution.""" # first, add surface geometries logger.info("Computing the linear collocation solution...") logger.info(" Matrix coefficients...") coeff = _fwd_bem_lin_pot_coeff(bem["surfs"]) bem["nsol"] = len(coeff) logger.info(" Inverting the coefficient matrix...") nps = [surf["np"] for surf in bem["surfs"]] bem["solution"] = _fwd_bem_multi_solution(coeff, bem["gamma"], nps) if len(bem["surfs"]) == 3: ip_mult = bem["sigma"][1] / bem["sigma"][2] if ip_mult <= FWD.BEM_IP_APPROACH_LIMIT: logger.info("IP approach required...") logger.info(" Matrix coefficients (homog)...") coeff = _fwd_bem_lin_pot_coeff([bem["surfs"][-1]]) logger.info(" Inverting the coefficient matrix (homog)...") ip_solution = _fwd_bem_homog_solution(coeff, [bem["surfs"][-1]["np"]]) logger.info( " Modify the original solution to incorporate IP approach..." ) _fwd_bem_ip_modify_solution(bem["solution"], ip_solution, ip_mult, nps) bem["bem_method"] = FIFF.FIFFV_BEM_APPROX_LINEAR bem["solver"] = "mne" def _import_openmeeg(what="compute a BEM solution using OpenMEEG"): try: import openmeeg as om except Exception as exc: raise ImportError( f"The OpenMEEG module must be installed to {what}, but " f'"import openmeeg" resulted in: {exc}' ) from None if not _compare_version(om.__version__, ">=", "2.5.6"): raise ImportError(f"OpenMEEG 2.5.6+ is required, got {om.__version__}") return om def _make_openmeeg_geometry(bem, mri_head_t=None): # OpenMEEG om = _import_openmeeg() meshes = [] for surf in bem["surfs"][::-1]: if mri_head_t is not None: surf = transform_surface_to(surf, "head", mri_head_t, copy=True) points, faces = surf["rr"], surf["tris"] faces = faces[:, [1, 0, 2]] # swap faces meshes.append((points, faces)) conductivity = bem["sigma"][::-1] return om.make_nested_geometry(meshes, conductivity) def _fwd_bem_openmeeg_solution(bem): om = _import_openmeeg() logger.info("Creating BEM solution using OpenMEEG") logger.info("Computing the openmeeg head matrix solution...") logger.info(" Matrix coefficients...") geom = _make_openmeeg_geometry(bem) hm = om.HeadMat(geom) bem["nsol"] = hm.nlin() logger.info(" Inverting the coefficient matrix...") hm.invert() # invert inplace bem["solution"] = hm.array_flat() bem["bem_method"] = FIFF.FIFFV_BEM_APPROX_LINEAR bem["solver"] = "openmeeg" @verbose def make_bem_solution(surfs, *, solver="mne", verbose=None): """Create a BEM solution using the linear collocation approach. Parameters ---------- surfs : list of dict The BEM surfaces to use (from :func:`mne.make_bem_model`). solver : str Can be ``'mne'`` (default) to use MNE-Python, or ``'openmeeg'`` to use the `OpenMEEG `__ package. .. versionadded:: 1.2 %(verbose)s Returns ------- bem : instance of ConductorModel The BEM solution. See Also -------- make_bem_model read_bem_surfaces write_bem_surfaces read_bem_solution write_bem_solution Notes ----- .. versionadded:: 0.10.0 """ _validate_type(solver, str, "solver") _check_option("method", solver.lower(), ("mne", "openmeeg")) bem = _ensure_bem_surfaces(surfs) _add_gamma_multipliers(bem) if len(bem["surfs"]) == 3: logger.info("Three-layer model surfaces loaded.") elif len(bem["surfs"]) == 1: logger.info("Homogeneous model surface loaded.") else: raise RuntimeError("Only 1- or 3-layer BEM computations supported") _check_bem_size(bem["surfs"]) for surf in bem["surfs"]: _check_complete_surface(surf) if solver.lower() == "openmeeg": _fwd_bem_openmeeg_solution(bem) else: assert solver.lower() == "mne" _fwd_bem_linear_collocation_solution(bem) logger.info("Solution ready.") logger.info("BEM geometry computations complete.") return bem # ############################################################################ # Make BEM model def _ico_downsample(surf, dest_grade): """Downsample the surface if isomorphic to a subdivided icosahedron.""" n_tri = len(surf["tris"]) bad_msg = ( f"Cannot decimate to requested ico grade {dest_grade}. The provided " f"BEM surface has {n_tri} triangles, which cannot be isomorphic with " "a subdivided icosahedron. Consider manually decimating the surface to " "a suitable density and then use ico=None in make_bem_model." ) if n_tri % 20 != 0: raise RuntimeError(bad_msg) n_tri = n_tri // 20 found = int(round(np.log(n_tri) / np.log(4))) if n_tri != 4**found: raise RuntimeError(bad_msg) del n_tri if dest_grade > found: raise RuntimeError( f"For this surface, decimation grade should be {found} or less, " f"not {dest_grade}." ) source = _get_ico_surface(found) dest = _get_ico_surface(dest_grade, patch_stats=True) del dest["tri_cent"] del dest["tri_nn"] del dest["neighbor_tri"] del dest["tri_area"] if not np.array_equal(source["tris"], surf["tris"]): raise RuntimeError( "The source surface has a matching number of " "triangles but ordering is wrong" ) logger.info( f"Going from {found}th to {dest_grade}th subdivision of an icosahedron " f"(n_tri: {len(surf['tris'])} -> {len(dest['tris'])})" ) # Find the mapping dest["rr"] = surf["rr"][_get_ico_map(source, dest)] return dest def _get_ico_map(fro, to): """Get a mapping between ico surfaces.""" nearest, dists = _compute_nearest(fro["rr"], to["rr"], return_dists=True) n_bads = (dists > 5e-3).sum() if n_bads > 0: raise RuntimeError(f"No matching vertex for {n_bads} destination vertices") return nearest def _order_surfaces(surfs): """Reorder the surfaces.""" if len(surfs) != 3: return surfs # we have three surfaces surf_order = [ FIFF.FIFFV_BEM_SURF_ID_HEAD, FIFF.FIFFV_BEM_SURF_ID_SKULL, FIFF.FIFFV_BEM_SURF_ID_BRAIN, ] ids = np.array([surf["id"] for surf in surfs]) if set(ids) != set(surf_order): raise RuntimeError(f"bad surface ids: {ids}") order = [np.where(ids == id_)[0][0] for id_ in surf_order] surfs = [surfs[idx] for idx in order] return surfs def _assert_complete_surface(surf, incomplete="raise"): """Check the sum of solid angles as seen from inside.""" # from surface_checks.c # Center of mass.... cm = surf["rr"].mean(axis=0) logger.info( f"{_bem_surf_name[surf['id']]} CM is " f"{1000 * cm[0]:6.2f} " f"{1000 * cm[1]:6.2f} " f"{1000 * cm[2]:6.2f} mm" ) tot_angle = _get_solids(surf["rr"][surf["tris"]], cm[np.newaxis, :])[0] prop = tot_angle / (2 * np.pi) if np.abs(prop - 1.0) > 1e-5: msg = ( f'Surface {_bem_surf_name[surf["id"]]} is not complete (sum of ' f"solid angles yielded {prop}, should be 1.)" ) _on_missing(incomplete, msg, name="incomplete", error_klass=RuntimeError) def _assert_inside(fro, to): """Check one set of points is inside a surface.""" # this is "is_inside" in surface_checks.c fro_name = _bem_surf_name[fro["id"]] to_name = _bem_surf_name[to["id"]] logger.info(f"Checking that surface {fro_name} is inside surface {to_name} ...") tot_angle = _get_solids(to["rr"][to["tris"]], fro["rr"]) if (np.abs(tot_angle / (2 * np.pi) - 1.0) > 1e-5).any(): raise RuntimeError( f"Surface {fro_name} is not completely inside surface {to_name}" ) def _check_surfaces(surfs, incomplete="raise"): """Check that the surfaces are complete and non-intersecting.""" for surf in surfs: _assert_complete_surface(surf, incomplete=incomplete) # Then check the topology for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]): _assert_inside(surf_2, surf_1) def _check_surface_size(surf): """Check that the coordinate limits are reasonable.""" sizes = surf["rr"].max(axis=0) - surf["rr"].min(axis=0) if (sizes < 0.05).any(): raise RuntimeError( f'Dimensions of the surface {_bem_surf_name[surf["id"]]} seem too ' f"small ({1000 * sizes.min():9.5f}). Maybe the unit of measure" " is meters instead of mm" ) def _check_thicknesses(surfs): """Compute how close we are.""" for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]): min_dist = _compute_nearest(surf_1["rr"], surf_2["rr"], return_dists=True)[1] min_dist = min_dist.min() fro = _bem_surf_name[surf_1["id"]] to = _bem_surf_name[surf_2["id"]] logger.info(f"Checking distance between {fro} and {to} surfaces...") logger.info( f"Minimum distance between the {fro} and {to} surfaces is " f"approximately {1000 * min_dist:6.1f} mm" ) def _surfaces_to_bem( surfs, ids, sigmas, ico=None, rescale=True, incomplete="raise", extra="" ): """Convert surfaces to a BEM.""" # equivalent of mne_surf2bem # surfs can be strings (filenames) or surface dicts if len(surfs) not in (1, 3) or not (len(surfs) == len(ids) == len(sigmas)): raise ValueError( "surfs, ids, and sigmas must all have the same " "number of elements (1 or 3)" ) for si, surf in enumerate(surfs): if isinstance(surf, (str, Path, os.PathLike)): surfs[si] = surf = read_surface(surf, return_dict=True)[-1] # Downsampling if the surface is isomorphic with a subdivided icosahedron if ico is not None: for si, surf in enumerate(surfs): surfs[si] = _ico_downsample(surf, ico) for surf, id_ in zip(surfs, ids): # Do topology checks (but don't save data) to fail early surf["id"] = id_ _check_complete_surface(surf, copy=True, incomplete=incomplete, extra=extra) surf["coord_frame"] = surf.get("coord_frame", FIFF.FIFFV_COORD_MRI) surf.update(np=len(surf["rr"]), ntri=len(surf["tris"])) if rescale: surf["rr"] /= 1000.0 # convert to meters # Shifting surfaces is not implemented here... # Order the surfaces for the benefit of the topology checks for surf, sigma in zip(surfs, sigmas): surf["sigma"] = sigma surfs = _order_surfaces(surfs) # Check topology as best we can _check_surfaces(surfs, incomplete=incomplete) for surf in surfs: _check_surface_size(surf) _check_thicknesses(surfs) logger.info("Surfaces passed the basic topology checks.") return surfs @verbose def make_bem_model( subject, ico=4, conductivity=(0.3, 0.006, 0.3), subjects_dir=None, verbose=None ): """Create a BEM model for a subject. Use :func:`~mne.make_bem_solution` to turn the returned surfaces into a :class:`~mne.bem.ConductorModel` suitable for forward calculation. .. note:: To get a single layer bem corresponding to the --homog flag in the command line tool set the ``conductivity`` parameter to a float (e.g. ``0.3``). Parameters ---------- %(subject)s ico : int | None The surface ico downsampling to use, e.g. ``5=20484``, ``4=5120``, ``3=1280``. If None, no subsampling is applied. conductivity : float | array of float of shape (3,) or (1,) The conductivities to use for each shell. Should be a single element for a one-layer model, or three elements for a three-layer model. Defaults to ``[0.3, 0.006, 0.3]``. The MNE-C default for a single-layer model is ``[0.3]``. %(subjects_dir)s %(verbose)s Returns ------- surfaces : list of dict The BEM surfaces. Use :func:`~mne.make_bem_solution` to turn these into a :class:`~mne.bem.ConductorModel` suitable for forward calculation. See Also -------- make_bem_solution make_sphere_model read_bem_surfaces write_bem_surfaces Notes ----- .. versionadded:: 0.10.0 """ conductivity = np.atleast_1d(conductivity).astype(float) if conductivity.ndim != 1 or conductivity.size not in (1, 3): raise ValueError( "conductivity must be a float or a 1D array-like with 1 or 3 elements" ) subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) subject_dir = subjects_dir / subject bem_dir = subject_dir / "bem" inner_skull = bem_dir / "inner_skull.surf" outer_skull = bem_dir / "outer_skull.surf" outer_skin = bem_dir / "outer_skin.surf" surfaces = [inner_skull, outer_skull, outer_skin] ids = [ FIFF.FIFFV_BEM_SURF_ID_BRAIN, FIFF.FIFFV_BEM_SURF_ID_SKULL, FIFF.FIFFV_BEM_SURF_ID_HEAD, ] logger.info("Creating the BEM geometry...") if len(conductivity) == 1: surfaces = surfaces[:1] ids = ids[:1] surfaces = _surfaces_to_bem(surfaces, ids, conductivity, ico) _check_bem_size(surfaces) logger.info("Complete.\n") return surfaces # ############################################################################ # Compute EEG sphere model def _fwd_eeg_get_multi_sphere_model_coeffs(m, n_terms): """Get the model depended weighting factor for n.""" nlayer = len(m["layers"]) if nlayer in (0, 1): return 1.0 # Initialize the arrays c1 = np.zeros(nlayer - 1) c2 = np.zeros(nlayer - 1) cr = np.zeros(nlayer - 1) cr_mult = np.zeros(nlayer - 1) for k in range(nlayer - 1): c1[k] = m["layers"][k]["sigma"] / m["layers"][k + 1]["sigma"] c2[k] = c1[k] - 1.0 cr_mult[k] = m["layers"][k]["rel_rad"] cr[k] = cr_mult[k] cr_mult[k] *= cr_mult[k] coeffs = np.zeros(n_terms - 1) for n in range(1, n_terms): # Increment the radius coefficients for k in range(nlayer - 1): cr[k] *= cr_mult[k] # Multiply the matrices M = np.eye(2) n1 = n + 1.0 for k in range(nlayer - 2, -1, -1): M = np.dot( [ [n + n1 * c1[k], n1 * c2[k] / cr[k]], [n * c2[k] * cr[k], n1 + n * c1[k]], ], M, ) num = n * (2.0 * n + 1.0) ** (nlayer - 1) coeffs[n - 1] = num / (n * M[1, 1] + n1 * M[1, 0]) return coeffs def _compose_linear_fitting_data(mu, u): """Get the linear fitting data.""" k1 = np.arange(1, u["nterms"]) mu1ns = mu[0] ** k1 # data to be fitted y = u["w"][:-1] * (u["fn"][1:] - mu1ns * u["fn"][0]) # model matrix M = u["w"][:-1, np.newaxis] * (mu[1:] ** k1[:, np.newaxis] - mu1ns[:, np.newaxis]) uu, sing, vv = _safe_svd(M, full_matrices=False) ncomp = u["nfit"] - 1 uu, sing, vv = uu[:, :ncomp], sing[:ncomp], vv[:ncomp] return y, uu, sing, vv def _compute_linear_parameters(mu, u): """Compute the best-fitting linear parameters.""" y, uu, sing, vv = _compose_linear_fitting_data(mu, u) # Compute the residuals vec = np.dot(y, uu) resi = y - np.dot(uu, vec) vec /= sing lambda_ = np.zeros(u["nfit"]) lambda_[1:] = np.dot(vec, vv) lambda_[0] = u["fn"][0] - np.sum(lambda_[1:]) rv = np.dot(resi, resi) / np.dot(y, y) return rv, lambda_ def _one_step(mu, u): """Evaluate the residual sum of squares fit for one set of mu values.""" if np.abs(mu).max() >= 1.0: return 100.0 # Compose the data for the linear fitting, compute SVD, then residuals y, uu, sing, vv = _compose_linear_fitting_data(mu, u) resi = y - np.dot(uu, np.dot(y, uu)) return np.dot(resi, resi) def _fwd_eeg_fit_berg_scherg(m, nterms, nfit): """Fit the Berg-Scherg equivalent spherical model dipole parameters.""" assert nfit >= 2 u = dict(nfit=nfit, nterms=nterms) # (1) Calculate the coefficients of the true expansion u["fn"] = _fwd_eeg_get_multi_sphere_model_coeffs(m, nterms + 1) # (2) Calculate the weighting f = min([layer["rad"] for layer in m["layers"]]) / max( [layer["rad"] for layer in m["layers"]] ) # correct weighting k = np.arange(1, nterms + 1) u["w"] = np.sqrt((2.0 * k + 1) * (3.0 * k + 1.0) / k) * np.power(f, (k - 1.0)) u["w"][-1] = 0 # Do the nonlinear minimization, constraining mu to the interval [-1, +1] mu_0 = np.zeros(3) fun = partial(_one_step, u=u) catol = 1e-6 max_ = 1.0 - 2 * catol def cons(x): return max_ - np.abs(x) mu = fmin_cobyla(fun, mu_0, [cons], rhobeg=0.5, rhoend=1e-5, catol=catol) # (6) Do the final step: calculation of the linear parameters rv, lambda_ = _compute_linear_parameters(mu, u) order = np.argsort(mu)[::-1] mu, lambda_ = mu[order], lambda_[order] # sort: largest mu first m["mu"] = mu # This division takes into account the actual conductivities m["lambda"] = lambda_ / m["layers"][-1]["sigma"] m["nfit"] = nfit return rv @verbose def make_sphere_model( r0=(0.0, 0.0, 0.04), head_radius=0.09, info=None, relative_radii=(0.90, 0.92, 0.97, 1.0), sigmas=(0.33, 1.0, 0.004, 0.33), verbose=None, ): """Create a spherical model for forward solution calculation. Parameters ---------- r0 : array-like | str Head center to use (in head coordinates). If 'auto', the head center will be calculated from the digitization points in info. head_radius : float | str | None If float, compute spherical shells for EEG using the given radius. If ``'auto'``, estimate an appropriate radius from the dig points in the :class:`~mne.Info` provided by the argument ``info``. If None, exclude shells (single layer sphere model). %(info)s Only needed if ``r0`` or ``head_radius`` are ``'auto'``. relative_radii : array-like Relative radii for the spherical shells. sigmas : array-like Sigma values for the spherical shells. %(verbose)s