"""Utility functions for plotting M/EEG data.""" # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import difflib import math import os import sys import tempfile import traceback import webbrowser from collections import defaultdict from contextlib import contextmanager from datetime import datetime from functools import partial import numpy as np from decorator import decorator from scipy.signal import argrelmax from .._fiff.constants import FIFF from .._fiff.meas_info import Info from .._fiff.open import show_fiff from .._fiff.pick import ( _DATA_CH_TYPES_ORDER_DEFAULT, _DATA_CH_TYPES_SPLIT, _VALID_CHANNEL_TYPES, _contains_ch_type, _pick_data_channels, _picks_by_type, channel_indices_by_type, channel_type, pick_channels, pick_channels_cov, pick_info, ) from .._fiff.proj import Projection, setup_proj from ..defaults import _handle_default from ..fixes import _median_complex from ..rank import compute_rank from ..transforms import apply_trans from ..utils import ( _auto_weakref, _check_ch_locs, _check_decim, _check_option, _check_sphere, _ensure_int, _pl, _to_rgb, _validate_type, fill_doc, get_config, logger, verbose, warn, ) from ..utils.misc import _identity_function from .ui_events import ColormapRange, publish, subscribe _channel_type_prettyprint = { "eeg": "EEG channel", "grad": "Gradiometer", "mag": "Magnetometer", "seeg": "sEEG channel", "dbs": "DBS channel", "eog": "EOG channel", "ecg": "ECG sensor", "emg": "EMG sensor", "ecog": "ECoG channel", "misc": "miscellaneous sensor", } @decorator def safe_event(fun, *args, **kwargs): """Protect against Qt exiting on event-handling errors.""" try: return fun(*args, **kwargs) except Exception: traceback.print_exc(file=sys.stderr) def _setup_vmin_vmax(data, vmin, vmax, norm=False): """Handle vmin and vmax parameters for visualizing topomaps. For the normal use-case (when `vmin` and `vmax` are None), the parameter `norm` drives the computation. When norm=False, data is supposed to come from a mag and the output tuple (vmin, vmax) is symmetric range (-x, x) where x is the max(abs(data)). When norm=True (a.k.a. data is the L2 norm of a gradiometer pair) the output tuple corresponds to (0, x). Otherwise, vmin and vmax are callables that drive the operation. """ should_warn = False if vmax is None and vmin is None: vmax = np.abs(data).max() vmin = 0.0 if norm else -vmax if vmin == 0 and np.min(data) < 0: should_warn = True else: if callable(vmin): vmin = vmin(data) elif vmin is None: vmin = 0.0 if norm else np.min(data) if vmin == 0 and np.min(data) < 0: should_warn = True if callable(vmax): vmax = vmax(data) elif vmax is None: vmax = np.max(data) if should_warn: warn_msg = ( "_setup_vmin_vmax output a (min={vmin}, max={vmax})" " range whereas the minimum of data is {data_min}" ) warn_val = {"vmin": vmin, "vmax": vmax, "data_min": np.min(data)} warn(warn_msg.format(**warn_val), UserWarning) return vmin, vmax def plt_show(show=True, fig=None, **kwargs): """Show a figure while suppressing warnings. Parameters ---------- show : bool Show the figure. fig : instance of Figure | None If non-None, use fig.show(). **kwargs : dict Extra arguments for :func:`matplotlib.pyplot.show`. """ import matplotlib.pyplot as plt from matplotlib import get_backend if hasattr(fig, "mne") and hasattr(fig.mne, "backend"): backend = fig.mne.backend # TODO: This is a hack to deal with the fact that the # with plt.ion(): # BACKEND = get_backend() # an the top of _mpl_figure detects QtAgg during testing even though # we've set the backend to Agg. if backend != "agg": gotten_backend = get_backend() if gotten_backend == "agg": backend = "agg" else: backend = get_backend() if show and backend != "agg": logger.debug(f"Showing plot for backend {repr(backend)}") (fig or plt).show(**kwargs) def _show_browser(show=True, block=True, fig=None, **kwargs): """Show the browser considering different backends. Parameters ---------- show : bool Show the figure. block : bool If to block execution on showing. fig : instance of Figure | None Needs to be passed for Qt backend, optional for matplotlib. **kwargs : dict Extra arguments for :func:`matplotlib.pyplot.show`. """ from ._figure import get_browser_backend _validate_type(block, bool, "block") backend = get_browser_backend() if os.getenv("_MNE_BROWSER_NO_BLOCK", "false").lower() == "true": block = False if backend == "matplotlib": plt_show(show, block=block, **kwargs) else: from qtpy.QtCore import Qt from qtpy.QtWidgets import QApplication from .backends._utils import _qt_app_exec if fig is not None and os.getenv("_MNE_BROWSER_BACK", "").lower() == "true": fig.setWindowFlags(fig.windowFlags() | Qt.WindowStaysOnBottomHint) if show: fig.show() # If block=False, a Qt-Event-Loop has to be started # somewhere else in the calling code. if block: _qt_app_exec(QApplication.instance()) def _check_delayed_ssp(container): """Handle interactive SSP selection.""" if container.proj is True or all(p["active"] for p in container.info["projs"]): raise RuntimeError( "Projs are already applied. Please initialize" " the data with proj set to False." ) elif len(container.info["projs"]) < 1: raise RuntimeError("No projs found in evoked.") def _validate_if_list_of_axes(axes, obligatory_len=None, name="axes"): """Validate whether input is a list/array of axes.""" from matplotlib.axes import Axes _validate_type(axes, (list, tuple, np.ndarray), name) if isinstance(axes, np.ndarray) and axes.ndim > 1: raise ValueError( f"if {name} is a numpy array, it must be one-dimensional, but " f"the received numpy array has {axes.ndim} dimensions. Try using " "ravel or flatten method of the array." ) wrong_idx = np.where([not isinstance(x, Axes) for x in axes])[0] if len(wrong_idx): raise TypeError( f"{name} must be an array-like of matplotlib axes objects, but " f"{name}[{wrong_idx[0]}] is of type {type(axes[wrong_idx[0]])}" ) if obligatory_len is not None: obligatory_len = _ensure_int( obligatory_len, "obligatory_len", extra="if not None" ) if len(axes) != obligatory_len: raise ValueError( f"{name} must be an array-like of length {obligatory_len}, " f"but the length is {len(axes)}" ) def mne_analyze_colormap(limits=(5, 10, 15), format="vtk"): # noqa: A002 """Return a colormap similar to that used by mne_analyze. Parameters ---------- limits : array-like of length 3 or 6 Bounds for the colormap, which will be mirrored across zero if length 3, or completely specified (and potentially asymmetric) if length 6. format : str Type of colormap to return. If 'matplotlib', will return a matplotlib.colors.LinearSegmentedColormap. If 'vtk', will return an RGBA array of shape (256, 4). Returns ------- cmap : instance of colormap | array A teal->blue->gray->red->yellow colormap. See docstring of the 'format' argument for further details. Notes ----- For this will return a colormap that will display correctly for data that are scaled by the plotting function to span [-fmax, fmax]. """ # noqa: E501 # Ensure limits is an array limits = np.asarray(limits, dtype="float") if len(limits) != 3 and len(limits) != 6: raise ValueError("limits must have 3 or 6 elements") if len(limits) == 3 and any(limits < 0.0): raise ValueError("if 3 elements, limits must all be non-negative") if any(np.diff(limits) <= 0): raise ValueError("limits must be monotonically increasing") if format == "matplotlib": from matplotlib import colors if len(limits) == 3: limits = (np.concatenate((-np.flipud(limits), limits)) + limits[-1]) / ( 2 * limits[-1] ) else: limits = (limits - np.min(limits)) / np.max(limits - np.min(limits)) cdict = { "red": ( (limits[0], 0.0, 0.0), (limits[1], 0.0, 0.0), (limits[2], 0.5, 0.5), (limits[3], 0.5, 0.5), (limits[4], 1.0, 1.0), (limits[5], 1.0, 1.0), ), "green": ( (limits[0], 1.0, 1.0), (limits[1], 0.0, 0.0), (limits[2], 0.5, 0.5), (limits[3], 0.5, 0.5), (limits[4], 0.0, 0.0), (limits[5], 1.0, 1.0), ), "blue": ( (limits[0], 1.0, 1.0), (limits[1], 1.0, 1.0), (limits[2], 0.5, 0.5), (limits[3], 0.5, 0.5), (limits[4], 0.0, 0.0), (limits[5], 0.0, 0.0), ), "alpha": ( (limits[0], 1.0, 1.0), (limits[1], 1.0, 1.0), (limits[2], 0.0, 0.0), (limits[3], 0.0, 0.0), (limits[4], 1.0, 1.0), (limits[5], 1.0, 1.0), ), } return colors.LinearSegmentedColormap("mne_analyze", cdict) elif format in ("vtk", "mayavi"): if len(limits) == 3: limits = np.concatenate((-np.flipud(limits), [0], limits)) / limits[-1] else: limits = np.concatenate((limits[:3], [0], limits[3:])) limits /= np.max(np.abs(limits)) r = np.array([0, 0, 0, 0, 1, 1, 1]) g = np.array([1, 0, 0, 0, 0, 0, 1]) b = np.array([1, 1, 1, 0, 0, 0, 0]) a = np.array([1, 1, 0, 0, 0, 1, 1]) xp = (np.arange(256) - 128) / 128.0 colormap = np.r_[[np.interp(xp, limits, 255 * c) for c in [r, g, b, a]]].T return colormap else: # Use this instead of check_option because we have a hidden option raise ValueError(f"format must be either matplotlib or vtk, got {repr(format)}") @contextmanager def _events_off(obj): obj.eventson = False try: yield finally: obj.eventson = True def _toggle_proj(event, params, all_=False): """Perform operations when proj boxes clicked.""" # read options if possible if "proj_checks" in params: bools = list(params["proj_checks"].get_status()) if all_: new_bools = [not all(bools)] * len(bools) with _events_off(params["proj_checks"]): for bi, (old, new) in enumerate(zip(bools, new_bools)): if old != new: params["proj_checks"].set_active(bi) bools[bi] = new for bi, (b, p) in enumerate(zip(bools, params["projs"])): # see if they tried to deactivate an active one if not b and p["active"]: bools[bi] = True else: proj = params.get("apply_proj", True) bools = [proj] * len(params["projs"]) compute_proj = False if "proj_bools" not in params: compute_proj = True elif not np.array_equal(bools, params["proj_bools"]): compute_proj = True # if projectors changed, update plots if compute_proj is True: params["plot_update_proj_callback"](params, bools) def _get_channel_plotting_order(order, ch_types, picks=None): """Determine channel plotting order for browse-style Raw/Epochs plots.""" if order is None: # for backward compat, we swap the first two to keep grad before mag ch_type_order = list(_DATA_CH_TYPES_ORDER_DEFAULT) ch_type_order = tuple(["grad", "mag"] + ch_type_order[2:]) order = [ pick_idx for order_type in ch_type_order for pick_idx, pick_type in enumerate(ch_types) if order_type == pick_type ] elif not isinstance(order, (np.ndarray, list, tuple)): raise ValueError(f'order should be array-like; got "{order}" ({type(order)}).') if picks is not None: order = [ch for ch in order if ch in picks] return np.asarray(order, int) def _make_event_color_dict(event_color, events=None, event_id=None): """Make or validate a dict mapping event ids to colors.""" from .misc import _handle_event_colors if isinstance(event_color, dict): # if event_color is a dict, validate it event_id = dict() if event_id is None else event_id event_color = { _ensure_int(event_id.get(key, key), "event_color key"): value for key, value in event_color.items() } default = event_color.pop(-1, None) default_factory = None if default is None else lambda: default new_dict = defaultdict(default_factory) for key, value in event_color.items(): if key < 1: raise KeyError( "event_color keys must be strictly positive, " f"or -1 (cannot use {key})" ) new_dict[key] = value return new_dict elif event_color is None: # make a dict from color cycle uniq_events = set() if events is False else np.unique(events[:, 2]) return _handle_event_colors(event_color, uniq_events, event_id) else: # if event_color is a MPL color-like thing, use it for all events return defaultdict(lambda: event_color) def _prepare_trellis( n_cells, ncols, nrows="auto", title=False, size=1.3, sharex=False, sharey=False, ): from matplotlib.gridspec import GridSpec from ._mpl_figure import _figure if n_cells == 1: nrows = ncols = 1 elif isinstance(ncols, int) and n_cells <= ncols: nrows, ncols = 1, n_cells else: if ncols == "auto" and nrows == "auto": nrows = math.floor(math.sqrt(n_cells)) ncols = math.ceil(n_cells / nrows) elif ncols == "auto": ncols = math.ceil(n_cells / nrows) elif nrows == "auto": nrows = math.ceil(n_cells / ncols) else: naxes = ncols * nrows if naxes < n_cells: raise ValueError( f"Cannot plot {n_cells} axes in a {nrows} by {ncols} figure." ) width = size * ncols height = (size + max(0, 0.1 * (4 - size))) * nrows + bool(title) * 0.5 fig = _figure(toolbar=False, figsize=(width * 1.5, 0.25 + height * 1.5)) gs = GridSpec(nrows, ncols, figure=fig) axes = [] for ax_idx in range(n_cells): subplot_kw = dict() if ax_idx > 0: if sharex: subplot_kw.update(sharex=axes[0]) if sharey: subplot_kw.update(sharey=axes[0]) axes.append(fig.add_subplot(gs[ax_idx], **subplot_kw)) return fig, axes, ncols, nrows def _draw_proj_checkbox(event, params, draw_current_state=True): """Toggle options (projectors) dialog.""" from matplotlib import widgets projs = params["projs"] # turn on options dialog labels = [p["desc"] for p in projs] actives = ( [p["active"] for p in projs] if draw_current_state else params.get("proj_bools", [params["apply_proj"]] * len(projs)) ) width = max([4.0, max([len(p["desc"]) for p in projs]) / 6.0 + 0.5]) height = (len(projs) + 1) / 6.0 + 1.5 # We manually place everything here so avoid constrained layouts fig_proj = figure_nobar(figsize=(width, height), layout=None) _set_window_title(fig_proj, "SSP projection vectors") offset = 1.0 / 6.0 / height params["fig_proj"] = fig_proj # necessary for proper toggling ax_temp = fig_proj.add_axes((0, offset, 1, 0.8 - offset), frameon=False) ax_temp.set_title('Projectors marked with "X" are active') # make edges around checkbox areas and change already-applied projectors # to red from ._mpl_figure import _OLD_BUTTONS check_kwargs = dict() if not _OLD_BUTTONS: checkcolor = ["#ff0000" if p["active"] else "k" for p in projs] check_kwargs["check_props"] = dict(facecolor=checkcolor) check_kwargs["frame_props"] = dict(edgecolor="0.5", linewidth=1) proj_checks = widgets.CheckButtons( ax_temp, labels=labels, actives=actives, **check_kwargs ) if _OLD_BUTTONS: for rect in proj_checks.rectangles: rect.set_edgecolor("0.5") rect.set_linewidth(1.0) for ii, p in enumerate(projs): if p["active"]: for x in proj_checks.lines[ii]: x.set_color("#ff0000") # make minimal size # pass key presses from option dialog over proj_checks.on_clicked(partial(_toggle_proj, params=params)) params["proj_checks"] = proj_checks fig_proj.canvas.mpl_connect("key_press_event", _key_press) # Toggle all ax_temp = fig_proj.add_axes((0, 0, 1, offset), frameon=False) proj_all = widgets.Button(ax_temp, "Toggle all") proj_all.on_clicked(partial(_toggle_proj, params=params, all_=True)) params["proj_all"] = proj_all # this should work for non-test cases try: fig_proj.canvas.draw() plt_show(fig=fig_proj, warn=False) except Exception: pass def _simplify_float(label): # Heuristic to turn floats to ints where possible (e.g. -500.0 to -500) if ( isinstance(label, float) and np.isfinite(label) and float(str(label)) != round(label) ): label = round(label, 2) return label def _get_figsize_from_config(): """Get default / most recent figure size from config.""" figsize = get_config("MNE_BROWSE_RAW_SIZE") if figsize is not None: figsize = figsize.split(",") figsize = tuple([float(s) for s in figsize]) return figsize @verbose def compare_fiff( fname_1, fname_2, fname_out=None, show=True, indent=" ", read_limit=np.inf, max_str=30, verbose=None, ): """Compare the contents of two fiff files using diff and show_fiff. Parameters ---------- fname_1 : path-like First file to compare. fname_2 : path-like Second file to compare. fname_out : path-like | None Filename to store the resulting diff. If None, a temporary file will be created. show : bool If True, show the resulting diff in a new tab in a web browser. indent : str How to indent the lines. read_limit : int Max number of bytes of data to read from a tag. Can be np.inf to always read all data (helps test read completion). max_str : int Max number of characters of string representation to print for each tag's data. %(verbose)s Returns ------- fname_out : str The filename used for storing the diff. Could be useful for when a temporary file is used. """ file_1 = show_fiff( fname_1, output=list, indent=indent, read_limit=read_limit, max_str=max_str ) file_2 = show_fiff( fname_2, output=list, indent=indent, read_limit=read_limit, max_str=max_str ) diff = difflib.HtmlDiff().make_file(file_1, file_2, fname_1, fname_2) if fname_out is not None: f = open(fname_out, "wb") else: f = tempfile.NamedTemporaryFile("wb", delete=False, suffix=".html") fname_out = f.name with f as fid: fid.write(diff.encode("utf-8")) if show is True: webbrowser.open_new_tab(fname_out) return fname_out def figure_nobar(*args, **kwargs): """Make matplotlib figure with no toolbar. Parameters ---------- *args : list Arguments to pass to :func:`matplotlib.pyplot.figure`. **kwargs : dict Keyword arguments to pass to :func:`matplotlib.pyplot.figure`. Returns ------- fig : instance of Figure The figure. """ from matplotlib import pyplot as plt from matplotlib import rcParams old_val = rcParams["toolbar"] try: rcParams["toolbar"] = "none" if "layout" not in kwargs: kwargs["layout"] = "constrained" fig = plt.figure(*args, **kwargs) # remove button press catchers (for toolbar) cbs = list(fig.canvas.callbacks.callbacks["key_press_event"].keys()) for key in cbs: fig.canvas.callbacks.disconnect(key) finally: rcParams["toolbar"] = old_val return fig def _show_help_fig(col1, col2, fig_help, ax, show): _set_window_title(fig_help, "Help") celltext = [ [c1, c2] for c1, c2 in zip(col1.strip().split("\n"), col2.strip().split("\n")) ] table = ax.table(cellText=celltext, loc="center", cellLoc="left") table.auto_set_font_size(False) table.set_fontsize(12) ax.set_axis_off() for (row, col), cell in table.get_celld().items(): cell.set_edgecolor(None) # remove cell borders # right justify, following: # https://stackoverflow.com/questions/48210749/matplotlib-table-assign-different-text-alignments-to-different-columns?rq=1 # noqa: E501 if col == 0: cell._loc = "right" fig_help.canvas.mpl_connect("key_press_event", _key_press) if show: # this should work for non-test cases try: fig_help.canvas.draw() plt_show(fig=fig_help, warn=False) except Exception: pass def _key_press(event): """Handle key press in dialog.""" import matplotlib.pyplot as plt if event.key == "escape": plt.close(event.canvas.figure) class ClickableImage: """Display an image so you can click on it and store x/y positions. Takes as input an image array (can be any array that works with imshow, but will work best with images. Displays the image and lets you click on it. Stores the xy coordinates of each click, so now you can superimpose something on top of it. Upon clicking, the x/y coordinate of the cursor will be stored in self.coords, which is a list of (x, y) tuples. Parameters ---------- imdata : ndarray The image that you wish to click on for 2-d points. **kwargs : dict Keyword arguments. Passed to ax.imshow. Notes ----- .. versionadded:: 0.9.0 """ def __init__(self, imdata, **kwargs): """Display the image for clicking.""" import matplotlib.pyplot as plt self.coords = [] self.imdata = imdata self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.ymax = self.imdata.shape[0] self.xmax = self.imdata.shape[1] self.im = self.ax.imshow( imdata, extent=(0, self.xmax, 0, self.ymax), picker=True, **kwargs ) self.ax.axis("off") self.fig.canvas.mpl_connect("pick_event", self.onclick) plt_show(block=True) def onclick(self, event): """Handle Mouse clicks. Parameters ---------- event : matplotlib.backend_bases.Event The matplotlib object that we use to get x/y position. """ mouseevent = event.mouseevent self.coords.append((mouseevent.xdata, mouseevent.ydata)) def plot_clicks(self, **kwargs): """Plot the x/y positions stored in self.coords. Parameters ---------- **kwargs : dict Arguments are passed to imshow in displaying the bg image. """ import matplotlib.pyplot as plt if len(self.coords) == 0: raise ValueError( "No coordinates found, make sure you click " "on the image that is first shown." ) f, ax = plt.subplots() ax.imshow(self.imdata, extent=(0, self.xmax, 0, self.ymax), **kwargs) xlim, ylim = [ax.get_xlim(), ax.get_ylim()] xcoords, ycoords = zip(*self.coords) ax.scatter(xcoords, ycoords, c="#ff0000") ann_text = np.arange(len(self.coords)).astype(str) for txt, coord in zip(ann_text, self.coords): ax.annotate(txt, coord, fontsize=20, color="#ff0000") ax.set_xlim(xlim) ax.set_ylim(ylim) plt_show() def to_layout(self, **kwargs): """Turn coordinates into an MNE Layout object. Normalizes by the image you used to generate clicks Parameters ---------- **kwargs : dict Arguments are passed to generate_2d_layout. Returns ------- layout : instance of Layout The layout. """ from ..channels.layout import generate_2d_layout coords = np.array(self.coords) lt = generate_2d_layout(coords, bg_image=self.imdata, **kwargs) return lt def _fake_click(fig, ax, point, xform="ax", button=1, kind="press", key=None): """Fake a click at a relative point within axes.""" from matplotlib import backend_bases if xform == "ax": x, y = ax.transAxes.transform_point(point) elif xform == "data": x, y = ax.transData.transform_point(point) else: assert xform == "pix" x, y = point if kind in ("press", "release"): kind = f"button_{kind}_event" else: assert kind == "motion" kind = "motion_notify_event" button = None logger.debug(f"Faking {kind} @ ({x}, {y}) with button={button} and key={key}") fig.canvas.callbacks.process( kind, backend_bases.MouseEvent( name=kind, canvas=fig.canvas, x=x, y=y, button=button, key=key ), ) def _fake_keypress(fig, key): from matplotlib import backend_bases fig.canvas.callbacks.process( "key_press_event", backend_bases.KeyEvent(name="key_press_event", canvas=fig.canvas, key=key), ) def _fake_scroll(fig, x, y, step): from matplotlib import backend_bases button = "up" if step >= 0 else "down" fig.canvas.callbacks.process( "scroll_event", backend_bases.MouseEvent( name="scroll_event", canvas=fig.canvas, x=x, y=y, step=step, button=button ), ) def add_background_image(fig, im, set_ratios=None): """Add a background image to a plot. Adds the image specified in ``im`` to the figure ``fig``. This is generally meant to be done with topo plots, though it could work for any plot. .. note:: This modifies the figure and/or axes in place. Parameters ---------- fig : Figure The figure you wish to add a bg image to. im : array, shape (M, N, {3, 4}) A background image for the figure. This must be a valid input to `matplotlib.pyplot.imshow`. Defaults to None. set_ratios : None | str Set the aspect ratio of any axes in fig to the value in set_ratios. Defaults to None, which does nothing to axes. Returns ------- ax_im : instance of Axes Axes created corresponding to the image you added. Notes ----- .. versionadded:: 0.9.0 """ if im is None: # Don't do anything and return nothing return None if set_ratios is not None: for ax in fig.axes: ax.set_aspect(set_ratios) ax_im = fig.add_axes([0, 0, 1, 1], label="background") ax_im.imshow(im, aspect="auto") ax_im.set_zorder(-1) return ax_im def _find_peaks(evoked, npeaks): """Find peaks from evoked data. Returns ``npeaks`` biggest peaks as a list of time points. """ gfp = evoked.data.std(axis=0) order = len(evoked.times) // 30 if order < 1: order = 1 peaks = argrelmax(gfp, order=order, axis=0)[0] if len(peaks) > npeaks: max_indices = np.argsort(gfp[peaks])[-npeaks:] peaks = np.sort(peaks[max_indices]) times = evoked.times[peaks] if len(times) == 0: times = [evoked.times[gfp.argmax()]] return times def _process_times(inst, use_times, n_peaks=None, few=False): """Return a list of times for topomaps.""" if isinstance(use_times, str): if use_times == "interactive": use_times, n_peaks = "peaks", 1 if use_times == "peaks": if n_peaks is None: n_peaks = min(3 if few else 7, len(inst.times)) use_times = _find_peaks(inst, n_peaks) elif use_times == "auto": if n_peaks is None: n_peaks = min(5 if few else 10, len(use_times)) use_times = np.linspace(inst.times[0], inst.times[-1], n_peaks) else: raise ValueError( "Got an unrecognized method for `times`. Only " "'peaks', 'auto' and 'interactive' are supported " "(or directly passing numbers)." ) elif np.isscalar(use_times): use_times = [use_times] use_times = np.array(use_times, float) if use_times.ndim != 1: raise ValueError(f"times must be 1D, got {use_times.ndim} dimensions") if len(use_times) > 25: warn("More than 25 topomaps plots requested. This might take a while.") return use_times @verbose def plot_sensors( info, kind="topomap", ch_type=None, title=None, show_names=False, ch_groups=None, to_sphere=True, axes=None, block=False, show=True, sphere=None, pointsize=None, linewidth=2, *, cmap=None, verbose=None, ): """Plot sensors positions. Parameters ---------- %(info_not_none)s kind : str Whether to plot the sensors as 3d, topomap or as an interactive sensor selection dialog. Available options ``'topomap'``, ``'3d'``, ``'select'``. If ``'select'``, a set of channels can be selected interactively by using lasso selector or clicking while holding control key. The selected channels are returned along with the figure instance. Defaults to ``'topomap'``. ch_type : None | str The channel type to plot. Available options ``'mag'``, ``'grad'``, ``'eeg'``, ``'seeg'``, ``'dbs'``, ``'ecog'``, ``'all'``. If ``'all'``, all the available mag, grad, eeg, seeg, dbs and ecog channels are plotted. If None (default), then channels are chosen in the order given above. title : str | None Title for the figure. If None (default), equals to ``'Sensor positions (%%s)' %% ch_type``. show_names : bool | array of str Whether to display all channel names. If an array, only the channel names in the array are shown. Defaults to False. ch_groups : 'position' | list of list | None Channel groups for coloring the sensors. If None (default), default coloring scheme is used. If 'position', the sensors are divided into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If array, the channels are divided by picks given in the array. Also accepts a list of lists to allow channel groups of the same or different sizes. .. versionadded:: 0.13.0 to_sphere : bool Whether to project the 3d locations to a sphere. When False, the sensor array appears similar as to looking downwards straight above the subject's head. Has no effect when ``kind='3d'``. Defaults to True. .. versionadded:: 0.14.0 %(axes_montage)s .. versionadded:: 0.13.0 block : bool Whether to halt program execution until the figure is closed. Defaults to False. .. versionadded:: 0.13.0 show : bool Show figure if True. Defaults to True. %(sphere_topomap_auto)s pointsize : float | None The size of the points. If None (default), will bet set to ``75`` if ``kind='3d'``, or ``25`` otherwise. linewidth : float The width of the outline. If ``0``, the outline will not be drawn. cmap : str | instance of matplotlib.colors.Colormap | None Colormap for coloring ch_groups. Has effect only when ``ch_groups`` is list of list. If None, set to ``matplotlib.rcParams["image.cmap"]``. Defaults to None. %(verbose)s Returns ------- fig : instance of Figure Figure containing the sensor topography. selection : list A list of selected channels. Only returned if ``kind=='select'``. See Also -------- mne.viz.plot_layout Notes ----- This function plots the sensor locations from the info structure using matplotlib. For drawing the sensors using PyVista see :func:`mne.viz.plot_alignment`. .. versionadded:: 0.12.0 """ from .evoked import _rgb _check_option("kind", kind, ["topomap", "3d", "select"]) if axes is not None: from matplotlib.axes import Axes from mpl_toolkits.mplot3d.axes3d import Axes3D if kind == "3d": _validate_type(axes, Axes3D, "axes", extra="when 'kind' is '3d'") elif kind in ("topomap", "select"): _validate_type( axes, Axes, "axes", extra="when 'kind' is 'topomap' or 'select'" ) if isinstance(axes, Axes3D): raise TypeError( "axes must be an instance of Axes when 'kind' is " f"'topomap' or 'select', got {type(axes)} instead." ) _validate_type(info, Info, "info") ch_indices = channel_indices_by_type(info) allowed_types = _DATA_CH_TYPES_SPLIT if ch_type is None: for this_type in allowed_types: if _contains_ch_type(info, this_type): ch_type = this_type break picks = ch_indices[ch_type] elif ch_type == "all": picks = list() for this_type in allowed_types: picks += ch_indices[this_type] elif ch_type in allowed_types: picks = ch_indices[ch_type] else: raise ValueError(f"ch_type must be one of {allowed_types} not {ch_type}!") if len(picks) == 0: raise ValueError(f"Could not find any channels of type {ch_type}.") if not _check_ch_locs(info=info, picks=picks): raise RuntimeError("No valid channel positions found") dev_head_t = info["dev_head_t"] chs = [info["chs"][pick] for pick in picks] pos = np.empty((len(chs), 