# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import math import numpy as np from scipy.signal import hilbert from scipy.special import logsumexp def _compute_normalized_phase(data): """Compute normalized phase angles. Parameters ---------- data : ndarray, shape (n_epochs, n_sources, n_times) The data to compute the phase angles for. Returns ------- phase_angles : ndarray, shape (n_epochs, n_sources, n_times) The normalized phase angles. """ return (np.angle(hilbert(data)) + np.pi) / (2 * np.pi) def ctps(data, is_raw=True): """Compute cross-trial-phase-statistics [1]. Note. It is assumed that the sources are already appropriately filtered Parameters ---------- data: ndarray, shape (n_epochs, n_channels, n_times) Any kind of data of dimensions trials, traces, features. is_raw : bool If True it is assumed that data haven't been transformed to Hilbert space and phase angles haven't been normalized. Defaults to True. Returns ------- ks_dynamics : ndarray, shape (n_sources, n_times) The kuiper statistics. pk_dynamics : ndarray, shape (n_sources, n_times) The normalized kuiper index for ICA sources and time slices. phase_angles : ndarray, shape (n_epochs, n_sources, n_times) | None The phase values for epochs, sources and time slices. If ``is_raw`` is False, None is returned. References ---------- [1] Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev, M., Pietrzyk, U., Mathiak, K., 2008. Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. Biomedical Engineering, IEEE Transactions on 55 (10), 2353-2362. """ if not data.ndim == 3: raise ValueError(f"Data must have 3 dimensions, not {data.ndim}.") if is_raw: phase_angles = _compute_normalized_phase(data) else: phase_angles = data # phase angles can be computed externally # initialize array for results ks_dynamics = np.zeros_like(phase_angles[0]) pk_dynamics = np.zeros_like(phase_angles[0]) # calculate Kuiper's statistic for each source for ii, source in enumerate(np.transpose(phase_angles, [1, 0, 2])): ks, pk = kuiper(source) pk_dynamics[ii, :] = pk ks_dynamics[ii, :] = ks return ks_dynamics, pk_dynamics, phase_angles if is_raw else None def kuiper(data, dtype=np.float64): # noqa: D401 """Kuiper's test of uniform distribution. Parameters ---------- data : ndarray, shape (n_sources,) | (n_sources, n_times) Empirical distribution. dtype : str | obj The data type to be used. Returns ------- ks : ndarray Kuiper's statistic. pk : ndarray Normalized probability of Kuiper's statistic [0, 1]. """ # if data not numpy array, implicitly convert and make to use copied data # ! sort data array along first axis ! data = np.sort(data, axis=0).astype(dtype) shape = data.shape n_dim = len(shape) n_trials = shape[0] # create uniform cdf j1 = (np.arange(n_trials, dtype=dtype) + 1.0) / float(n_trials) j2 = np.arange(n_trials, dtype=dtype) / float(n_trials) if n_dim > 1: # single phase vector (n_trials) j1 = j1[:, np.newaxis] j2 = j2[:, np.newaxis] d1 = (j1 - data).max(axis=0) d2 = (data - j2).max(axis=0) n_eff = n_trials d = d1 + d2 # Kuiper's statistic [n_time_slices] return d, _prob_kuiper(d, n_eff, dtype=dtype) def _prob_kuiper(d, n_eff, dtype="f8"): """Test for statistical significance against uniform distribution. Parameters ---------- d : float The kuiper distance value. n_eff : int The effective number of elements. dtype : str | obj The data type to be used. Defaults to double precision floats. Returns ------- pk_norm : float The normalized Kuiper value such that 0 < ``pk_norm`` < 1. References ---------- [1] Stephens MA 1970. Journal of the Royal Statistical Society, ser. B, vol 32, pp 115-122. [2] Kuiper NH 1962. Proceedings of the Koninklijke Nederlands Akademie van Wetenschappen, ser Vol 63 pp 38-47 """ n_time_slices = np.size(d) # single value or vector n_points = 100 en = math.sqrt(n_eff) k_lambda = (en + 0.155 + 0.24 / en) * d # see [1] l2 = k_lambda**2.0 j2 = (np.arange(n_points) + 1) ** 2 j2 = j2.repeat(n_time_slices).reshape(n_points, n_time_slices) fact = 4.0 * j2 * l2 - 1.0 # compute normalized pK value in range [0,1] a = -2.0 * j2 * l2 b = 2.0 * fact pk_norm = -logsumexp(a, b=b, axis=0) / (2.0 * n_eff) # check for no difference to uniform cdf pk_norm = np.where(k_lambda < 0.4, 0.0, pk_norm) # check for round off errors pk_norm = np.where(pk_norm > 1.0, 1.0, pk_norm) return pk_norm