Returns ------- sphere : instance of ConductorModel The resulting spherical conductor model. See Also -------- make_bem_model make_bem_solution Notes ----- The default model has:: relative_radii = (0.90, 0.92, 0.97, 1.0) sigmas = (0.33, 1.0, 0.004, 0.33) These correspond to compartments (with relative radii in ``m`` and conductivities σ in ``S/m``) for the brain, CSF, skull, and scalp, respectively. .. versionadded:: 0.9.0 """ for name in ("r0", "head_radius"): param = locals()[name] if isinstance(param, str): if param != "auto": raise ValueError(f'{name}, if str, must be "auto" not "{param}"') relative_radii = np.array(relative_radii, float).ravel() sigmas = np.array(sigmas, float).ravel() if len(relative_radii) != len(sigmas): raise ValueError( f"relative_radii length ({len(relative_radii)}) must match that of sigmas (" f"{len(sigmas)})" ) if len(sigmas) <= 1 and head_radius is not None: raise ValueError( "at least 2 sigmas must be supplied if head_radius is not None, got " f"{len(sigmas)}" ) if (isinstance(r0, str) and r0 == "auto") or ( isinstance(head_radius, str) and head_radius == "auto" ): if info is None: raise ValueError("Info must not be None for auto mode") head_radius_fit, r0_fit = fit_sphere_to_headshape(info, units="m")[:2] if isinstance(r0, str): r0 = r0_fit if isinstance(head_radius, str): head_radius = head_radius_fit sphere = ConductorModel( is_sphere=True, r0=np.array(r0), coord_frame=FIFF.FIFFV_COORD_HEAD ) sphere["layers"] = list() if head_radius is not None: # Eventually these could be configurable... relative_radii = np.array(relative_radii, float) sigmas = np.array(sigmas, float) order = np.argsort(relative_radii) relative_radii = relative_radii[order] sigmas = sigmas[order] for rel_rad, sig in zip(relative_radii, sigmas): # sort layers by (relative) radius, and scale radii layer = dict(rad=rel_rad, sigma=sig) layer["rel_rad"] = layer["rad"] = rel_rad sphere["layers"].append(layer) # scale the radii R = sphere["layers"][-1]["rad"] rR = sphere["layers"][-1]["rel_rad"] for layer in sphere["layers"]: layer["rad"] /= R layer["rel_rad"] /= rR # # Setup the EEG sphere model calculations # # Scale the relative radii for k in range(len(relative_radii)): sphere["layers"][k]["rad"] = head_radius * sphere["layers"][k]["rel_rad"] rv = _fwd_eeg_fit_berg_scherg(sphere, 200, 3) logger.info(f"\nEquiv. model fitting -> RV = {100 * rv:g} %%") for k in range(3): s_k = sphere["layers"][-1]["sigma"] * sphere["lambda"][k] logger.info(f"mu{k + 1} = {sphere['mu'][k]:g} lambda{k + 1} = {s_k:g}") logger.info( f"Set up EEG sphere model with scalp radius {1000 * head_radius:7.1f} mm\n" ) return sphere # ############################################################################# # Sphere fitting @verbose def fit_sphere_to_headshape(info, dig_kinds="auto", units="m", verbose=None): """Fit a sphere to the headshape points to determine head center. Parameters ---------- %(info_not_none)s %(dig_kinds)s units : str Can be ``"m"`` (default) or ``"mm"``. .. versionadded:: 0.12 %(verbose)s Returns ------- radius : float Sphere radius. origin_head: ndarray, shape (3,) Head center in head coordinates. origin_device: ndarray, shape (3,) Head center in device coordinates. Notes ----- This function excludes any points that are low and frontal (``z < 0 and y > 0``) to improve the fit. """ if not isinstance(units, str) or units not in ("m", "mm"): raise ValueError('units must be a "m" or "mm"') radius, origin_head, origin_device = _fit_sphere_to_headshape(info, dig_kinds) if units == "mm": radius *= 1e3 origin_head *= 1e3 origin_device *= 1e3 return radius, origin_head, origin_device @verbose def get_fitting_dig(info, dig_kinds="auto", exclude_frontal=True, verbose=None): """Get digitization points suitable for sphere fitting. Parameters ---------- %(info_not_none)s %(dig_kinds)s %(exclude_frontal)s Default is True. .. versionadded:: 0.19 %(verbose)s Returns ------- dig : array, shape (n_pts, 3) The digitization points (in head coordinates) to use for fitting. Notes ----- This will exclude digitization locations that have ``z < 0 and y > 0``, i.e. points on the nose and below the nose on the face. .. versionadded:: 0.14 """ _validate_type(info, "info") if info["dig"] is None: raise RuntimeError( 'Cannot fit headshape without digitization, info["dig"] is None' ) if isinstance(dig_kinds, str): if dig_kinds == "auto": # try "extra" first try: return get_fitting_dig(info, "extra") except ValueError: pass return get_fitting_dig(info, ("extra", "eeg")) else: dig_kinds = (dig_kinds,) # convert string args to ints (first make dig_kinds mutable in case tuple) dig_kinds = list(dig_kinds) for di, d in enumerate(dig_kinds): dig_kinds[di] = _dig_kind_dict.get(d, d) if dig_kinds[di] not in _dig_kind_ints: raise ValueError( f"dig_kinds[{di}] ({d}) must be one of {sorted(_dig_kind_dict)}" ) # get head digization points of the specified kind(s) dig = [p for p in info["dig"] if p["kind"] in dig_kinds] if len(dig) == 0: raise ValueError(f"No digitization points found for dig_kinds={dig_kinds}") if any(p["coord_frame"] != FIFF.FIFFV_COORD_HEAD for p in dig): raise RuntimeError( f"Digitization points dig_kinds={dig_kinds} not in head " "coordinates, contact mne-python developers" ) hsp = [p["r"] for p in dig] del dig # exclude some frontal points (nose etc.) if exclude_frontal: hsp = [p for p in hsp if not (p[2] < -1e-6 and p[1] > 1e-6)] hsp = np.array(hsp) if len(hsp) <= 10: kinds_str = ", ".join([f'"{_dig_kind_rev[d]}"' for d in sorted(dig_kinds)]) msg = ( f"Only {len(hsp)} head digitization points of the specified " f"kind{_pl(dig_kinds)} ({kinds_str},)" ) if len(hsp) < 4: raise ValueError(msg + ", at least 4 required") else: warn(msg + ", fitting may be inaccurate") return hsp @verbose def _fit_sphere_to_headshape(info, dig_kinds, verbose=None): """Fit a sphere to the given head shape.""" hsp = get_fitting_dig(info, dig_kinds) radius, origin_head = _fit_sphere(np.array(hsp), disp=False) # compute origin in device coordinates dev_head_t = info["dev_head_t"] if dev_head_t is None: dev_head_t = Transform("meg", "head") head_to_dev = _ensure_trans(dev_head_t, "head", "meg") origin_device = apply_trans(head_to_dev, origin_head) logger.info("Fitted sphere radius:".ljust(30) + f"{radius * 1e3:0.1f} mm") _check_head_radius(radius) # > 2 cm away from head center in X or Y is strange o_mm = origin_head * 1e3 o_d = origin_device * 1e3 if np.linalg.norm(origin_head[:2]) > 0.02: warn( f"(X, Y) fit ({o_mm[0]:0.1f}, {o_mm[1]:0.1f}) " "more than 20 mm from head frame origin" ) logger.info( "Origin head coordinates:".ljust(30) + f"{o_mm[0]:0.1f} {o_mm[1]:0.1f} {o_mm[2]:0.1f} mm" ) logger.info( "Origin device coordinates:".ljust(30) + f"{o_d[0]:0.1f} {o_d[1]:0.1f} {o_d[2]:0.1f} mm" ) return radius, origin_head, origin_device def _fit_sphere(points, disp="auto"): """Fit a sphere to an arbitrary set of points.""" if isinstance(disp, str) and disp == "auto": disp = True if logger.level <= 20 else False # initial guess for center and radius radii = (np.max(points, axis=1) - np.min(points, axis=1)) / 2.0 radius_init = radii.mean() center_init = np.median(points, axis=0) # optimization x0 = np.concatenate([center_init, [radius_init]]) def cost_fun(center_rad): d = np.linalg.norm(points - center_rad[:3], axis=1) - center_rad[3] d *= d return d.sum() def constraint(center_rad): return center_rad[3] # radius must be >= 0 x_opt = fmin_cobyla( cost_fun, x0, constraint, rhobeg=radius_init, rhoend=radius_init * 1e-6, disp=disp, ) origin, radius = x_opt[:3], x_opt[3] return radius, origin def _check_origin(origin, info, coord_frame="head", disp=False): """Check or auto-determine the origin.""" if isinstance(origin, str): if origin != "auto": raise ValueError( f'origin must be a numerical array, or "auto", not {origin}' ) if coord_frame == "head": R, origin = fit_sphere_to_headshape( info, verbose=_verbose_safe_false(), units="m" )[:2] logger.info(f" Automatic origin fit: head of radius {R * 1000:0.1f} mm") del R else: origin = (0.0, 0.0, 0.0) origin = np.array(origin, float) if origin.shape != (3,): raise ValueError("origin must be a 3-element array") if disp: origin_str = ", ".join([f"{o * 1000:0.1f}" for o in origin]) msg = f" Using origin {origin_str} mm in the {coord_frame} frame" if coord_frame == "meg" and info["dev_head_t"] is not None: o_dev = apply_trans(info["dev_head_t"], origin) origin_str = ", ".join(f"{o * 1000:0.1f}" for o in o_dev) msg += f" ({origin_str} mm in the head frame)" logger.info(msg) return origin # ############################################################################ # Create BEM surfaces @verbose def make_watershed_bem( subject, subjects_dir=None, overwrite=False, volume="T1", atlas=False, gcaatlas=False, preflood=None, show=False, copy=True, T1=None, brainmask="ws.mgz", verbose=None, ): """Create BEM surfaces using the FreeSurfer watershed algorithm. See :ref:`bem_watershed_algorithm` for additional information. Parameters ---------- subject : str Subject name. %(subjects_dir)s %(overwrite)s volume : str Defaults to T1. atlas : bool Specify the ``--atlas option`` for ``mri_watershed``. gcaatlas : bool Specify the ``--brain_atlas`` option for ``mri_watershed``. preflood : int Change the preflood height. show : bool Show surfaces to visually inspect all three BEM surfaces (recommended). .. versionadded:: 0.12 copy : bool If True (default), use copies instead of symlinks for surfaces (if they do not already exist). .. versionadded:: 0.18 .. versionchanged:: 1.1 Use copies instead of symlinks. T1 : bool | None If True, pass the ``-T1`` flag. By default (None), this takes the same value as ``gcaatlas``. .. versionadded:: 0.19 brainmask : str The filename for the brainmask output file relative to the ``$SUBJECTS_DIR/$SUBJECT/bem/watershed/`` directory. Can be for example ``"../../mri/brainmask.mgz"`` to overwrite the brainmask obtained via ``recon-all -autorecon1``. .. versionadded:: 0.19 %(verbose)s See Also -------- mne.viz.plot_bem Notes ----- If your BEM meshes do not look correct when viewed in :func:`mne.viz.plot_alignment` or :func:`mne.viz.plot_bem`, consider potential solutions from the :ref:`FAQ `. .. versionadded:: 0.10 """ env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir) tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir) subjects_dir = env["SUBJECTS_DIR"] # Set by _prepare_env() above. subject_dir = op.join(subjects_dir, subject) ws_dir = op.join(bem_dir, "watershed") T1_dir = op.join(mri_dir, volume) T1_mgz = T1_dir if not T1_dir.endswith(".mgz"): T1_mgz += ".mgz" if not op.isdir(bem_dir): os.makedirs(bem_dir) _check_fname(T1_mgz, overwrite="read", must_exist=True, name="MRI data") if op.isdir(ws_dir): if not overwrite: raise RuntimeError( f"{ws_dir} already exists. Use the --overwrite option" " to recreate it." ) else: shutil.rmtree(ws_dir) # put together the command cmd = ["mri_watershed"] if preflood: cmd += ["-h", f"{int(preflood)}"] if T1 is None: T1 = gcaatlas if T1: cmd += ["-T1"] if gcaatlas: fname = op.join(env["FREESURFER_HOME"], "average", "RB_all_withskull_*.gca") fname = sorted(glob.glob(fname))[::-1][0] logger.info(f"Using GCA atlas: {fname}") cmd += [ "-atlas", "-brain_atlas", fname, subject_dir + "/mri/transforms/talairach_with_skull.lta", ] elif atlas: cmd += ["-atlas"] if op.exists(T1_mgz): cmd += [ "-useSRAS", "-surf", op.join(ws_dir, subject), T1_mgz, op.join(ws_dir, brainmask), ] else: cmd += [ "-useSRAS", "-surf", op.join(ws_dir, subject), T1_dir, op.join(ws_dir, brainmask), ] # report and run logger.info( "\nRunning mri_watershed for BEM segmentation with the following parameters:\n" f"\nResults dir = {ws_dir}\nCommand = {' '.join(cmd)}\n" ) os.makedirs(op.join(ws_dir)) run_subprocess_env(cmd) del tempdir # clean up directory if op.isfile(T1_mgz): new_info = _extract_volume_info(T1_mgz) if not new_info: warn( "nibabel is not available or the volume info is invalid. Volume info " "not updated in the written surface." ) surfs = ["brain", "inner_skull", "outer_skull", "outer_skin"] for s in surfs: surf_ws_out = op.join(ws_dir, f"{subject}_{s}_surface") rr, tris, volume_info = read_surface(surf_ws_out, read_metadata=True) # replace volume info, 'head' stays volume_info.update(new_info) write_surface( surf_ws_out, rr, tris, volume_info=volume_info, overwrite=True ) # Create symbolic links surf_out = op.join(bem_dir, f"{s}.surf") if not overwrite and op.exists(surf_out): skip_symlink = True else: if op.exists(surf_out): os.remove(surf_out) _symlink(surf_ws_out, surf_out, copy) skip_symlink = False if skip_symlink: logger.info( "Unable to create all symbolic links to .surf files in bem folder. Use " "--overwrite option to recreate them." ) dest = op.join(bem_dir, "watershed") else: logger.info("Symbolic links to .surf files created in bem folder") dest = bem_dir logger.info( "\nThank you for waiting.\nThe BEM triangulations for this subject are now " f"available at:\n{dest}." ) # Write a head file for coregistration fname_head = op.join(bem_dir, subject + "-head.fif") if op.isfile(fname_head): os.remove(fname_head) surf = _surfaces_to_bem( [op.join(ws_dir, subject + "_outer_skin_surface")], [FIFF.FIFFV_BEM_SURF_ID_HEAD], sigmas=[1], ) write_bem_surfaces(fname_head, surf) # Show computed BEM surfaces if show: plot_bem( subject=subject, subjects_dir=subjects_dir, orientation="coronal", slices=None, show=True, ) logger.info(f"Created {fname_head}\n\nComplete.") def _extract_volume_info(mgz): """Extract volume info from a mgz file.""" nib = _import_nibabel() header = nib.load(mgz).header version = header["version"] vol_info = dict() if version == 1: version = f"{version} # volume info valid" vol_info["valid"] = version vol_info["filename"] = mgz vol_info["volume"] = header["dims"][:3] vol_info["voxelsize"] = header["delta"] vol_info["xras"], vol_info["yras"], vol_info["zras"] = header["Mdc"] vol_info["cras"] = header["Pxyz_c"] return vol_info # ############################################################################ # Read @verbose def read_bem_surfaces( fname, patch_stats=False, s_id=None, on_defects="raise", verbose=None ): """Read the BEM surfaces from a FIF file. Parameters ---------- fname : path-like The name of the file containing the surfaces. patch_stats : bool, optional (default False) Calculate and add cortical patch statistics to the surfaces. s_id : int | None If int, only read and return the surface with the given ``s_id``. An error will be raised if it doesn't exist. If None, all surfaces are read and returned. %(on_defects)s .. versionadded:: 0.23 %(verbose)s Returns ------- surf: list | dict A list of dictionaries that each contain a surface. If ``s_id`` is not None, only the requested surface will be returned. See Also -------- write_bem_surfaces, write_bem_solution, make_bem_model """ # Open the file, create directory _validate_type(s_id, ("int-like", None), "s_id") fname = _check_fname(fname, "read", True, "fname") if fname.suffix == ".h5": surf = _read_bem_surfaces_h5(fname, s_id) else: surf = _read_bem_surfaces_fif(fname, s_id) if s_id is not None and len(surf) != 1: raise ValueError(f"surface with id {s_id} not found") for this in surf: if patch_stats or this["nn"] is None: _check_complete_surface(this, incomplete=on_defects) return surf[0] if s_id is not None else surf def _read_bem_surfaces_h5(fname, s_id): read_hdf5, _ = _import_h5io_funcs() bem = read_hdf5(fname) try: [s["id"] for s in bem["surfs"]] except Exception: # not our format raise ValueError("BEM data not found") surf = bem["surfs"] if s_id is not None: surf = [s for s in surf if s["id"] == s_id] return surf def _read_bem_surfaces_fif(fname, s_id): # Default coordinate frame coord_frame = FIFF.FIFFV_COORD_MRI f, tree, _ = fiff_open(fname) with f as fid: # Find BEM bem = dir_tree_find(tree, FIFF.FIFFB_BEM) if bem is None or len(bem) == 0: raise ValueError("BEM data not found") bem = bem[0] # Locate all surfaces bemsurf = dir_tree_find(bem, FIFF.FIFFB_BEM_SURF) if bemsurf is None: raise ValueError("BEM surface data not found") logger.info(f" {len(bemsurf)} BEM surfaces found") # Coordinate frame possibly at the top level tag = find_tag(fid, bem, FIFF.FIFF_BEM_COORD_FRAME) if tag is not None: coord_frame = tag.data # Read all surfaces if s_id is not None: surf = [ _read_bem_surface(fid, bsurf, coord_frame, s_id) for bsurf in bemsurf ] surf = [s for s in surf if s is not None] else: surf = list() for bsurf in bemsurf: logger.info(" Reading a surface...") this = _read_bem_surface(fid, bsurf, coord_frame) surf.append(this) logger.info("[done]") logger.info(f" {len(surf)} BEM surfaces read") return surf def _read_bem_surface(fid, this, def_coord_frame, s_id=None): """Read one bem surface.""" # fid should be open as a context manager here res = dict() # Read all the interesting stuff tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_ID) if tag is None: res["id"] = FIFF.FIFFV_BEM_SURF_ID_UNKNOWN else: res["id"] = int(tag.data.item()) if s_id is not None and res["id"] != s_id: return None tag = find_tag(fid, this, FIFF.FIFF_BEM_SIGMA) res["sigma"] = 1.0 if tag is None else float(tag.data.item()) tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NNODE) if tag is None: raise ValueError("Number of vertices not found") res["np"] = int(tag.data.item()) tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI) if tag is None: raise ValueError("Number of triangles not found") res["ntri"] = int(tag.data.item()) tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME) if tag is None: tag = find_tag(fid, this, FIFF.FIFF_BEM_COORD_FRAME) if tag is None: res["coord_frame"] = def_coord_frame else: res["coord_frame"] = int(tag.data.item()) else: res["coord_frame"] = int(tag.data.item()) # Vertices, normals, and triangles tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NODES) if tag is None: raise ValueError("Vertex data not found") res["rr"] = tag.data.astype(np.float64) if res["rr"].shape[0] != res["np"]: raise ValueError("Vertex information is incorrect") tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS) if tag is None: tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NORMALS) if tag is None: res["nn"] = None else: res["nn"] = tag.data.astype(np.float64) if res["nn"].shape[0] != res["np"]: raise ValueError("Vertex normal information is incorrect") tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES) if tag is None: raise ValueError("Triangulation not found") res["tris"] = tag.data - 1 # index start at 0 in Python if res["tris"].shape[0] != res["ntri"]: raise ValueError("Triangulation information is incorrect") return res @verbose def read_bem_solution(fname, *, verbose=None): """Read the BEM solution from a file. Parameters ---------- fname : path-like The file containing the BEM solution. %(verbose)s Returns ------- bem : instance of ConductorModel The BEM solution. See Also -------- read_bem_surfaces write_bem_surfaces make_bem_solution write_bem_solution """ fname = _check_fname(fname, "read", True, "fname") # mirrors fwd_bem_load_surfaces from fwd_bem_model.c if fname.suffix == ".h5": read_hdf5, _ = _import_h5io_funcs() logger.info("Loading surfaces and solution...") bem = read_hdf5(fname) if "solver" not in bem: bem["solver"] = "mne" else: bem = _read_bem_solution_fif(fname) if len(bem["surfs"]) == 3: logger.info("Three-layer model surfaces loaded.") needed = np.array( [ FIFF.FIFFV_BEM_SURF_ID_HEAD, FIFF.FIFFV_BEM_SURF_ID_SKULL, FIFF.FIFFV_BEM_SURF_ID_BRAIN, ] ) if not all(x["id"] in needed for x in bem["surfs"]): raise RuntimeError("Could not find necessary BEM surfaces") # reorder surfaces as necessary (shouldn't need to?) reorder = [None] * 3 for x in bem["surfs"]: reorder[np.where(x["id"] == needed)[0][0]] = x bem["surfs"] = reorder elif len(bem["surfs"]) == 1: if not bem["surfs"][0]["id"] == FIFF.FIFFV_BEM_SURF_ID_BRAIN: raise RuntimeError("BEM Surfaces not found") logger.info("Homogeneous model surface loaded.") assert set(bem.keys()) == set(("surfs", "solution", "bem_method", "solver")) bem = ConductorModel(bem) bem["is_sphere"] = False # sanity checks and conversions _check_option( "BEM approximation method", bem["bem_method"], (FIFF.FIFFV_BEM_APPROX_LINEAR,) ) # CONSTANT not supported dim = 0 solver = bem.get("solver", "mne") _check_option("BEM solver", solver, ("mne", "openmeeg")) for si, surf in enumerate(bem["surfs"]): assert bem["bem_method"] == FIFF.FIFFV_BEM_APPROX_LINEAR dim += surf["np"] if solver == "openmeeg" and si != 0: dim += surf["ntri"] dims = bem["solution"].shape if solver == "openmeeg": sz = (dim * (dim + 1)) // 2 if len(dims) != 1 or dims[0] != sz: raise RuntimeError( "For the given BEM surfaces, OpenMEEG should produce a " f"solution matrix of shape ({sz},) but got {dims}" ) bem["nsol"] = dim else: if len(dims) != 2 and solver != "openmeeg": raise RuntimeError( "Expected a two-dimensional solution matrix " f"instead of a {dims[0]} dimensional one" ) if dims[0] != dim or dims[1] != dim: raise RuntimeError( f"Expected a {dim} x {dim} solution matrix instead of " f"a {dims[1]} x {dims[0]} one" ) bem["nsol"] = bem["solution"].shape[0] # Gamma factors and multipliers _add_gamma_multipliers(bem) extra = f"made by {solver}" if solver != "mne" else "" logger.info(f"Loaded linear collocation BEM solution{extra} from {fname}") return bem def _read_bem_solution_fif(fname): logger.info("Loading surfaces...") surfs = read_bem_surfaces(fname, patch_stats=True, verbose=_verbose_safe_false()) # convert from surfaces to solution logger.info("\nLoading the solution matrix...\n") solver = "mne" f, tree, _ = fiff_open(fname) with f as fid: # Find the BEM data nodes = dir_tree_find(tree, FIFF.FIFFB_BEM) if len(nodes) == 0: raise RuntimeError(f"No BEM data in {fname}") bem_node = nodes[0] # Approximation method tag = find_tag(f, bem_node, FIFF.FIFF_DESCRIPTION) if tag is not None: tag = json.loads(tag.data) solver = tag["solver"] tag = find_tag(f, bem_node, FIFF.FIFF_BEM_APPROX) if tag is None: raise RuntimeError(f"No BEM solution found in {fname}") method = tag.data[0] tag = find_tag(fid, bem_node, FIFF.FIFF_BEM_POT_SOLUTION) sol = tag.data return dict(solution=sol, bem_method=method, surfs=surfs, solver=solver) def _add_gamma_multipliers(bem): """Add gamma and multipliers in-place.""" bem["sigma"] = np.array([surf["sigma"] for surf in bem["surfs"]]) # Dirty trick for the zero conductivity outside sigma = np.r_[0.0, bem["sigma"]] bem["source_mult"] = 2.0 / (sigma[1:] + sigma[:-1]) bem["field_mult"] = sigma[1:] - sigma[:-1] # make sure subsequent "zip"s work correctly assert len(bem["surfs"]) == len(bem["field_mult"]) bem["gamma"] = (sigma[1:] - sigma[:-1])[np.newaxis, :] / (sigma[1:] + sigma[:-1])[ :, np.newaxis ] # In our BEM code we do not model the CSF so we assign the innermost surface # the id BRAIN. Our 4-layer sphere we model CSF (at least by default), so when # searching for and referring to surfaces we need to keep track of this. _sm_surf_dict = OrderedDict( [ ("brain", FIFF.FIFFV_BEM_SURF_ID_BRAIN), ("inner_skull", FIFF.FIFFV_BEM_SURF_ID_CSF), ("outer_skull", FIFF.FIFFV_BEM_SURF_ID_SKULL), ("head", FIFF.FIFFV_BEM_SURF_ID_HEAD), ] ) _bem_surf_dict = { "inner_skull": FIFF.FIFFV_BEM_SURF_ID_BRAIN, "outer_skull": FIFF.FIFFV_BEM_SURF_ID_SKULL, "head": FIFF.FIFFV_BEM_SURF_ID_HEAD, } _bem_surf_name = { FIFF.FIFFV_BEM_SURF_ID_BRAIN: "inner skull", FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer skull", FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer skin ", FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: "unknown ", FIFF.FIFFV_MNE_SURF_MEG_HELMET: "MEG helmet ", } _sm_surf_name = { FIFF.FIFFV_BEM_SURF_ID_BRAIN: "brain", FIFF.FIFFV_BEM_SURF_ID_CSF: "csf", FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer skull", FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer skin ", FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: "unknown ", FIFF.FIFFV_MNE_SURF_MEG_HELMET: "helmet", } def _bem_find_surface(bem, id_): """Find surface from already-loaded conductor model.""" if bem["is_sphere"]: _surf_dict = _sm_surf_dict _name_dict = _sm_surf_name kind = "Sphere model" tri = "boundary" else: _surf_dict = _bem_surf_dict _name_dict = _bem_surf_name kind = "BEM" tri = "triangulation" if isinstance(id_, str): name = id_ id_ = _surf_dict[id_] else: name = _name_dict[id_] kind = "Sphere model" if bem["is_sphere"] else "BEM" idx = np.where(np.array([s["id"] for s in bem["surfs"]]) == id_)[0] if len(idx) != 1: raise RuntimeError(f"{kind} does not have the {name} {tri}") return bem["surfs"][idx[0]] # ############################################################################ # Write @verbose def write_bem_surfaces(fname, surfs, overwrite=False, *, verbose=None): """Write BEM surfaces to a FIF file. Parameters ---------- fname : path-like Filename to write. Can end with ``.h5`` to write using HDF5. surfs : dict | list of dict The surfaces, or a single surface. %(overwrite)s %(verbose)s """ if isinstance(surfs, dict): surfs = [surfs] fname = _check_fname(fname, overwrite=overwrite, name="fname") if fname.suffix == ".h5": _, write_hdf5 = _import_h5io_funcs() write_hdf5(fname, dict(surfs=surfs), overwrite=True) else: with start_and_end_file(fname) as fid: start_block(fid, FIFF.FIFFB_BEM) write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, surfs[0]["coord_frame"]) _write_bem_surfaces_block(fid, surfs) end_block(fid, FIFF.FIFFB_BEM) @verbose def write_head_bem( fname, rr, tris, on_defects="raise", overwrite=False, *, verbose=None ): """Write a head surface to a FIF file. Parameters ---------- fname : path-like Filename to write. rr : array, shape (n_vertices, 3) Coordinate points in the MRI coordinate system. tris : ndarray of int, shape (n_tris, 3) Triangulation (each line contains indices for three points which together form a face). %(on_defects)s %(overwrite)s %(verbose)s """ surf = _surfaces_to_bem( [dict(rr=rr, tris=tris)], [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], rescale=False, incomplete=on_defects, ) write_bem_surfaces(fname, surf, overwrite=overwrite) def _write_bem_surfaces_block(fid, surfs): """Write bem surfaces to open file handle.""" for surf in surfs: start_block(fid, FIFF.FIFFB_BEM_SURF) if "sigma" in surf: write_float(fid, FIFF.FIFF_BEM_SIGMA, surf["sigma"]) write_int(fid, FIFF.FIFF_BEM_SURF_ID, surf["id"]) write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, surf["coord_frame"]) write_int(fid, FIFF.FIFF_BEM_SURF_NNODE, surf["np"]) write_int(fid, FIFF.FIFF_BEM_SURF_NTRI, surf["ntri"]) write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NODES, surf["rr"]) # index start at 0 in Python write_int_matrix(fid, FIFF.FIFF_BEM_SURF_TRIANGLES, surf["tris"] + 1) if "nn" in surf and surf["nn"] is not None and len(surf["nn"]) > 0: write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NORMALS, surf["nn"]) end_block(fid, FIFF.FIFFB_BEM_SURF) @verbose def write_bem_solution(fname, bem, overwrite=False, *, verbose=None): """Write a BEM model with solution. Parameters ---------- fname : path-like The filename to use. Can end with ``.h5`` to write using HDF5. bem : instance of ConductorModel The BEM model with solution to save. %(overwrite)s %(verbose)s See Also -------- read_bem_solution """ fname = _check_fname(fname, overwrite=overwrite, name="fname") if fname.suffix == ".h5": _, write_hdf5 = _import_h5io_funcs() bem = {k: bem[k] for k in ("surfs", "solution", "bem_method")} write_hdf5(fname, bem, overwrite=True) else: _write_bem_solution_fif(fname, bem) def _write_bem_solution_fif(fname, bem): _check_bem_size(bem["surfs"]) with start_and_end_file(fname) as fid: start_block(fid, FIFF.FIFFB_BEM) # Coordinate frame (mainly for backward compatibility) write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, bem["surfs"][0]["coord_frame"]) solver = bem.get("solver", "mne") if solver != "mne": write_string(fid, FIFF.FIFF_DESCRIPTION, json.dumps(dict(solver=solver))) # Surfaces _write_bem_surfaces_block(fid, bem["surfs"]) # The potential solution if "solution" in bem: _check_option( "bem_method", bem["bem_method"], (FIFF.FIFFV_BEM_APPROX_LINEAR,) ) write_int(fid, FIFF.FIFF_BEM_APPROX, FIFF.FIFFV_BEM_APPROX_LINEAR) write_float_matrix(fid, FIFF.FIFF_BEM_POT_SOLUTION, bem["solution"]) end_block(fid, FIFF.FIFFB_BEM) # ############################################################################# # Create 3-Layers BEM model from Flash MRI images def _prepare_env(subject, subjects_dir): """Prepare an env object for subprocess calls.""" env = os.environ.copy() fs_home = _check_freesurfer_home() _validate_type(subject, "str") subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) subject_dir = subjects_dir / subject if not subject_dir.is_dir(): raise RuntimeError(f'Could not find the subject data directory "{subject_dir}"') env.update(SUBJECT=subject, SUBJECTS_DIR=str(subjects_dir), FREESURFER_HOME=fs_home) mri_dir = subject_dir / "mri" bem_dir = subject_dir / "bem" return env, mri_dir, bem_dir def _write_echos(mri_dir, flash_echos, angle): nib = _import_nibabel("write echoes") from nibabel.spatialimages import SpatialImage if _path_like(flash_echos): flash_echos = nib.load(flash_echos) if isinstance(flash_echos, SpatialImage): flash_echo_imgs = [] data = np.asanyarray(flash_echos.dataobj) affine = flash_echos.affine if data.ndim == 3: data = data[..., np.newaxis] for echo_idx in range(data.shape[3]): this_echo_img = flash_echos.__class__( data[..., echo_idx], affine=affine, header=deepcopy(flash_echos.header) ) flash_echo_imgs.append(this_echo_img) flash_echos = flash_echo_imgs del flash_echo_imgs for idx, flash_echo in enumerate(flash_echos, 1): if _path_like(flash_echo): flash_echo = nib.load(flash_echo) nib.save(flash_echo, op.join(mri_dir, "flash", f"mef{angle}_{idx:03d}.mgz")) @verbose def convert_flash_mris( subject, flash30=True, unwarp=False, subjects_dir=None, flash5=True, verbose=None ): """Synthesize the flash 5 files for use with make_flash_bem. This function aims to produce a synthesized flash 5 MRI from multiecho flash (MEF) MRI data. This function can use MEF data with 5 or 30 flip angles. If flash5 (and flash30) images are not explicitly provided, it will assume that the different echos are available in the mri/flash folder of the subject with the following naming convention "mef_.mgz", e.g. "mef05_001.mgz" or "mef30_001.mgz". Parameters ---------- %(subject)s flash30 : bool | list of SpatialImage or path-like | SpatialImage | path-like If False do not use 30-degree flip angle data. The list of flash 5 echos to use. If True it will look for files named mef30_*.mgz in the subject's mri/flash directory and if not False the list of flash 5 echos images will be written to the mri/flash folder with convention mef05_.mgz. If a SpatialImage object each frame of the image will be interpreted as an echo. unwarp : bool Run grad_unwarp with -unwarp option on each of the converted data sets. It requires FreeSurfer's MATLAB toolbox to be properly installed. %(subjects_dir)s flash5 : list of SpatialImage or path-like | SpatialImage | path-like | True The list of flash 5 echos to use. If True it will look for files named mef05_*.mgz in the subject's mri/flash directory and if not None the list of flash 5 echos images will be written to the mri/flash folder with convention mef05_.mgz. If a SpatialImage object each frame of the image will be interpreted as an echo. %(verbose)s Returns ------- flash5_img : path-like The path the synthesized flash 5 MRI. Notes ----- This function assumes that the Freesurfer segmentation of the subject has been completed. In particular, the