"""Functions to plot raw M/EEG data.""" # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. from collections import OrderedDict import numpy as np from .._fiff.pick import _picks_to_idx, pick_channels, pick_types from ..defaults import _handle_default from ..filter import create_filter from ..utils import _check_option, _get_stim_channel, _validate_type, legacy, verbose from ..utils.spectrum import _split_psd_kwargs from .utils import ( _check_cov, _compute_scalings, _get_channel_plotting_order, _handle_decim, _handle_precompute, _make_event_color_dict, _shorten_path_from_middle, ) _RAW_CLIP_DEF = 1.5 @verbose def plot_raw( raw, events=None, duration=10.0, start=0.0, n_channels=20, bgcolor="w", color=None, bad_color="lightgray", event_color="cyan", scalings=None, remove_dc=True, order=None, show_options=False, title=None, show=True, block=False, highpass=None, lowpass=None, filtorder=4, clipping=_RAW_CLIP_DEF, show_first_samp=False, proj=True, group_by="type", butterfly=False, decim="auto", noise_cov=None, event_id=None, show_scrollbars=True, show_scalebars=True, time_format="float", precompute=None, use_opengl=None, picks=None, *, theme=None, overview_mode=None, splash=True, verbose=None, ): """Plot raw data. Parameters ---------- raw : instance of Raw The raw data to plot. events : array | None Events to show with vertical bars. duration : float Time window (s) to plot. The lesser of this value and the duration of the raw file will be used. start : float Initial time to show (can be changed dynamically once plotted). If show_first_samp is True, then it is taken relative to ``raw.first_samp``. n_channels : int Number of channels to plot at once. Defaults to 20. The lesser of ``n_channels`` and ``len(raw.ch_names)`` will be shown. Has no effect if ``order`` is 'position', 'selection' or 'butterfly'. bgcolor : color object Color of the background. color : dict | color object | None Color for the data traces. If None, defaults to:: dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m', emg='k', ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k') bad_color : color object Color to make bad channels. %(event_color)s Defaults to ``'cyan'``. %(scalings)s remove_dc : bool If True remove DC component when plotting data. order : array of int | None Order in which to plot data. If the array is shorter than the number of channels, only the given channels are plotted. If None (default), all channels are plotted. If ``group_by`` is ``'position'`` or ``'selection'``, the ``order`` parameter is used only for selecting the channels to be plotted. show_options : bool If True, a dialog for options related to projection is shown. title : str | None The title of the window. If None, and either the filename of the raw object or '' will be displayed as title. show : bool Show figure if True. block : bool Whether to halt program execution until the figure is closed. Useful for setting bad channels on the fly by clicking on a line. May not work on all systems / platforms. (Only Qt) If you run from a script, this needs to be ``True`` or a Qt-eventloop needs to be started somewhere else in the script (e.g. if you want to implement the browser inside another Qt-Application). highpass : float | None Highpass to apply when displaying data. lowpass : float | None Lowpass to apply when displaying data. If highpass > lowpass, a bandstop rather than bandpass filter will be applied. filtorder : int Filtering order. 0 will use FIR filtering with MNE defaults. Other values will construct an IIR filter of the given order and apply it with :func:`~scipy.signal.filtfilt` (making the effective order twice ``filtorder``). Filtering may produce some edge artifacts (at the left and right edges) of the signals during display. .. versionchanged:: 0.18 Support for ``filtorder=0`` to use FIR filtering. clipping : str | float | None If None, channels are allowed to exceed their designated bounds in the plot. If "clamp", then values are clamped to the appropriate range for display, creating step-like artifacts. If "transparent", then excessive values are not shown, creating gaps in the traces. If float, clipping occurs for values beyond the ``clipping`` multiple of their dedicated range, so ``clipping=1.