3)) for ci, ch in enumerate(chs): pos[ci] = ch["loc"][:3] if ch["coord_frame"] == FIFF.FIFFV_COORD_DEVICE: if dev_head_t is None: warn( "dev_head_t is None, transforming MEG sensors to head " "coordinate frame using identity transform" ) dev_head_t = np.eye(4) pos[ci] = apply_trans(dev_head_t, pos[ci]) del dev_head_t ch_names = np.array([ch["ch_name"] for ch in chs]) bads = [idx for idx, name in enumerate(ch_names) if name in info["bads"]] _validate_type(ch_groups, (list, np.ndarray, str, None), "ch_groups") if ch_groups is None: def_colors = _handle_default("color") colors = [ "red" if i in bads else def_colors[channel_type(info, pick)] for i, pick in enumerate(picks) ] else: if isinstance(ch_groups, str): _check_option( "ch_groups", ch_groups, ["position", "selection"], extra="when str" ) # Avoid circular import from ..channels import ( _EEG_SELECTIONS, _SELECTIONS, _divide_to_regions, read_vectorview_selection, ) if ch_groups == "position": ch_groups = _divide_to_regions(info, add_stim=False) ch_groups = list(ch_groups.values()) else: ch_groups, color_vals = list(), list() for selection in _SELECTIONS + _EEG_SELECTIONS: channels = pick_channels( info["ch_names"], read_vectorview_selection(selection, info=info), ordered=False, ) ch_groups.append(channels) color_vals = np.ones((len(ch_groups), 4)) for idx, ch_group in enumerate(ch_groups): color_picks = [ np.where(picks == ch)[0][0] for ch in ch_group if ch in picks ] if len(color_picks) == 0: continue x, y, z = pos[color_picks].T color = np.mean(_rgb(x, y, z), axis=0) color_vals[idx, :3] = color # mean of spatial color else: # array-like cmap = _get_cmap(cmap) colors = np.linspace(0, 1, len(ch_groups)) color_vals = [cmap(colors[i]) for i in range(len(ch_groups))] colors = np.zeros((len(picks), 4)) for pick_idx, pick in enumerate(picks): for ind, value in enumerate(ch_groups): if pick in value: colors[pick_idx] = color_vals[ind] break title = f"Sensor positions ({ch_type})" if title is None else title fig = _plot_sensors_2d( pos, info, picks, colors, bads, ch_names, title, show_names, axes, show, kind, block, to_sphere, sphere, pointsize=pointsize, linewidth=linewidth, ) if kind == "select": return fig, fig.lasso.selection return fig def _onpick_sensor(event, fig, ax, pos, ch_names, show_names): """Pick a channel in plot_sensors.""" if event.mouseevent.inaxes != ax: return if event.mouseevent.key == "control" and fig.lasso is not None: for ind in event.ind: fig.lasso.select_one(ind) return if show_names: return # channel names already visible ind = event.ind[0] # Just take the first sensor. ch_name = ch_names[ind] this_pos = pos[ind] # XXX: Bug in matplotlib won't allow setting the position of existing # text item, so we create a new one. ax.texts[0].remove() if len(this_pos) == 3: ax.text(this_pos[0], this_pos[1], this_pos[2], ch_name) else: ax.text(this_pos[0], this_pos[1], ch_name) fig.canvas.draw() def _close_event(event, fig): """Listen for sensor plotter close event.""" if getattr(fig, "lasso", None) is not None: fig.lasso.disconnect() def _plot_sensors_2d( pos, info, picks, colors, bads, ch_names, title, show_names, ax, show, kind, block, to_sphere, sphere, pointsize=None, linewidth=2, ): """Plot sensors.""" import matplotlib.pyplot as plt from matplotlib import rcParams from mpl_toolkits.mplot3d import Axes3D # noqa: F401 analysis:ignore from .topomap import _draw_outlines, _get_pos_outlines ch_names = [str(ch_name) for ch_name in ch_names] sphere = _check_sphere(sphere, info) edgecolors = np.repeat(rcParams["axes.edgecolor"], len(colors)) edgecolors[bads] = "red" axes_was_none = ax is None if axes_was_none: subplot_kw = dict() if kind == "3d": subplot_kw.update(projection="3d") fig, ax = plt.subplots( 1, figsize=(max(rcParams["figure.figsize"]),) * 2, subplot_kw=subplot_kw, layout="constrained", ) else: fig = ax.get_figure() if kind == "3d": pointsize = 75 if pointsize is None else pointsize ax.text(0, 0, 0, "", zorder=1) ax.scatter( pos[:, 0], pos[:, 1], pos[:, 2], picker=True, c=colors, s=pointsize, edgecolor=edgecolors, linewidth=linewidth, ) ax.azim = 90 ax.elev = 0 ax.xaxis.set_label_text("x (m)") ax.yaxis.set_label_text("y (m)") ax.zaxis.set_label_text("z (m)") else: # kind in 'select', 'topomap' pointsize = 25 if pointsize is None else pointsize ax.text(0, 0, "", zorder=1) pos, outlines = _get_pos_outlines(info, picks, sphere, to_sphere=to_sphere) _draw_outlines(ax, outlines) pts = ax.scatter( pos[:, 0], pos[:, 1], picker=True, clip_on=False, c=colors, edgecolors=edgecolors, s=pointsize, lw=linewidth, ) if kind == "select": fig.lasso = SelectFromCollection(ax, pts, ch_names) else: fig.lasso = None # Equal aspect for 3D looks bad, so only use for 2D ax.set(aspect="equal") ax.axis("off") # remove border around figure del sphere connect_picker = True if show_names: if isinstance(show_names, (list, np.ndarray)): # only given channels indices = [list(ch_names).index(name) for name in show_names] else: # all channels indices = range(len(pos)) for idx in indices: this_pos = pos[idx] if kind == "3d": ax.text(this_pos[0], this_pos[1], this_pos[2], ch_names[idx]) else: ax.text( this_pos[0] + 0.0025, this_pos[1], ch_names[idx], ha="left", va="center", ) connect_picker = kind == "select" # make sure no names go off the edge of the canvas xmin, ymin, xmax, ymax = fig.get_window_extent().bounds if connect_picker: picker = partial( _onpick_sensor, fig=fig, ax=ax, pos=pos, ch_names=ch_names, show_names=show_names, ) fig.canvas.mpl_connect("pick_event", picker) if axes_was_none: _set_window_title(fig, title) closed = partial(_close_event, fig=fig) fig.canvas.mpl_connect("close_event", closed) plt_show(show, block=block) return fig def _compute_scalings(scalings, inst, remove_dc=False, duration=10): """Compute scalings for each channel type automatically. Parameters ---------- scalings : dict The scalings for each channel type. If any values are 'auto', this will automatically compute a reasonable scaling for that channel type. Any values that aren't 'auto' will not be changed. inst : instance of Raw or Epochs The data for which you want to compute scalings. If data is not preloaded, this will read a subset of times / epochs up to 100mb in size in order to compute scalings. remove_dc : bool Whether to remove the mean (DC) before calculating the scalings. If True, the mean will be computed and subtracted for short epochs in order to compensate not only for global mean offset, but also for slow drifts in the signals. duration : float If remove_dc is True, the mean will be computed and subtracted on segments of length ``duration`` seconds. Returns ------- scalings : dict A scalings dictionary with updated values """ from ..epochs import BaseEpochs from ..io import BaseRaw scalings = _handle_default("scalings_plot_raw", scalings) if not isinstance(inst, (BaseRaw, BaseEpochs)): raise ValueError("Must supply either Raw or Epochs") for key, value in scalings.items(): if not (isinstance(value, str) and value == "auto"): try: scalings[key] = float(value) except Exception: raise ValueError( f'scalings must be "auto" or float, got ' f"scalings[{key!r}]={value!r} which could not be " f"converted to float" ) # If there are no "auto" scalings, we can return early! if all( [scalings[ch_type] != "auto" for ch_type in inst.get_channel_types(unique=True)] ): return scalings ch_types = channel_indices_by_type(inst.info) ch_types = {i_type: i_ixs for i_type, i_ixs in ch_types.items() if len(i_ixs) != 0} if inst.preload is False: if isinstance(inst, BaseRaw): # Load a window of data from the center up to 100mb in size n_times = 1e8 // (len(inst.ch_names) * 8) n_times = np.clip(n_times, 1, inst.n_times) n_secs = n_times / float(inst.info["sfreq"]) time_middle = np.mean(inst.times) tmin = np.clip(time_middle - n_secs / 2.0, inst.times.min(), None) tmax = np.clip(time_middle + n_secs / 2.0, None, inst.times.max()) smin, smax = (int(round(x * inst.info["sfreq"])) for x in (tmin, tmax)) data = inst._read_segment(smin, smax) elif isinstance(inst, BaseEpochs): # Load a random subset of epochs up to 100mb in size n_epochs = 1e8 // (len(inst.ch_names) * len(inst.times) * 8) n_epochs = int(np.clip(n_epochs, 1, len(inst))) ixs_epochs = np.random.choice(range(len(inst)), n_epochs, False) inst = inst.copy()[ixs_epochs].load_data() else: data = inst._data if isinstance(inst, BaseEpochs): data = inst._data.swapaxes(0, 1).reshape([len(inst.ch_names), -1]) # Iterate through ch types and update scaling if ' auto' for key, value in scalings.items(): if key not in ch_types or value != "auto": continue this_data = data[ch_types[key]] if remove_dc and (this_data.shape[1] / inst.info["sfreq"] >= duration): length = int(duration * inst.info["sfreq"]) # segment length # truncate data so that we can divide into segments of equal length this_data = this_data[:, : this_data.shape[1] // length * length] shape = this_data.shape # original shape this_data = this_data.T.reshape(-1, length, shape[0]) # segment this_data -= np.nanmean(this_data, 0) # subtract segment means this_data = this_data.T.reshape(shape) # reshape into original this_data = this_data.ravel() this_data = this_data[np.isfinite(this_data)] if this_data.size: iqr = np.diff(np.percentile(this_data, [25, 75]))[0] else: iqr = 1.0 scalings[key] = iqr return scalings def _setup_cmap(cmap, n_axes=1, norm=False): """Set color map interactivity.""" if cmap == "interactive": cmap = ("Reds" if norm else "RdBu_r", True) elif not isinstance(cmap, tuple): if cmap is None: cmap = "Reds" if norm else "RdBu_r" cmap = (cmap, False if n_axes > 2 else True) return cmap def _prepare_joint_axes(n_maps, figsize=None): import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec fig = plt.figure(figsize=figsize, layout="constrained") gs = GridSpec(2, n_maps, height_ratios=[1, 2], figure=fig) map_ax = [fig.add_subplot(gs[0, x]) for x in range(n_maps)] # first row main_ax = fig.add_subplot(gs[1, :]) # second row return fig, main_ax, map_ax class DraggableColorbar: """Enable interactive colorbar. See http://www.ster.kuleuven.be/~pieterd/python/html/plotting/interactive_colorbar.html """ # noqa: E501 def __init__(self, cbar, mappable, kind, ch_type): import matplotlib.pyplot as plt self.cbar = cbar self.mappable = mappable self.kind = kind self.ch_type = ch_type self.fig = self.cbar.ax.figure self.press = None self.cycle = sorted( [i for i in dir(plt.cm) if hasattr(getattr(plt.cm, i), "N")] ) self.cycle += [mappable.get_cmap().name] self.index = self.cycle.index(mappable.get_cmap().name) self.lims = (self.cbar.norm.vmin, self.cbar.norm.vmax) self.connect() @_auto_weakref def _on_colormap_range(event): return self._on_colormap_range(event) subscribe(self.fig, "colormap_range", _on_colormap_range) def connect(self): """Connect to all the events we need.""" self.cidpress = self.cbar.ax.figure.canvas.mpl_connect( "button_press_event", self.on_press ) self.cidrelease = self.cbar.ax.figure.canvas.mpl_connect( "button_release_event", self.on_release ) self.cidmotion = self.cbar.ax.figure.canvas.mpl_connect( "motion_notify_event", self.on_motion ) self.keypress = self.cbar.ax.figure.canvas.mpl_connect( "key_press_event", self.key_press ) self.scroll = self.cbar.ax.figure.canvas.mpl_connect( "scroll_event", self.on_scroll ) def on_press(self, event): """Handle button press.""" if event.inaxes != self.cbar.ax: return self.press = event.y def key_press(self, event): """Handle key press.""" scale = self.cbar.norm.vmax - self.cbar.norm.vmin perc = 0.03 if event.key == "down": self.index += 1 elif event.key == "up": self.index -= 1 elif event.key == " ": # space key resets scale self.cbar.norm.vmin = self.lims[0] self.cbar.norm.vmax = self.lims[1] elif event.key == "+": self.cbar.norm.vmin -= (perc * scale) * -1 self.cbar.norm.vmax += (perc * scale) * -1 elif event.key == "-": self.cbar.norm.vmin -= (perc * scale) * 1 self.cbar.norm.vmax += (perc * scale) * 1 elif event.key == "pageup": self.cbar.norm.vmin -= (perc * scale) * 1 self.cbar.norm.vmax -= (perc * scale) * 1 elif event.key == "pagedown": self.cbar.norm.vmin -= (perc * scale) * -1 self.cbar.norm.vmax -= (perc * scale) * -1 else: return if self.index < 0: self.index = len(self.cycle) - 1 elif self.index >= len(self.cycle): self.index = 0 cmap = self.cycle[self.index] self.cbar.mappable.set_cmap(cmap) self.cbar.ax.figure.draw_without_rendering() self.mappable.set_cmap(cmap) self._publish() def on_motion(self, event): """Handle mouse movements.""" if self.press is None: return if event.inaxes != self.cbar.ax: return yprev = self.press dy = event.y - yprev self.press = event.y scale = self.cbar.norm.vmax - self.cbar.norm.vmin perc = 0.03 if event.button == 1: self.cbar.norm.vmin -= (perc * scale) * np.sign(dy) self.cbar.norm.vmax -= (perc * scale) * np.sign(dy) elif event.button == 3: self.cbar.norm.vmin -= (perc * scale) * np.sign(dy) self.cbar.norm.vmax += (perc * scale) * np.sign(dy) self._publish() def on_release(self, event): """Handle release.""" self.press = None self._update() def on_scroll(self, event): """Handle scroll.""" scale = 1.1 if event.step < 0 else 1.0 / 1.1 self.cbar.norm.vmin *= scale self.cbar.norm.vmax *= scale self._publish() def _on_colormap_range(self, event): if event.kind != self.kind or event.ch_type != self.ch_type: return if event.fmin is not None: self.cbar.norm.vmin = event.fmin if event.fmax is not None: self.cbar.norm.vmax = event.fmax if event.cmap is not None: self.cbar.mappable.set_cmap(event.cmap) self.mappable.set_cmap(event.cmap) self._update() def _publish(self): publish( self.fig, ColormapRange( kind=self.kind, ch_type=self.ch_type, fmin=self.cbar.norm.vmin, fmax=self.cbar.norm.vmax, cmap=self.mappable.get_cmap(), ), ) def _update(self): from matplotlib.ticker import AutoLocator self.cbar.set_ticks(AutoLocator()) self.cbar.update_ticks() self.cbar.ax.figure.draw_without_rendering() self.mappable.set_norm(self.cbar.norm) self.cbar.ax.figure.canvas.draw() class SelectFromCollection: """Select channels from a matplotlib collection using ``LassoSelector``. Selected channels are saved in the ``selection`` attribute. This tool highlights selected points by fading other points out (i.e., reducing their alpha values). Parameters ---------- ax : instance of Axes Axes to interact with. collection : instance of matplotlib collection Collection you want to select from. alpha_other : 0 <= float <= 1 To highlight a selection, this tool sets all selected points to an alpha value of 1 and non-selected points to ``alpha_other``. Defaults to 0.3. linewidth_other : float Linewidth to use for non-selected sensors. Default is 1. Notes ----- This tool selects collection objects based on their *origins* (i.e., ``offsets``). Calls all callbacks in self.callbacks when selection is ready. """ def __init__( self, ax, collection, ch_names, alpha_other=0.5, linewidth_other=0.5, alpha_selected=1, linewidth_selected=1, ): from matplotlib.widgets import LassoSelector self.canvas = ax.figure.canvas self.collection = collection self.ch_names = ch_names self.alpha_other = alpha_other self.linewidth_other = linewidth_other self.alpha_selected = alpha_selected self.linewidth_selected = linewidth_selected self.xys = collection.get_offsets() self.Npts = len(self.xys) # Ensure that we have separate colors for each object self.fc = collection.get_facecolors() self.ec = collection.get_edgecolors() self.lw = collection.get_linewidths() if len(self.fc) == 0: raise ValueError("Collection must have a facecolor") elif len(self.fc) == 1: self.fc = np.tile(self.fc, self.Npts).reshape(self.Npts, -1) self.ec = np.tile(self.ec, self.Npts).reshape(self.Npts, -1) self.fc[:, -1] = self.alpha_other # deselect in the beginning self.ec[:, -1] = self.alpha_other self.lw = np.full(self.Npts, self.linewidth_other) self.lasso = LassoSelector( ax, onselect=self.on_select, props=dict(color="red", linewidth=0.5) ) self.selection = list() self.callbacks = list() def on_select(self, verts): """Select a subset from the collection.""" from matplotlib.path import Path if len(verts) <= 3: # Seems to be a good way to exclude single clicks. return path = Path(verts) inds = np.nonzero([path.contains_point(xy) for xy in self.xys])[0] if self.canvas._key == "control": # Appending selection. sels = [np.where(self.ch_names == c)[0][0] for c in self.selection] inters = set(inds) - set(sels) inds = list(inters.union(set(sels) - set(inds))) self.selection[:] = np.array(self.ch_names)[inds].tolist() self.style_sensors(inds) self.notify() def select_one(self, ind): """Select or deselect one sensor.""" ch_name = self.ch_names[ind] if ch_name in self.selection: sel_ind = self.selection.index(ch_name) self.selection.pop(sel_ind) else: self.selection.append(ch_name) inds = np.isin(self.ch_names, self.selection).nonzero()[0] self.style_sensors(inds) self.notify() def notify(self): """Notify listeners that a selection has been made.""" for callback in self.callbacks: callback() def select_many(self, inds): """Select many sensors using indices (for predefined selections).""" self.selection[:] = np.array(self.ch_names)[inds].tolist() self.style_sensors(inds) def style_sensors(self, inds): """Style selected sensors as "active".""" # reset self.fc[:, -1] = self.alpha_other self.ec[:, -1] = self.alpha_other / 2 self.lw[:] = self.linewidth_other # style sensors at `inds` self.fc[inds, -1] = self.alpha_selected self.ec[inds, -1] = self.alpha_selected self.lw[inds] = self.linewidth_selected self.collection.set_facecolors(self.fc) self.collection.set_edgecolors(self.ec) self.collection.set_linewidths(self.lw) self.canvas.draw_idle() def disconnect(self): """Disconnect the lasso selector.""" self.lasso.disconnect_events() self.fc[:, -1] = self.alpha_selected self.ec[:, -1] = self.alpha_selected self.collection.set_facecolors(self.fc) self.collection.set_edgecolors(self.ec) self.canvas.draw_idle() def _get_color_list(annotations=False): """Get the current color list from matplotlib rcParams. Parameters ---------- annotations : boolean Has no influence on the function if false. If true, check if color "red" (#ff0000) is in the cycle and remove it. Returns ------- colors : list """ from matplotlib import rcParams color_cycle = rcParams.get("axes.prop_cycle") colors = color_cycle.by_key()["color"] # If we want annotations, red is reserved ... remove if present. This # checks for the reddish color in MPL dark background style, normal style, # and MPL "red", and defaults to the last of those if none are present for red in ("#fa8174", "#d62728", "#ff0000"): if annotations and red in colors: colors.remove(red) break return (colors, red) if annotations else colors def _merge_annotations(start, stop, description, annotations, current=()): """Handle drawn annotations.""" ends = annotations.onset + annotations.duration idx = np.intersect1d( np.where(ends >= start)[0], np.where(annotations.onset <= stop)[0] ) idx = np.intersect1d(idx, np.where(annotations.description == description)[0]) new_idx = np.setdiff1d(idx, current) # don't include modified annotation end = max( np.append((annotations.onset[new_idx] + annotations.duration[new_idx]), stop) ) onset = min(np.append(annotations.onset[new_idx], start)) duration = end - onset