T1.mgz and brain.mgz MRI volumes should be, as usual, in the subject's mri directory. """ # noqa: E501 env, mri_dir = _prepare_env(subject, subjects_dir)[:2] tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir) mri_dir = Path(mri_dir) # Step 1a : Data conversion to mgz format flash_dir = mri_dir / "flash" pm_dir = flash_dir / "parameter_maps" pm_dir.mkdir(parents=True, exist_ok=True) echos_done = 0 if not isinstance(flash5, bool): _write_echos(mri_dir, flash5, angle="05") if not isinstance(flash30, bool): _write_echos(mri_dir, flash30, angle="30") # Step 1b : Run grad_unwarp on converted files template = op.join(flash_dir, "mef*_*.mgz") files = sorted(glob.glob(template)) if len(files) == 0: raise ValueError(f"No suitable source files found ({template})") if unwarp: logger.info("\n---- Unwarp mgz data sets ----") for infile in files: outfile = infile.replace(".mgz", "u.mgz") cmd = ["grad_unwarp", "-i", infile, "-o", outfile, "-unwarp", "true"] run_subprocess_env(cmd) # Clear parameter maps if some of the data were reconverted if echos_done > 0 and pm_dir.exists(): shutil.rmtree(pm_dir) logger.info("\nParameter maps directory cleared") if not pm_dir.exists(): pm_dir.mkdir(parents=True, exist_ok=True) # Step 2 : Create the parameter maps if flash30: logger.info("\n---- Creating the parameter maps ----") if unwarp: files = sorted(glob.glob(op.join(flash_dir, "mef05_*u.mgz"))) if len(os.listdir(pm_dir)) == 0: cmd = ["mri_ms_fitparms"] + files + [str(pm_dir)] run_subprocess_env(cmd) else: logger.info("Parameter maps were already computed") # Step 3 : Synthesize the flash 5 images logger.info("\n---- Synthesizing flash 5 images ----") if not (pm_dir / "flash5.mgz").exists(): cmd = [ "mri_synthesize", "20", "5", "5", (pm_dir / "T1.mgz"), (pm_dir / "PD.mgz"), (pm_dir / "flash5.mgz"), ] run_subprocess_env(cmd) (pm_dir / "flash5_reg.mgz").unlink(missing_ok=True) else: logger.info("Synthesized flash 5 volume is already there") else: logger.info("\n---- Averaging flash5 echoes ----") template = "mef05_*u.mgz" if unwarp else "mef05_*.mgz" files = sorted(flash_dir.glob(template)) if len(files) == 0: raise ValueError(f"No suitable source files found ({template})") cmd = ["mri_average", "-noconform"] + files + [pm_dir / "flash5.mgz"] run_subprocess_env(cmd) (pm_dir / "flash5_reg.mgz").unlink(missing_ok=True) del tempdir # finally done running subprocesses assert (pm_dir / "flash5.mgz").exists() return pm_dir / "flash5.mgz" @verbose def make_flash_bem( subject, overwrite=False, show=True, subjects_dir=None, copy=True, *, flash5_img=None, register=True, verbose=None, ): """Create 3-Layer BEM model from prepared flash MRI images. See :ref:`bem_flash_algorithm` for additional information. Parameters ---------- %(subject)s overwrite : bool Write over existing .surf files in bem folder. show : bool Show surfaces to visually inspect all three BEM surfaces (recommended). %(subjects_dir)s copy : bool If True (default), use copies instead of symlinks for surfaces (if they do not already exist). .. versionadded:: 0.18 .. versionchanged:: 1.1 Use copies instead of symlinks. flash5_img : None | path-like | Nifti1Image The path to the synthesized flash 5 MRI image or the image itself. If None (default), the path defaults to ``mri/flash/parameter_maps/flash5.mgz`` within the subject reconstruction. If not present the image is copied or written to the default location. .. versionadded:: 1.1.0 register : bool Register the flash 5 image with T1.mgz file. If False, we assume that the images are already coregistered. .. versionadded:: 1.1.0 %(verbose)s See Also -------- convert_flash_mris Notes ----- This program assumes that FreeSurfer is installed and sourced properly. This function extracts the BEM surfaces (outer skull, inner skull, and outer skin) from a FLASH 5 MRI image synthesized from multiecho FLASH images acquired with spin angles of 5 and 30 degrees. """ env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir) tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir) mri_dir = Path(mri_dir) bem_dir = Path(bem_dir) subjects_dir = env["SUBJECTS_DIR"] flash_path = (mri_dir / "flash" / "parameter_maps").resolve() flash_path.mkdir(exist_ok=True, parents=True) logger.info( "\nProcessing the flash MRI data to produce BEM meshes with the following " f"parameters:\nSUBJECTS_DIR = {subjects_dir}\nSUBJECT = {subject}\nResult dir =" f"{bem_dir / 'flash'}\n" ) # Step 4 : Register with MPRAGE flash5 = flash_path / "flash5.mgz" if _path_like(flash5_img): logger.info(f"Copying flash 5 image {flash5_img} to {flash5}") cmd = ["mri_convert", Path(flash5_img).resolve(), flash5] run_subprocess_env(cmd) elif flash5_img is None: if not flash5.exists(): raise ValueError(f"Flash 5 image cannot be found at {flash5}.") else: logger.info(f"Writing flash 5 image at {flash5}") nib = _import_nibabel("write an MRI image") nib.save(flash5_img, flash5) if register: logger.info("\n---- Registering flash 5 with T1 MPRAGE ----") flash5_reg = flash_path / "flash5_reg.mgz" if not flash5_reg.exists(): if (mri_dir / "T1.mgz").exists(): ref_volume = mri_dir / "T1.mgz" else: ref_volume = mri_dir / "T1" cmd = [ "fsl_rigid_register", "-r", str(ref_volume), "-i", str(flash5), "-o", str(flash5_reg), ] run_subprocess_env(cmd) else: logger.info("Registered flash 5 image is already there") else: flash5_reg = flash5 # Step 5a : Convert flash5 into COR logger.info("\n---- Converting flash5 volume into COR format ----") flash5_dir = mri_dir / "flash5" shutil.rmtree(flash5_dir, ignore_errors=True) flash5_dir.mkdir(exist_ok=True, parents=True) cmd = ["mri_convert", flash5_reg, flash5_dir] run_subprocess_env(cmd) # Step 5b and c : Convert the mgz volumes into COR convert_T1 = False T1_dir = mri_dir / "T1" if not T1_dir.is_dir() or next(T1_dir.glob("COR*")) is None: convert_T1 = True convert_brain = False brain_dir = mri_dir / "brain" if not brain_dir.is_dir() or next(brain_dir.glob("COR*")) is None: convert_brain = True logger.info("\n---- Converting T1 volume into COR format ----") if convert_T1: T1_fname = mri_dir / "T1.mgz" if not T1_fname.is_file(): raise RuntimeError("Both T1 mgz and T1 COR volumes missing.") T1_dir.mkdir(exist_ok=True, parents=True) cmd = ["mri_convert", T1_fname, T1_dir] run_subprocess_env(cmd) else: logger.info("T1 volume is already in COR format") logger.info("\n---- Converting brain volume into COR format ----") if convert_brain: brain_fname = mri_dir / "brain.mgz" if not brain_fname.is_file(): raise RuntimeError("Both brain mgz and brain COR volumes missing.") brain_dir.mkdir(exist_ok=True, parents=True) cmd = ["mri_convert", brain_fname, brain_dir] run_subprocess_env(cmd) else: logger.info("Brain volume is already in COR format") # Finally ready to go logger.info("\n---- Creating the BEM surfaces ----") cmd = ["mri_make_bem_surfaces", subject] run_subprocess_env(cmd) del tempdir # ran our last subprocess; clean up directory logger.info("\n---- Converting the tri files into surf files ----") flash_bem_dir = bem_dir / "flash" flash_bem_dir.mkdir(exist_ok=True, parents=True) surfs = ["inner_skull", "outer_skull", "outer_skin"] for surf in surfs: out_fname = flash_bem_dir / (surf + ".tri") shutil.move(bem_dir / (surf + ".tri"), out_fname) nodes, tris = read_tri(out_fname, swap=True) # Do not write volume info here because the tris are already in # standard Freesurfer coords write_surface(op.splitext(out_fname)[0] + ".surf", nodes, tris, overwrite=True) # Cleanup section logger.info("\n---- Cleaning up ----") (bem_dir / "inner_skull_tmp.tri").unlink() if convert_T1: shutil.rmtree(T1_dir) logger.info("Deleted the T1 COR volume") if convert_brain: shutil.rmtree(brain_dir) logger.info("Deleted the brain COR volume") shutil.rmtree(flash5_dir) logger.info("Deleted the flash5 COR volume") # Create symbolic links to the .surf files in the bem folder logger.info("\n---- Creating symbolic links ----") # os.chdir(bem_dir) for surf in surfs: surf = bem_dir / (surf + ".surf") if not overwrite and surf.exists(): skip_symlink = True else: if surf.exists(): surf.unlink() _symlink(flash_bem_dir / surf.name, surf, copy) skip_symlink = False if skip_symlink: logger.info( "Unable to create all symbolic links to .surf files " "in bem folder. Use --overwrite option to recreate them." ) dest = bem_dir / "flash" else: logger.info("Symbolic links to .surf files created in bem folder") dest = bem_dir logger.info( "\nThank you for waiting.