"""Functions to plot evoked M/EEG data (besides topographies).""" # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. from copy import deepcopy from functools import partial from itertools import cycle from numbers import Integral import numpy as np from .._fiff.pick import ( _DATA_CH_TYPES_SPLIT, _PICK_TYPES_DATA_DICT, _VALID_CHANNEL_TYPES, _picks_to_idx, channel_indices_by_type, channel_type, pick_info, ) from ..defaults import _handle_default from ..utils import ( _check_ch_locs, _check_if_nan, _clean_names, _is_numeric, _pl, _to_rgb, _validate_type, fill_doc, logger, verbose, warn, ) from .topo import _plot_evoked_topo from .topomap import ( _check_sphere, _draw_outlines, _get_pos_outlines, _make_head_outlines, _prepare_topomap, _prepare_topomap_plot, _set_contour_locator, plot_topomap, ) from .utils import ( DraggableColorbar, _check_cov, _check_delayed_ssp, _check_option, _check_time_unit, _draw_proj_checkbox, _get_cmap, _get_color_list, _make_combine_callable, _plot_masked_image, _prepare_joint_axes, _process_times, _set_title_multiple_electrodes, _set_window_title, _setup_ax_spines, _setup_cmap, _setup_plot_projector, _setup_vmin_vmax, _triage_rank_sss, _trim_ticks, _validate_if_list_of_axes, plt_show, ) def _butterfly_onpick(event, params): """Add a channel name on click.""" params["need_draw"] = True ax = event.artist.axes ax_idx = np.where([ax is a for a in params["axes"]])[0] if len(ax_idx) == 0: # this can happen if ax param is used return # let the other axes handle it else: ax_idx = ax_idx[0] lidx = np.where([line is event.artist for line in params["lines"][ax_idx]])[0][0] ch_name = params["ch_names"][params["idxs"][ax_idx][lidx]] text = params["texts"][ax_idx] x = event.artist.get_xdata()[event.ind[0]] y = event.artist.get_ydata()[event.ind[0]] text.set_x(x) text.set_y(y) text.set_text(ch_name) text.set_color(event.artist.get_color()) text.set_alpha(1.0) text.set_zorder(len(ax.lines)) # to make sure it goes on top of the lines text.set_path_effects(params["path_effects"]) # do NOT redraw here, since for butterfly plots hundreds of lines could # potentially be picked -- use on_button_press (happens once per click) # to do the drawing def _butterfly_on_button_press(event, params): """Only draw once for picking.""" if params["need_draw"]: event.canvas.draw() else: idx = np.where([event.inaxes is ax for ax in params["axes"]])[0] if len(idx) == 1: text = params["texts"][idx[0]] text.set_alpha(0.0) text.set_path_effects([]) event.canvas.draw() params["need_draw"] = False def _line_plot_onselect( xmin, xmax, ch_types, info, data, times, text=None, psd=False, time_unit="s", sphere=None, ): """Draw topomaps from the selected area.""" import matplotlib.pyplot as plt from ..channels.layout import _pair_grad_sensors ch_types = [type_ for type_ in ch_types if type_ in ("eeg", "grad", "mag")] if len(ch_types) == 0: raise ValueError("Interactive topomaps only allowed for EEG and MEG channels.") if ( "grad" in ch_types and len(_pair_grad_sensors(info, topomap_coords=False, raise_error=False)) < 2 ): ch_types.remove("grad") if len(ch_types) == 0: return vert_lines = list() if text is not None: text.set_visible(True) ax = text.axes vert_lines.append(ax.axvline(xmin, zorder=0, color="red")) vert_lines.append(ax.axvline(xmax, zorder=0, color="red")) fill = ax.axvspan(xmin, xmax, alpha=0.2, color="green") evoked_fig = plt.gcf() evoked_fig.canvas.draw() evoked_fig.canvas.flush_events() minidx = np.abs(times - xmin).argmin() maxidx = np.abs(times - xmax).argmin() fig, axarr = plt.subplots( 1, len(ch_types), squeeze=False, figsize=(3 * len(ch_types), 3), layout="constrained", ) for idx, ch_type in enumerate(ch_types): if ch_type not in ("eeg", "grad", "mag"): continue ( picks, pos, merge_channels, _, ch_type, this_sphere, clip_origin, ) = _prepare_topomap_plot(info, ch_type, sphere=sphere) outlines = _make_head_outlines(this_sphere, pos, "head", clip_origin) if len(pos) < 2: fig.delaxes(axarr[0][idx]) continue this_data = data[picks, minidx:maxidx] if merge_channels: from ..channels.layout import _merge_ch_data method = "mean" if psd else "rms" this_data, _ = _merge_ch_data(this_data, ch_type, [], method=method) title = f"{ch_type} {method.upper()}" else: title = ch_type this_data = np.average(this_data, axis=1) axarr[0][idx].set_title(title) # can be all negative for dB PSD vlim = (min(this_data), max(this_data)) if psd else (None, None) cmap = "Reds" if psd else None plot_topomap( this_data, pos, cmap=cmap, vlim=vlim, axes=axarr[0][idx], show=False, sphere=this_sphere, outlines=outlines, ) unit = "Hz" if psd else time_unit fig.suptitle(f"Average over {xmin:.2f}{unit} - {xmax:.2f}{unit}", y=0.1) plt_show() if text is not None: text.set_visible(False) close_callback = partial(_topo_closed, ax=ax, lines=vert_lines, fill=fill) fig.canvas.mpl_connect("close_event", close_callback) evoked_fig.canvas.draw() evoked_fig.canvas.flush_events() def _topo_closed(events, ax, lines, fill): """Remove lines from evoked plot as topomap is closed.""" for line in lines: line.remove() fill.remove() ax.get_figure().canvas.draw() def _rgb(x, y, z): """Transform x, y, z values into RGB colors.""" rgb = np.array([x, y, z]).T rgb -= np.nanmin(rgb, 0) rgb /= np.maximum(np.nanmax(rgb, 0), 1e-16) # avoid div by zero return rgb def _plot_legend(pos, colors, axis, bads, outlines, loc, size=30): """Plot (possibly colorized) channel legends for evoked plots.""" from mpl_toolkits.axes_grid1.inset_locator import inset_axes axis.get_figure().canvas.draw() bbox = axis.get_window_extent() # Determine the correct size. ratio = bbox.width / bbox.height ax = inset_axes( axis, width=str(size / ratio) + "%", height=str(size) + "%", loc=loc ) ax.set_adjustable("box") ax.set_aspect("equal") _prepare_topomap(pos, ax, check_nonzero=False) pos_x, pos_y = pos.T ax.scatter(pos_x, pos_y, color=colors, s=size * 0.8, marker=".", zorder=1) if bads: bads = np.array(bads) ax.scatter( pos_x[bads], pos_y[bads], s=size / 6, marker=".", color="w", zorder=1 ) _draw_outlines(ax, outlines) def _check_spatial_colors(info, picks, spatial_colors): """Use spatial colors if channel locations exist.""" # NB: this assumes `picks`` has already been through _picks_to_idx() # and it reflects *just the picks for the current subplot* if spatial_colors == "auto": if len(picks) == 1: spatial_colors = False else: spatial_colors = _check_ch_locs(info) return spatial_colors def _plot_evoked( evoked, picks=None, exclude="bads", unit=True, show=True, ylim=None, proj=False, xlim="tight", hline=None, units=None, scalings=None, titles=None, axes=None, plot_type="butterfly", cmap=None, gfp=False, window_title=None, spatial_colors=False, selectable=True, zorder="unsorted", noise_cov=None, colorbar=True, mask=None, mask_style=None, mask_cmap=None, mask_alpha=0.25, time_unit="s", show_names=False, group_by=None, sphere=None, *, highlight=None, draw=True, ): """Aux function for plot_evoked and plot_evoked_image (cf. docstrings). Extra params are: plot_type : str, value ('butterfly' | 'image') The type of graph to plot: 'butterfly' plots each channel as a line (x axis: time, y axis: amplitude). 'image' plots a 2D image where color depicts the amplitude of each channel at a given time point (x axis: time, y axis: channel). In 'image' mode, the plot is not interactive. draw : bool If True, draw at the end. """ import matplotlib.pyplot as plt _check_option("spatial_colors", spatial_colors, [True, False, "auto"]) # For evoked.plot_image ... # First input checks for group_by and axes if any of them is not None. # Either both must be dicts, or neither. # If the former, the two dicts provide picks and axes to plot them to. # Then, we call this function recursively for each entry in `group_by`. if plot_type == "image" and isinstance(group_by, dict): if axes is None: axes = dict() for sel in group_by: plt.figure(layout="constrained") axes[sel] = plt.axes() if not isinstance(axes, dict): raise ValueError( "If `group_by` is a dict, `axes` must be a dict of axes or None." ) _validate_if_list_of_axes(list(axes.values())) remove_xlabels = any(ax.get_subplotspec().is_last_row() for ax in axes.values()) for sel in group_by: # ... we loop over selections if sel not in axes: raise ValueError( sel + " present in `group_by`, but not found in `axes`" ) ax = axes[sel] # the unwieldy dict comp below defaults the title to the sel