annotations.delete(idx) annotations.append(onset, duration, description) class DraggableLine: """Custom matplotlib line for moving around by drag and drop. Parameters ---------- line : instance of matplotlib Line2D Line to add interactivity to. callback : function Callback to call when line is released. """ def __init__(self, line, modify_callback, drag_callback): self.line = line self.press = None self.x0 = line.get_xdata()[0] self.modify_callback = modify_callback self.drag_callback = drag_callback self.cidpress = self.line.figure.canvas.mpl_connect( "button_press_event", self.on_press ) self.cidrelease = self.line.figure.canvas.mpl_connect( "button_release_event", self.on_release ) self.cidmotion = self.line.figure.canvas.mpl_connect( "motion_notify_event", self.on_motion ) def set_x(self, x): """Repoisition the line.""" self.line.set_xdata([x, x]) self.x0 = x def on_press(self, event): """Store button press if on top of the line.""" if event.inaxes != self.line.axes or not self.line.contains(event)[0]: return x0 = self.line.get_xdata() y0 = self.line.get_ydata() self.press = x0, y0, event.xdata, event.ydata def on_motion(self, event): """Move the line on drag.""" if self.press is None: return if event.inaxes != self.line.axes: return x0, y0, xpress, ypress = self.press dx = event.xdata - xpress self.line.set_xdata(x0 + dx) self.drag_callback((x0 + dx)[0]) self.line.figure.canvas.draw() def on_release(self, event): """Handle release.""" if event.inaxes != self.line.axes or self.press is None: return self.press = None self.line.figure.canvas.draw() self.modify_callback(self.x0, event.xdata) self.x0 = event.xdata def remove(self): """Remove the line.""" self.line.figure.canvas.mpl_disconnect(self.cidpress) self.line.figure.canvas.mpl_disconnect(self.cidrelease) self.line.figure.canvas.mpl_disconnect(self.cidmotion) self.line.remove() def _setup_ax_spines( axes, vlines, xmin, xmax, ymin, ymax, invert_y=False, unit=None, truncate_xaxis=True, truncate_yaxis=True, skip_axlabel=False, hline=True, time_unit="s", ): # don't show zero line if it coincides with x-axis (even if hline=True) if hline and ymin != 0.0: axes.spines["top"].set_position("zero") else: axes.spines["top"].set_visible(False) # the axes can become very small with topo plotting. This prevents the # x-axis from shrinking to length zero if truncate_xaxis=True, by adding # new ticks that are nice round numbers close to (but less extreme than) # xmin and xmax vlines = [] if vlines is None else vlines xticks = _trim_ticks(axes.get_xticks(), round(xmin, 2), round(xmax, 2)) xticks = np.array(sorted(set([x for x in xticks] + vlines))) if len(xticks) < 2: def log_fix(tval): exp = np.log10(np.abs(tval)) return np.sign(tval) * 10 ** (np.fix(exp) - (exp < 0)) xlims = np.array([xmin, xmax]) temp_ticks = log_fix(xlims) closer_idx = np.argmin(np.abs(xlims - temp_ticks)) further_idx = np.argmax(np.abs(xlims - temp_ticks)) start_stop = [temp_ticks[closer_idx], xlims[further_idx]] step = np.sign(np.diff(start_stop)).item() * np.max(np.abs(temp_ticks)) tts = np.arange(*start_stop, step) xticks = np.array(sorted(xticks + [tts[0], tts[-1]])) axes.set_xticks(xticks) # y-axis is simpler yticks = _trim_ticks(axes.get_yticks(), ymin, ymax) axes.set_yticks(yticks) # truncation case 1: truncate both if truncate_xaxis and truncate_yaxis: axes.spines["bottom"].set_bounds(*xticks[[0, -1]]) axes.spines["left"].set_bounds(*yticks[[0, -1]]) # case 2: truncate only x (only right side; connect to y at left) elif truncate_xaxis: xbounds = np.array(axes.get_xlim()) xbounds[1] = axes.get_xticks()[-1] axes.spines["bottom"].set_bounds(*xbounds) # case 3: truncate only y (only top; connect to x at bottom) elif truncate_yaxis: ybounds = np.array(axes.get_ylim()) if invert_y: ybounds[0] = axes.get_yticks()[0] else: ybounds[1] = axes.get_yticks()[-1] axes.spines["left"].set_bounds(*ybounds) # handle axis labels if skip_axlabel: axes.set_yticklabels([""] * len(yticks)) axes.set_xticklabels([""] * len(xticks)) else: if unit is not None: axes.set_ylabel(unit, rotation=90) axes.set_xlabel(f"Time ({time_unit})") # plot vertical lines if vlines: _ymin, _ymax = axes.get_ylim() axes.vlines( vlines, _ymax, _ymin, linestyles="--", colors="k", linewidth=1.0, zorder=1 ) # invert? if invert_y: axes.invert_yaxis() # changes we always make: axes.tick_params(direction="out") axes.tick_params(right=False) axes.spines["right"].set_visible(False) axes.spines["left"].set_zorder(0) def _handle_decim(info, decim, lowpass): """Handle decim parameter for plotters.""" if isinstance(decim, str) and decim == "auto": lp = info["sfreq"] if info["lowpass"] is None else info["lowpass"] lp = min(lp, info["sfreq"] if lowpass is None else lowpass) with info._unlock(): info["lowpass"] = lp decim = max(int(info["sfreq"] / (lp * 3) + 1e-6), 1) decim = _ensure_int(decim, "decim", must_be='an int or "auto"') if decim <= 0: raise ValueError(f'decim must be "auto" or a positive integer, got {decim}') decim = _check_decim(info, decim, 0)[0] data_picks = _pick_data_channels(info, exclude=()) return decim, data_picks def _setup_plot_projector(info, noise_cov, proj=True, use_noise_cov=True, nave=1): from ..cov import compute_whitener projector = np.eye(len(info["ch_names"])) whitened_ch_names = [] if noise_cov is not None and use_noise_cov: # any channels in noise_cov['bads'] but not in info['bads'] get # set to nan, which means that they are not plotted. data_picks = _pick_data_channels(info, with_ref_meg=False, exclude=()) data_names = {info["ch_names"][pick] for pick in data_picks} # these can be toggled by the user bad_names = set(info["bads"]) # these can't in standard pipelines be enabled (we always take the # union), so pretend they're not in cov at all cov_names = (set(noise_cov["names"]) & set(info["ch_names"])) - set( noise_cov["bads"] ) # Actually compute the whitener only using the difference whiten_names = cov_names - bad_names whiten_picks = pick_channels(info["ch_names"], whiten_names, ordered=True) whiten_info = pick_info(info, whiten_picks) rank = _triage_rank_sss(whiten_info, [noise_cov])[1][0] whitener, whitened_ch_names = compute_whitener( noise_cov, whiten_info, rank=rank, verbose=False ) whitener *= np.sqrt(nave) # proper scaling for Evoked data assert set(whitened_ch_names) == whiten_names projector[whiten_picks, whiten_picks[:, np.newaxis]] = whitener # Now we need to change the set of "whitened" channels to include # all data channel names so that they are properly italicized. whitened_ch_names = data_names # We would need to set "bad_picks" to identity to show the traces # (but in gray), but here we don't need to because "projector" # starts out as identity. So all that is left to do is take any # *good* data channels that are not in the noise cov to be NaN nan_names = data_names - (bad_names | cov_names) # XXX conditional necessary because of annoying behavior of # pick_channels where an empty list means "all"! if len(nan_names) > 0: nan_picks = pick_channels(info["ch_names"], nan_names) projector[nan_picks] = np.nan elif proj: projector, _ = setup_proj(info, add_eeg_ref=False, verbose=False) return projector, whitened_ch_names def _check_sss(info): """Check SSS history in info.""" ch_used = [ch for ch in _DATA_CH_TYPES_SPLIT if _contains_ch_type(info, ch)] has_meg = "mag" in ch_used and "grad" in ch_used has_sss = ( has_meg and len(info["proc_history"]) > 0 and info["proc_history"][0].get("max_info") is not None ) return ch_used, has_meg, has_sss def _triage_rank_sss(info, covs, rank=None, scalings=None): rank = dict() if rank is None else rank scalings = _handle_default("scalings_cov_rank", scalings) # Only look at good channels picks = _pick_data_channels(info, with_ref_meg=False, exclude="bads") info = pick_info(info, picks) ch_used, has_meg, has_sss = _check_sss(info) if has_sss: if "mag" in rank or "grad" in rank: raise ValueError( 'When using SSS, pass "meg" to set the rank ' '(separate rank values for "mag" or "grad" are ' "meaningless)." ) elif "meg" in rank: raise ValueError( "When not using SSS, pass separate rank values " 'for "mag" and "grad" (do not use "meg").' ) picks_list = _picks_by_type(info, meg_combined=has_sss) if has_sss: # reduce ch_used to combined mag grad ch_used = list(zip(*picks_list))[0] # order pick list by ch_used (required for compat with plot_evoked) picks_list = [x for x, y in sorted(zip(picks_list, ch_used))] n_ch_used = len(ch_used) # make sure we use the same rank estimates for GFP and whitening picks_list2 = [k for k in picks_list] # add meg picks if needed. if has_meg: # append ("meg", picks_meg) picks_list2 += _picks_by_type(info, meg_combined=True) rank_list = [] # rank dict for each cov for cov in covs: # We need to add the covariance projectors, compute the projector, # and apply it, just like we will do in prepare_noise_cov, otherwise # we risk the rank estimates being incorrect (i.e., if the projectors # do not match). info_proj = info.copy() with info_proj._unlock(): info_proj["projs"] += cov["projs"] this_rank = {} # assemble rank dict for this cov, such that we have meg for ch_type, this_picks in picks_list2: # if we have already estimates / values for mag/grad but not # a value for meg, combine grad and mag. if "mag" in this_rank and "grad" in this_rank and "meg" not in rank: this_rank["meg"] = this_rank["mag"] + this_rank["grad"] # and we're done here break if rank.get(ch_type) is None: ch_names = [info["ch_names"][pick] for pick in this_picks] this_C = pick_channels_cov(cov, ch_names, ordered=False) this_estimated_rank = compute_rank( this_C, scalings=scalings, info=info_proj )[ch_type] this_rank[ch_type] = this_estimated_rank elif rank.get(ch_type) is not None: this_rank[ch_type] = rank[ch_type] rank_list.append(this_rank) return n_ch_used, rank_list, picks_list, has_sss def _check_cov(noise_cov, info): """Check the noise_cov for whitening and issue an SSS warning.""" from ..cov import _ensure_cov if noise_cov is None: return None noise_cov = _ensure_cov(noise_cov, name="noise_cov", verbose=False) if _check_sss(info)[2]: # has_sss warn( "Data have been processed with SSS, which changes the relative " "scaling of magnetometers and gradiometers when viewing data " "whitened by a noise covariance" ) return noise_cov def _set_title_multiple_electrodes( title, combine, ch_names, max_chans=6, all_=False, ch_type=None ): """Prepare a title string for multiple electrodes.""" if title is None: title = ", ".join(ch_names[:max_chans]) ch_type = _channel_type_prettyprint.get(ch_type, ch_type) if ch_type is None: ch_type = "sensor" ch_type = f"{ch_type}{_pl(ch_names)}" if hasattr(combine, "func"): # functools.partial combine = combine.func if callable(combine): combine = getattr(combine, "__name__", str(combine)) if not isinstance(combine, str): combine = "Combination" # mean → Mean, but avoid RMS → Rms and GFP → Gfp if combine[0].islower(): combine = combine.capitalize() if all_: title = f"{combine} of {len(ch_names)} {ch_type}" elif len(ch_names) > max_chans and combine != "gfp": logger.info(f"More than {max_chans} channels, truncating title ...") title += f", ...\n({combine} of {len(ch_names)} {ch_type})" return title def _check_time_unit(time_unit, times): if not isinstance(time_unit, str): raise TypeError(f"time_unit must be str, got {type(time_unit)}") if time_unit == "s": pass elif time_unit == "ms": times = 1e3 * times else: raise ValueError(f"time_unit must be 's' or 'ms', got {time_unit!r}") return time_unit, times def _plot_masked_image( ax, data, times, mask=None, yvals=None, cmap="RdBu_r", vmin=None, vmax=None, ylim=None, mask_style="both", mask_alpha=0.25, mask_cmap="Greys", yscale="linear", cnorm=None, ): """Plot a potentially masked (evoked, TFR, ...) 2D image.""" from matplotlib import ticker from matplotlib.colors import Normalize if mask_style is None and mask is not None: mask_style = "both" # default draw_mask = mask_style in {"both", "mask"} draw_contour = mask_style in {"both", "contour"} if cmap is None: mask_cmap = cmap if cnorm is None: cnorm = Normalize(vmin=vmin, vmax=vmax) # mask param check and preparation if draw_mask is None: if mask is not None: draw_mask = True else: draw_mask = False if draw_contour is None: if mask is not None: draw_contour = True else: draw_contour = False if mask is None: if draw_mask: warn("`mask` is None, not masking the plot ...") draw_mask = False if draw_contour: warn("`mask` is None, not adding contour to the plot ...") draw_contour = False if draw_mask: if mask.shape != data.shape: raise ValueError( "The mask must have the same shape as the data, " f"i.e., {data.shape}, not {mask.shape}" ) if draw_contour and yscale == "log": warn("Cannot draw contours with linear yscale yet ...") if yvals is None: # for e.g. Evoked images yvals = np.arange(data.shape[0]) # else, if TFR plot, yvals will be freqs # test yscale if yscale == "log" and not yvals[0] > 0: raise ValueError( "Using log scale for frequency axis requires all your" " frequencies to be positive (you cannot include" " the DC component (0 Hz) in the TFR)." ) if len(yvals) < 2 or yvals[0] == 0: yscale = "linear" elif yscale != "linear": ratio = yvals[1:] / yvals[:-1] if yscale == "auto": if yvals[0] > 0 and np.allclose(ratio, ratio[0]): yscale = "log" else: yscale = "linear" if yscale == "log": # pcolormesh for log scale # compute bounds between time samples (time_lims,) = centers_to_edges(times) log_yvals = np.concatenate( [[yvals[0] / ratio[0]], yvals, [yvals[-1] * ratio[0]]] ) yval_lims = np.sqrt(log_yvals[:-1] * log_yvals[1:]) # construct a time-yvaluency bounds grid time_mesh, yval_mesh = np.meshgrid(time_lims, yval_lims) if mask is not None: ax.pcolormesh( time_mesh, yval_mesh, data, cmap=mask_cmap, norm=cnorm, alpha=mask_alpha ) im = ax.pcolormesh( time_mesh, yval_mesh, np.ma.masked_where(~mask, data), cmap=cmap, norm=cnorm, alpha=1, ) else: im = ax.pcolormesh(time_mesh, yval_mesh, data, cmap=cmap, norm=cnorm) if ylim is None: ylim = yval_lims[[0, -1]] if yscale == "log": ax.set_yscale("log") ax.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) # get rid of minor ticks ax.yaxis.set_minor_locator(ticker.NullLocator()) tick_vals = yvals[ np.unique(np.linspace(0, len(yvals) - 1, 12).round().astype("int")) ] ax.set_yticks(tick_vals) else: # imshow for linear because the y ticks are nicer # and the masked areas look better dt = np.median(np.diff(times)) / 2.0 if len(times) > 1 else 0.1 dy = np.median(np.diff(yvals)) / 2.0 if len(yvals) > 1 else 0.5 extent = [times[0] - dt, times[-1] + dt, yvals[0] - dy, yvals[-1] + dy] im_args = dict( interpolation="nearest", origin="lower", extent=extent, aspect="auto" ) if draw_mask: ax.imshow(data, alpha=mask_alpha, cmap=mask_cmap, norm=cnorm, **im_args) im = ax.imshow( np.ma.masked_where(~mask, data), cmap=cmap, norm=cnorm, **im_args ) else: ax.imshow(data, cmap=cmap, norm=cnorm, **im_args) # see #6481 im = ax.imshow(data, cmap=cmap, norm=cnorm, **im_args) if draw_contour and np.unique(mask).size == 2: big_mask = np.kron(mask, np.ones((10, 10))) ax.contour( big_mask, colors=["k"], extent=extent, linewidths=[0.75], corner_mask=False, antialiased=False, levels=[0.5], ) time_lims = [extent[0], extent[1]] if ylim is None: ylim = [extent[2], extent[3]] ax.set_xlim(time_lims[0], time_lims[-1]) ax.set_ylim(ylim) if (draw_mask or draw_contour) and mask is not None: if mask.all(): t_end = ", all points masked)" else: fraction = 1 - (np.float64(mask.sum()) / np.float64(mask.size)) t_end = f", {fraction * 100:0.3g}% of points masked)" else: t_end = ")" return im, t_end @fill_doc def _make_combine_callable( combine, *, axis=1, valid=("mean", "median", "std", "gfp"), ch_type=None, keepdims=False, ): """Convert None or string values of ``combine`` into callables. Params ------ combine : None | str | callable If callable, the callable must accept one positional input (a numpy array) and return an array with one fewer dimensions (the missing dimension's position is given by ``axis``). axis : int Axis of data array across which to combine. May vary depending on data context; e.g., if data are time-domain sensor traces or TFRs, continuous or epoched, etc. valid : tuple Valid string values for built-in combine methods (may vary for, e.g., combining TFRs versus time-domain signals). ch_type : str Channel type. Affects whether "gfp" is allowed as a synonym for "rms". keepdims : bool Whether to retain the singleton dimension after collapsing across it. """ kwargs = dict(axis=axis, keepdims=keepdims) if combine is None: combine = _identity_function if keepdims else partial(np.squeeze, axis=axis) elif isinstance(combine, str): combine_dict = { key: partial(getattr(np, key), **kwargs) for key in valid if getattr(np, key, None) is not None } # marginal median that is safe for complex values: if "median" in valid: combine_dict["median"] = partial(_median_complex, axis=axis) # RMS and GFP; if GFP requested for MEG channels, will use RMS anyway def _rms(data): return np.sqrt((data**2).mean(**kwargs)) def _gfp(data): return data.std(axis=axis, ddof=0) # make them play nice with _set_title_multiple_electrodes() _rms.__name__ = "RMS" _gfp.__name__ = "GFP" if "rms" in valid: combine_dict["rms"] = _rms if "gfp" in valid and ch_type == "eeg": combine_dict["gfp"] = _gfp elif "gfp" in valid: combine_dict["gfp"] = _rms try: combine = combine_dict[combine] except KeyError: raise ValueError( f'"combine" must be None, a callable, or one of "{", ".join(valid)}"; ' f'got {combine}' ) return combine def _convert_psds( psds, dB, estimate, scaling, unit, ch_names=None, first_dim="channel" ): """Convert PSDs to dB (if necessary) and appropriate units.""" _check_option("first_dim", first_dim, ["channel", "epoch"]) where = np.where(psds.min(1) <= 0)[0] if len(where) > 0: # Construct a helpful error message, depending on whether the first dimension of # `psds` corresponds to channels or epochs. if dB: bad_value = "Infinite" else: bad_value = "Zero" if first_dim == "channel": bads = ", ".join(ch_names[ii] for ii in where) else: bads = ", ".join(str(ii) for ii in where) msg = f"{bad_value} value in PSD for {first_dim}{_pl(where)} {bads}." if first_dim == "channel": msg += "\nThese channels might be dead." warn(msg, UserWarning) _check_option("estimate", estimate, ("power", "amplitude")) if estimate == "amplitude": np.sqrt(psds, out=psds) psds *= scaling ylabel = rf"$\mathrm{{{unit}/\sqrt{{Hz}}}}$" else: psds *= scaling * scaling if "/" in unit: unit = f"({unit})" ylabel = rf"$\mathrm{{{unit}²/Hz}}$" if dB: np.log10(np.maximum(psds, np.finfo(float).tiny), out=psds) psds *= 10 ylabel = r"$\mathrm{dB}\ $" + ylabel ylabel = "Power (" + ylabel if estimate == "power" else "Amplitude (" + ylabel ylabel += ")" return ylabel def _plot_psd( inst, fig, freqs, psd_list, picks_list, titles_list, units_list, scalings_list, ax_list, make_label, color, area_mode, area_alpha, dB, estimate, average, spatial_colors, xscale, line_alpha, sphere, xlabels_list, ): # helper function for Spectrum.plot() from matplotlib.ticker import ScalarFormatter from ..stats import _ci from .evoked import _plot_lines for key, ls in zip(["lowpass", "highpass", "line_freq"], ["--", "--", "-."]): if inst.info[key] is not None: for