\nThe BEM triangulations for this " f"subject are now available at:\n{dest}.\nWe hope the BEM meshes " "created will facilitate your MEG and EEG data analyses." ) # Show computed BEM surfaces if show: plot_bem( subject=subject, subjects_dir=subjects_dir, orientation="coronal", slices=None, show=True, ) def _check_bem_size(surfs): """Check bem surface sizes.""" if len(surfs) > 1 and surfs[0]["np"] > 10000: warn( f"The bem surfaces have {surfs[0]['np']} data points. 5120 (ico grade=4) " "should be enough. Dense 3-layer bems may not save properly." ) def _symlink(src, dest, copy=False): """Create a relative symlink (or just copy).""" if not copy: src_link = op.relpath(src, op.dirname(dest)) try: os.symlink(src_link, dest) except OSError: warn( f"Could not create symbolic link {dest}. Check that your " "partition handles symbolic links. The file will be copied " "instead." ) copy = True if copy: shutil.copy(src, dest) def _ensure_bem_surfaces(bem, extra_allow=(), name="bem"): # by default only allow path-like and list, but handle None and # ConductorModel properly if need be. Always return a ConductorModel # even though it's incomplete (and might have is_sphere=True). assert all(extra in (None, ConductorModel) for extra in extra_allow) allowed = ("path-like", list) + extra_allow _validate_type(bem, allowed, name) if isinstance(bem, path_like): # Load the surfaces logger.info(f"Loading BEM surfaces from {bem}...") bem = read_bem_surfaces(bem) bem = ConductorModel(is_sphere=False, surfs=bem) elif isinstance(bem, list): for ii, this_surf in enumerate(bem): _validate_type(this_surf, dict, f"{name}[{ii}]") if isinstance(bem, list): bem = ConductorModel(is_sphere=False, surfs=bem) # add surfaces in the spherical case if isinstance(bem, ConductorModel) and bem["is_sphere"]: bem = bem.copy() bem["surfs"] = [] if len(bem["layers"]) == 4: for idx, id_ in enumerate(_sm_surf_dict.values()): bem["surfs"].append(_complete_sphere_surf(bem, idx, 4, complete=False)) bem["surfs"][-1]["id"] = id_ return bem def _check_file(fname, overwrite): """Prevent overwrites.""" if op.isfile(fname) and not overwrite: raise OSError(f"File {fname} exists, use --overwrite to overwrite it") _tri_levels = dict( medium=30000, sparse=2500, ) @verbose def make_scalp_surfaces( subject, subjects_dir=None, force=True, overwrite=False, no_decimate=False, *, threshold=20, mri="T1.mgz", verbose=None, ): """Create surfaces of the scalp and neck. The scalp surfaces are required for using the MNE coregistration GUI, and allow for a visualization of the alignment between anatomy and channel locations. Parameters ---------- %(subject)s %(subjects_dir)s force : bool Force creation of the surface even if it has some topological defects. Defaults to ``True``. See :ref:`tut-fix-meshes` for ideas on how to fix problematic meshes. %(overwrite)s no_decimate : bool Disable the "medium" and "sparse" decimations. In this case, only a "dense" surface will be generated. Defaults to ``False``, i.e., create surfaces for all three types of decimations. threshold : int The threshold to use with the MRI in the call to ``mkheadsurf``. The default is ``20``. .. versionadded:: 1.1 mri : str The MRI to use. Should exist in ``$SUBJECTS_DIR/$SUBJECT/mri``. .. versionadded:: 1.1 %(verbose)s """ subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) incomplete = "warn" if force else "raise" subj_path = subjects_dir / subject if not subj_path.exists(): raise RuntimeError( f"{subj_path} does not exist. Please check your subject directory path." ) # Backward compat for old FreeSurfer (?) _validate_type(mri, str, "mri") if mri == "T1.mgz": mri = mri if (subj_path / "mri" / mri).exists() else "T1" logger.info("1. Creating a dense scalp tessellation with mkheadsurf...") def check_seghead(surf_path=subj_path / "surf"): surf = None for k in ["lh.seghead", "lh.smseghead"]: this_surf = surf_path / k if this_surf.exists(): surf = this_surf break return surf my_seghead = check_seghead() threshold = _ensure_int(threshold, "threshold") if my_seghead is None: this_env = deepcopy(os.environ) this_env["SUBJECTS_DIR"] = str(subjects_dir) this_env["SUBJECT"] = subject this_env["subjdir"] = str(subj_path) if "FREESURFER_HOME" not in this_env: raise RuntimeError( "The FreeSurfer environment needs to be set up to use " "make_scalp_surfaces to create the outer skin surface " "lh.seghead" ) run_subprocess( [ "mkheadsurf", "-subjid", subject, "-srcvol", mri, "-thresh1", str(threshold), "-thresh2", str(threshold), ], env=this_env, ) surf = check_seghead() if surf is None: raise RuntimeError("mkheadsurf did not produce the standard output file.") bem_dir = subjects_dir / subject / "bem" if not bem_dir.is_dir(): os.mkdir(bem_dir) fname_template = bem_dir / (f"{subject}-head-{{}}.fif") dense_fname = str(fname_template).format("dense") logger.info(f"2. Creating {dense_fname} ...") _check_file(dense_fname, overwrite) # Helpful message if we get a topology error msg = ( "\n\nConsider using pymeshfix directly to fix the mesh, or --force " "to ignore the problem." ) surf = _surfaces_to_bem( [surf], [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], incomplete=incomplete, extra=msg )[0] write_bem_surfaces(dense_fname, surf, overwrite=overwrite) if os.getenv("_MNE_TESTING_SCALP", "false") == "true": tris = [len(surf["tris"])] # don't actually decimate for ii, (level, n_tri) in enumerate(_tri_levels.items(), 3): if no_decimate: break logger.info(f"{ii}. Creating {level} tessellation...") logger.info( f"{ii}.1 Decimating the dense tessellation " f'({len(surf["tris"])} -> {n_tri} triangles)...' ) points, tris = decimate_surface( points=surf["rr"], triangles=surf["tris"], n_triangles=n_tri ) dec_fname = str(fname_template).format(level) logger.info(f"{ii}.2 Creating {dec_fname}") _check_file(dec_fname, overwrite) dec_surf = _surfaces_to_bem( [dict(rr=points, tris=tris)], [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], rescale=False, incomplete=incomplete, extra=msg, ) write_bem_surfaces(dec_fname, dec_surf, overwrite=overwrite) logger.info("[done]") @verbose def distance_to_bem(pos, bem, trans=None, verbose=None): """Calculate the distance of positions to inner skull surface. Parameters ---------- pos : array, shape (..., 3) Position(s) in m, in head coordinates. bem : instance of ConductorModel Conductor model. %(trans)s If None (default), assumes bem is in head coordinates. .. versionchanged:: 0.19 Support for 'fsaverage' argument. %(verbose)s Returns ------- distances : float | array, shape (...) The computed distance(s). A float is returned if pos is an array of shape (3,) corresponding to a single position. Notes ----- .. versionadded:: 1.1 """ ndim = pos.ndim if ndim == 1: pos = pos[np.newaxis, :] n = pos.shape[0] distance = np.zeros((n,)) logger.info( "Computing distance to inner skull surface for " + f"{n} position{_pl(n)}..." ) if bem["is_sphere"]: center = bem["r0"] if trans: center = apply_trans(trans, center, move=True) radius = bem["layers"][0]["rad"] distance = np.abs(radius - np.linalg.norm(pos - center, axis=1)) else: # is BEM surface_points = bem["surfs"][0]["rr"] if trans: surface_points = apply_trans(trans, surface_points, move=True) _, distance = _compute_nearest(surface_points, pos, return_dists=True) if ndim == 1: distance = distance[0] # return just a float if one pos is passed return distance