`` is an alias for ``clipping='transparent'``. .. versionchanged:: 0.21 Support for float, and default changed from None to 1.5. show_first_samp : bool If True, show time axis relative to the ``raw.first_samp``. proj : bool Whether to apply projectors prior to plotting (default is ``True``). Individual projectors can be enabled/disabled interactively (see Notes). This argument only affects the plot; use ``raw.apply_proj()`` to modify the data stored in the Raw object. %(group_by_browse)s butterfly : bool Whether to start in butterfly mode. Defaults to False. decim : int | 'auto' Amount to decimate the data during display for speed purposes. You should only decimate if the data are sufficiently low-passed, otherwise aliasing can occur. The 'auto' mode (default) uses the decimation that results in a sampling rate least three times larger than ``min(info['lowpass'], lowpass)`` (e.g., a 40 Hz lowpass will result in at least a 120 Hz displayed sample rate). noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channels are scaled by ``scalings['whitened']``, and their channel names are shown in italic. Can be a string to load a covariance from disk. See also :meth:`mne.Evoked.plot_white` for additional inspection of noise covariance properties when whitening evoked data. For data processed with SSS, the effective dependence between magnetometers and gradiometers may introduce differences in scaling, consider using :meth:`mne.Evoked.plot_white`. .. versionadded:: 0.16.0 event_id : dict | None Event IDs used to show at event markers (default None shows the event numbers). .. versionadded:: 0.16.0 %(show_scrollbars)s %(show_scalebars)s .. versionadded:: 0.20.0 %(time_format)s %(precompute)s %(use_opengl)s %(picks_all)s %(theme_pg)s .. versionadded:: 1.0 %(overview_mode)s .. versionadded:: 1.1 %(splash)s .. versionadded:: 1.6 %(verbose)s Returns ------- %(browser)s Notes ----- The arrow keys (up/down/left/right) can typically be used to navigate between channels and time ranges, but this depends on the backend matplotlib is configured to use (e.g., mpl.use('TkAgg') should work). The left/right arrows will scroll by 25%% of ``duration``, whereas shift+left/shift+right will scroll by 100%% of ``duration``. The scaling can be adjusted with - and + (or =) keys. The viewport dimensions can be adjusted with page up/page down and home/end keys. Full screen mode can be toggled with the F11 key, and scrollbars can be hidden/shown by pressing 'z'. Right-click a channel label to view its location. To mark or un-mark a channel as bad, click on a channel label or a channel trace. The changes will be reflected immediately in the raw object's ``raw.info['bads']`` entry. If projectors are present, a button labelled "Prj" in the lower right corner of the plot window opens a secondary control window, which allows enabling/disabling specific projectors individually. This provides a means of interactively observing how each projector would affect the raw data if it were applied. Annotation mode is toggled by pressing 'a', butterfly mode by pressing 'b', and whitening mode (when ``noise_cov is not None``) by pressing 'w'. By default, the channel means are removed when ``remove_dc`` is set to ``True``. This flag can be toggled by pressing 'd'. %(notes_2d_backend)s """ from ..annotations import _annotations_starts_stops from ..io import BaseRaw from ._figure import _get_browser info = raw.info.copy() sfreq = info["sfreq"] projs = info["projs"] # this will be an attr for which projectors are currently "on" in the plot projs_on = np.full_like(projs, proj, dtype=bool) # disable projs in info if user doesn't want to see them right away if not proj: with info._unlock(): info["projs"] = list() # handle defaults / check arg validity color = _handle_default("color", color) scalings = _compute_scalings(scalings, raw, remove_dc=remove_dc, duration=duration) if scalings["whitened"] == "auto": scalings["whitened"] = 1.0 _validate_type(raw, BaseRaw, "raw", "Raw") decim, picks_data = _handle_decim(info, decim, lowpass) noise_cov = _check_cov(noise_cov, info) units = _handle_default("units", None) unit_scalings = _handle_default("scalings", None) _check_option("group_by", group_by, ("selection", "position", "original", "type")) # clipping _validate_type(clipping, (None, "numeric", str), "clipping") if