ax in ax_list: ax.axvline( inst.info[key], color="k", linestyle=ls, alpha=0.25, linewidth=2, zorder=2, ) if line_alpha is None: line_alpha = 1.0 if average else 0.75 line_alpha = float(line_alpha) ylabels = list() for ii, (psd, picks, title, ax, scalings, units) in enumerate( zip(psd_list, picks_list, titles_list, ax_list, scalings_list, units_list) ): ylabel = _convert_psds( psd, dB, estimate, scalings, units, [inst.ch_names[pi] for pi in picks] ) ylabels.append(ylabel) del ylabel if average: # mean across channels psd_mean = np.mean(psd, axis=0) if area_mode in ("sd", "std"): # std across channels psd_std = np.std(psd, axis=0) hyp_limits = (psd_mean - psd_std, psd_mean + psd_std) elif area_mode == "range": hyp_limits = (np.min(psd, axis=0), np.max(psd, axis=0)) elif area_mode is None: hyp_limits = None else: # area_mode is float hyp_limits = _ci(psd, ci=area_mode) ax.plot(freqs, psd_mean, color=color, alpha=line_alpha, linewidth=0.5) if hyp_limits is not None: ax.fill_between( freqs, hyp_limits[0], y2=hyp_limits[1], facecolor=color, alpha=area_alpha, ) if not average: picks = np.concatenate(picks_list) info = pick_info(inst.info, sel=picks, copy=True) bad_ch_idx = [info["ch_names"].index(ch) for ch in info["bads"]] types = np.array(info.get_channel_types()) ch_types_used = list() for this_type in _VALID_CHANNEL_TYPES: if this_type in types: ch_types_used.append(this_type) assert len(ch_types_used) == len(ax_list) unit = "" units = {t: yl for t, yl in zip(ch_types_used, ylabels)} titles = {c: t for c, t in zip(ch_types_used, titles_list)} # here we overwrite `picks` because of how _plot_lines works; # we already have the data, ch_types, etc in sync. psd_array = np.concatenate(psd_list) picks = np.arange(len(psd_array)) if not spatial_colors: spatial_colors = color _plot_lines( psd_array, info, picks, fig, ax_list, spatial_colors, unit, units=units, scalings=None, hline=None, gfp=False, types=types, zorder="std", xlim=(freqs[0], freqs[-1]), ylim=None, times=freqs, bad_ch_idx=bad_ch_idx, titles=titles, ch_types_used=ch_types_used, selectable=True, psd=True, line_alpha=line_alpha, nave=None, time_unit="ms", sphere=sphere, highlight=None, ) for ii, (ax, xlabel) in enumerate(zip(ax_list, xlabels_list)): ax.grid(True, linestyle=":") if xscale == "log": ax.set(xscale="log") ax.set(xlim=[freqs[1] if freqs[0] == 0 else freqs[0], freqs[-1]]) ax.get_xaxis().set_major_formatter(ScalarFormatter()) else: # xscale == 'linear' ax.set(xlim=(freqs[0], freqs[-1])) if make_label: ax.set(ylabel=ylabels[ii], title=titles_list[ii]) if xlabel: ax.set_xlabel("Frequency (Hz)") if make_label: fig.align_ylabels(axs=ax_list) return fig def _format_units_psd(unit, latex=False, power=True, dB=False): """Format PSD measurement units nicely.""" unit = f"({unit})" if "/" in unit else unit if power: denom = "Hz" exp = r"^{2}" if latex else "²" else: denom = r"\sqrt{Hz}" if latex else "√(Hz)" exp = "" pre, post = (r"$\mathrm{", r"}$") if latex else ("", "") db = " (dB)" if dB else "" return f"{pre}{unit}{exp}/{denom}{post}{db}" def _prepare_sensor_names(names, show_names): """Apply callable to sensor names (if provided).""" if callable(show_names): names = [show_names(name) for name in names] elif not show_names: names = None return names def _trim_ticks(ticks, _min, _max): """Remove ticks that are more extreme than the given limits.""" if np.isclose(_min, _max): keep_idx = 0 # ensure we always keep at least one tick else: keep_idx = np.where(np.logical_and(ticks >= _min, ticks <= _max)) return np.atleast_1d(ticks[keep_idx]) def _set_window_title(fig, title): if fig.canvas.manager is not None: fig.canvas.manager.set_window_title(title) def _shorten_path_from_middle(fpath, max_len=60, replacement="..."): """Truncate a path from the middle by omitting complete path elements.""" from os.path import sep if len(fpath) > max_len: pathlist = fpath.split(sep) # indices starting from middle, alternating sides, omitting final elem: # range(8) → 3, 4, 2, 5, 1, 6; range(7) → 2, 3, 1, 4, 0, 5 ixs_to_trunc = list( zip( range(len(pathlist) // 2 - 1, -1, -1), range(len(pathlist) // 2, len(pathlist) - 1), ) ) ixs_to_trunc = np.array(ixs_to_trunc).flatten() for ix in ixs_to_trunc: pathlist[ix] = replacement truncs = (np.array(pathlist) == replacement).nonzero()[0] newpath = sep.join(pathlist[: truncs[0]] + pathlist[truncs[-1] :]) if len(newpath) < max_len: break return newpath return fpath def centers_to_edges(*arrays): """Convert center points to edges. Parameters ---------- *arrays : list of ndarray Each input array should be 1D monotonically increasing, and will be cast to float. Returns ------- arrays : list of ndarray Given each input of shape (N,), the output will have shape (N+1,). Examples -------- >>> x = [0., 0.1, 0.2, 0.3] >>> y = [20, 30, 40] >>> centers_to_edges(x, y) # doctest: +SKIP [array([-0.05, 0.05, 0.15, 0.25, 0.35]), array([15., 25., 35., 45.])] """ out = list() for ai, arr in enumerate(arrays): arr = np.asarray(arr, dtype=float) _check_option(f"arrays[{ai}].ndim", arr.ndim, (1,)) if len(arr) > 1: arr_diff = np.diff(arr) / 2.0 else: arr_diff = [abs(arr[0]) * 0.001] if arr[0] != 0 else [0.001] out.append( np.concatenate( [[arr[0] - arr_diff[0]], arr[:-1] + arr_diff, [arr[-1] + arr_diff[-1]]] ) ) return out def _figure_agg(**kwargs): from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.figure import Figure fig = Figure(**kwargs) FigureCanvasAgg(fig) return fig def _ndarray_to_fig(img, dpi=100): """Convert to MPL figure, adapted from matplotlib.image.imsave.""" figsize = np.array(img.shape[:2][::-1]) / dpi fig = _figure_agg(dpi=dpi, figsize=figsize) ax = fig.add_axes([0, 0, 1, 1], frame_on=False) ax.imshow(img) return fig def _save_ndarray_img(fname, img): """Save an image to disk.""" from PIL import Image Image.fromarray(img).save(fname) def concatenate_images(images, axis=0, bgcolor="black", centered=True, n_channels=3): """Concatenate a list of images. Parameters ---------- images : list of ndarray The list of images to concatenate. axis : 0 or 1 The images are concatenated horizontally if 0 and vertically otherwise. The default orientation is horizontal. bgcolor : str | list The color of the background. The name of the color is accepted (e.g 'red') or a list of RGB values between 0 and 1. Defaults to 'black'. centered : bool If True, the images are centered. Defaults to True. n_channels : int Number of color channels. Can be 3 or 4. The default value is 3. Returns ------- img : ndarray The concatenated image. """ n_channels = _ensure_int(n_channels, "n_channels") axis = _ensure_int(axis) _check_option("axis", axis, (0, 1)) _check_option("n_channels", n_channels, (3, 4)) alpha = True if n_channels == 4 else False bgcolor = _to_rgb(bgcolor, name="bgcolor", alpha=alpha) bgcolor = np.asarray(bgcolor) * 255 funcs = [np.sum, np.max] ret_shape = np.asarray( [ funcs[axis]([image.shape[0] for image in images]), funcs[1 - axis]([image.shape[1] for image in images]), ] ) ret = np.zeros((ret_shape[0], ret_shape[1], n_channels), dtype=np.uint8) ret[:, :, :] = bgcolor ptr = np.array([0, 0]) sec = np.array([0 == axis, 1 == axis]).astype(int) for image in images: shape = image.shape[:-1] dec = ptr.copy() dec += ((ret_shape - shape) // 2) * (1 - sec) if centered else 0 ret[dec[0] : dec[0] + shape[0], dec[1] : dec[1] + shape[1], :] = image ptr += shape * sec return ret def _generate_default_filename(ext=".png"): now = datetime.now() dt_string = now.strftime("_%Y-%m-%d_%H-%M-%S") return "MNE" + dt_string + ext def _handle_precompute(precompute): _validate_type(precompute, (bool, str, None), "precompute") if precompute is None: precompute = get_config("MNE_BROWSER_PRECOMPUTE", "auto").lower() _check_option( "MNE_BROWSER_PRECOMPUTE", precompute, ("true", "false", "auto"), extra="when precompute=None is used", ) precompute = dict(true=True, false=False, auto="auto")[precompute] return precompute def _set_3d_axes_equal(ax): """Make axes of 3D plot have equal scale on all dimensions. This way spheres appear as actual spheres, cubes as cubes, etc. Parameters ---------- ax: matplotlib.axes.Axes A matplotlib 3d axis to use. """ ranges = tuple( np.abs(np.diff(getattr(ax, f"get_{d}lim")())).item() for d in ("x", "y", "z") ) ax.set_box_aspect(ranges) def _check_type_projs(projs): _validate_type(projs, (list, tuple, Projection), "projs") if isinstance(projs, Projection): projs = [projs] for pi, p in enumerate(projs): _validate_type(p, Projection, f"projs[{pi}]") return projs def _get_cmap(colormap, lut=None): from matplotlib import colors, rcParams try: from matplotlib import colormaps except Exception: from matplotlib.cm import get_cmap else: def get_cmap(cmap): return colormaps[cmap] if colormap is None: colormap = rcParams["image.cmap"] if isinstance(colormap, str) and colormap in ("mne", "mne_analyze"): colormap = mne_analyze_colormap([0, 1, 2], format="matplotlib") elif not isinstance(colormap, colors.Colormap): colormap = get_cmap(colormap) if lut is not None: colormap = colormap.resampled(lut) return colormap def _get_plot_ch_type(inst, ch_type, allow_ref_meg=False): """Choose a single channel type (usually for plotting). Usually used in plotting to plot a single datatype, e.g. look for mags, then grads, then ... to plot. """ if ch_type is None: allowed_types = list(_DATA_CH_TYPES_SPLIT) allowed_types += ["ref_meg"] if allow_ref_meg else [] has_types = inst.get_channel_types(unique=True) for type_ in allowed_types: if type_ in has_types: ch_type = type_ break else: raise RuntimeError( f"No plottable channel types found. Allowed types are: {allowed_types}" ) return ch_type