isinstance(clipping, str): _check_option( "clipping", clipping, ("clamp", "transparent"), extra="when a string" ) clipping = 1.0 if clipping == "transparent" else clipping elif clipping is not None: clipping = float(clipping) # be forgiving if user asks for too much time duration = min(raw.times[-1], float(duration)) # determine IIR filtering parameters if highpass is not None and highpass <= 0: raise ValueError(f"highpass must be > 0, got {highpass}") if highpass is None and lowpass is None: ba = filt_bounds = None else: filtorder = int(filtorder) if filtorder == 0: method = "fir" iir_params = None else: method = "iir" iir_params = dict(order=filtorder, output="sos", ftype="butter") ba = create_filter( np.zeros((1, int(round(duration * sfreq)))), sfreq, highpass, lowpass, method=method, iir_params=iir_params, ) filt_bounds = _annotations_starts_stops( raw, ("edge", "bad_acq_skip"), invert=True ) # compute event times in seconds if events is not None: event_times = (events[:, 0] - raw.first_samp).astype(float) event_times /= sfreq event_nums = events[:, 2] else: event_times = event_nums = None # determine trace order ch_names = np.array(raw.ch_names) ch_types = np.array(raw.get_channel_types()) picks = _picks_to_idx(info, picks, none="all", exclude=()) order = _get_channel_plotting_order(order, ch_types, picks=picks) n_channels = min(info["nchan"], n_channels, len(order)) # adjust order based on channel selection, if needed selections = None if group_by in ("selection", "position"): selections = _setup_channel_selections(raw, group_by, order) order = np.concatenate(list(selections.values())) default_selection = list(selections)[0] n_channels = len(selections[default_selection]) assert isinstance(order, np.ndarray) assert order.dtype.kind == "i" if order.size == 0: raise RuntimeError("No channels found to plot") # handle event colors event_color_dict = _make_event_color_dict(event_color, events, event_id) # handle first_samp first_time = raw._first_time if show_first_samp else 0 start += first_time event_id_rev = {v: k for k, v in (event_id or {}).items()} # generate window title; allow instances without a filename (e.g., ICA) if title is None: title = "" fnames = raw._filenames.copy() if len(fnames): title = fnames.pop(0) extra = f" ... (+ {len(fnames)} more)" if len(fnames) else "" title = f"{title}{extra}" if len(title) > 60: title = _shorten_path_from_middle(title) elif not isinstance(title, str): raise TypeError(f"title must be None or a string, got a {type(title)}") # gather parameters and initialize figure _validate_type(use_opengl, (bool, None), "use_opengl") precompute = _handle_precompute(precompute) params = dict( inst=raw, info=info, # channels and channel order ch_names=ch_names, ch_types=ch_types, ch_order=order, picks=order[:n_channels], n_channels=n_channels, picks_data=picks_data, group_by=group_by, ch_selections=selections, # time t_start=start, duration=duration, n_times=raw.n_times, first_time=first_time, time_format=time_format, decim=decim, # events event_color_dict=event_color_dict, event_times=event_times, event_nums=event_nums, event_id_rev=event_id_rev, # preprocessing projs=projs, projs_on=projs_on, apply_proj=proj, remove_dc=remove_dc, filter_coefs=ba, filter_bounds=filt_bounds, noise_cov=noise_cov, # scalings scalings=scalings, units=units, unit_scalings=unit_scalings, # colors ch_color_bad=bad_color, ch_color_dict=color, # display butterfly=butterfly, clipping=clipping, scrollbars_visible=show_scrollbars, scalebars_visible=show_scalebars, window_title=title, bgcolor=bgcolor, # Qt-specific precompute=precompute, use_opengl=use_opengl, theme=theme, overview_mode=overview_mode, splash=splash, ) fig = _get_browser(show=show, block=block, **params) return fig @legacy(alt="Raw.compute_psd().plot()") @verbose def plot_raw_psd( raw, fmin=0, fmax=np.inf, tmin=None, tmax=None, proj=False, n_fft=None, n_overlap=0, reject_by_annotation=True, picks=None, ax=None, color="black", xscale="linear", area_mode="std", area_alpha=0.33, dB=True, estimate="power", show=True, n_jobs=None, average=False, line_alpha=None, spatial_colors=True, sphere=None, window="hamming", exclude="bads", verbose=None, ): """%(plot_psd_doc)s. Parameters ---------- raw : instance of Raw The raw object. %(fmin_fmax_psd)s %(tmin_tmax_psd)s %(proj_psd)s n_fft : int | None Number of points to use in Welch FFT calculations. Default is ``None``, which uses the minimum of 2048 and the number of time points. n_overlap : int The number of points of overlap between blocks. The default value is 0 (no overlap). %(reject_by_annotation_psd)s %(picks_good_data_noref)s %(ax_plot_psd)s %(color_plot_psd)s %(xscale_plot_psd)s %(area_mode_plot_psd)s %(area_alpha_plot_psd)s %(dB_plot_psd)s %(estimate_plot_psd)s %(show)s %(n_jobs)s %(average_plot_psd)s %(line_alpha_plot_psd)s %(spatial_colors_psd)s %(sphere_topomap_auto)s %(window_psd)s .. versionadded:: 0.22.0 exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. Pass an empty list to plot all channels (including channels marked "bad", if any). .. versionadded:: 0.24.0 %(verbose)s Returns ------- fig : instance of Figure Figure with frequency spectra of the data channels. Notes ----- %(notes_plot_*_psd_func)s """ from ..time_frequency import Spectrum init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot) return raw.compute_psd(**init_kw).plot(**plot_kw) @legacy(alt="Raw.compute_psd().plot_topo()") @verbose def plot_raw_psd_topo( raw, tmin=0.0, tmax=None, fmin=0.0, fmax=100.0, proj=False, *, n_fft=2048, n_overlap=0, dB=True, layout=None, color="w", fig_facecolor="k", axis_facecolor="k", axes=None, block=False, show=True, n_jobs=None, verbose=None, ): """Plot power spectral density, separately for each channel. Parameters ---------- raw : instance of io.Raw The raw instance to use. %(tmin_tmax_psd)s %(fmin_fmax_psd_topo)s %(proj_psd)s n_fft : int Number of points to use in Welch FFT calculations. Defaults to 2048. n_overlap : int The number of points of overlap between blocks. Defaults to 0 (no overlap). %(dB_spectrum_plot_topo)s layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If ``None`` (default), the layout is inferred from the data. color : str | tuple A matplotlib-compatible color to use for the curves. Defaults to white. fig_facecolor : str | tuple A matplotlib-compatible color to use for the figure background. Defaults to black. axis_facecolor : str | tuple A matplotlib-compatible color to use for the axis background. Defaults to black. %(axes_spectrum_plot_topo)s block : bool Whether to halt program execution until the figure is closed. May not work on all systems / platforms. Defaults to False. %(show)s %(n_jobs)s %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure Figure distributing one image per channel across sensor topography. """ from ..time_frequency import Spectrum init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topo) return raw.compute_psd(**init_kw).plot_topo(**plot_kw) def _setup_channel_selections(raw, kind, order): """Get dictionary of channel groupings.""" from ..channels import ( _EEG_SELECTIONS, _SELECTIONS, _divide_to_regions, read_vectorview_selection, ) _check_option("group_by", kind, ("position", "selection")) if kind == "position": selections_dict = _divide_to_regions(raw.info) keys = _SELECTIONS[1:] # omit 'Vertex' else: # kind == 'selection' from ..channels.channels import _get_ch_info ( has_vv_mag, has_vv_grad, *_, has_neuromag_122_grad, has_csd_coils, ) = _get_ch_info(raw.info) if not (has_vv_grad or has_vv_mag or has_neuromag_122_grad): raise ValueError( "order='selection' only works for Neuromag " "data. Use order='position' instead." ) selections_dict = OrderedDict() # get stim channel (if any) stim_ch = _get_stim_channel(None, raw.info, raise_error=False) stim_ch = stim_ch if len(stim_ch) else [""] stim_ch = pick_channels(raw.ch_names, stim_ch, ordered=False) # loop over regions keys = np.concatenate([_SELECTIONS, _EEG_SELECTIONS]) for key in keys: channels = read_vectorview_selection(key, info=raw.info) picks = pick_channels(raw.ch_names, channels, ordered=False) picks = np.intersect1d(picks, order) if not len(picks): continue # omit empty selections selections_dict[key] = np.concatenate([picks, stim_ch]) # add misc channels misc = pick_types( raw.info, meg=False, eeg=False, stim=True, eog=True, ecg=True, emg=True, ref_meg=False, misc=True, resp=True, chpi=True, exci=True, ias=True, syst=True, seeg=False, bio=True, ecog=False, fnirs=False, dbs=False, temperature=True, gsr=True, exclude=(), ) if len(misc) and np.isin(misc, order).any(): selections_dict["Misc"] = misc return selections_dict