title = ( {channel_type(evoked.info, idx): sel for idx in group_by[sel]} if titles is None else titles ) _plot_evoked( evoked, group_by[sel], exclude, unit, show, ylim, proj, xlim, hline, units, scalings, title, ax, plot_type, cmap=cmap, gfp=gfp, window_title=window_title, selectable=selectable, noise_cov=noise_cov, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, sphere=sphere, draw=False, spatial_colors=spatial_colors, ) if remove_xlabels and not ax.get_subplotspec().is_last_row(): ax.set_xticklabels([]) ax.set_xlabel("") ims = [ax.images[0] for ax in axes.values()] clims = np.array([im.get_clim() for im in ims]) min_, max_ = clims.min(), clims.max() for im in ims: im.set_clim(min_, max_) figs = [ax.get_figure() for ax in axes.values()] if len(set(figs)) == 1: return figs[0] else: return figs elif isinstance(axes, dict): raise ValueError( "If `group_by` is not a dict, `axes` must not be a dict either." ) time_unit, times = _check_time_unit(time_unit, evoked.times) evoked = evoked.copy() # we modify info info = evoked.info if axes is not None and proj == "interactive": raise RuntimeError( "Currently only single axis figures are supported" " for interactive SSP selection." ) _check_option("gfp", gfp, [True, False, "only"]) if highlight is not None: highlight = np.array(highlight, dtype=float) highlight = np.atleast_2d(highlight) if highlight.shape[1] != 2: raise ValueError( f'"highlight" must be reshapable into a 2D array with shape ' f"(n, 2). Got {highlight.shape}." ) scalings = _handle_default("scalings", scalings) titles = _handle_default("titles", titles) units = _handle_default("units", units) if plot_type == "image": if ylim is not None and not isinstance(ylim, dict): # The user called Evoked.plot_image() or plot_evoked_image(), the # clim parameters of those functions end up to be the ylim here. raise ValueError("`clim` must be a dict. E.g. clim = dict(eeg=[-20, 20])") else: _validate_type(ylim, (dict, None), "ylim") picks = _picks_to_idx(info, picks, none="all", exclude=()) if len(picks) != len(set(picks)): raise ValueError("`picks` are not unique. Please remove duplicates.") bad_ch_idx = [ info["ch_names"].index(ch) for ch in info["bads"] if ch in info["ch_names"] ] if len(exclude) > 0: if isinstance(exclude, str) and exclude == "bads": exclude = bad_ch_idx elif isinstance(exclude, list) and all(isinstance(ch, str) for ch in exclude): exclude = [info["ch_names"].index(ch) for ch in exclude] else: raise ValueError('exclude has to be a list of channel names or "bads"') picks = np.array([pick for pick in picks if pick not in exclude]) types = np.array(info.get_channel_types(picks), str) ch_types_used = list() for this_type in _VALID_CHANNEL_TYPES: if this_type in types: ch_types_used.append(this_type) fig = None if axes is None: fig, axes = plt.subplots(len(ch_types_used), 1, layout="constrained") if isinstance(axes, plt.Axes): axes = [axes] fig.set_size_inches(6.4, 2 + len(axes)) if isinstance(axes, plt.Axes): axes = [axes] elif isinstance(axes, np.ndarray): axes = list(axes) if fig is None: fig = axes[0].get_figure() if window_title is not None: _set_window_title(fig, window_title) if len(axes) != len(ch_types_used): raise ValueError( f"Number of axes ({len(axes):g}) must match number of channel " f"types ({len(ch_types_used)}: {sorted(ch_types_used)})" ) _check_option("proj", proj, (True, False, "interactive", "reconstruct")) noise_cov = _check_cov(noise_cov, info) if proj == "reconstruct" and noise_cov is not None: raise ValueError('Cannot use proj="reconstruct" when noise_cov is not None') projector, whitened_ch_names = _setup_plot_projector( info, noise_cov, proj=proj is True, nave=evoked.nave ) if len(whitened_ch_names) > 0: unit = False if projector is not None: evoked.data[:] = np.dot(projector, evoked.data) if proj == "reconstruct": evoked = evoked._reconstruct_proj() if plot_type == "butterfly": _plot_lines( evoked.data, info, picks, fig, axes, spatial_colors, unit, units, scalings, hline, gfp, types, zorder, xlim, ylim, times, bad_ch_idx, titles, ch_types_used, selectable, False, line_alpha=1.0, nave=evoked.nave, time_unit=time_unit, sphere=sphere, highlight=highlight, ) plt.setp(axes, xlabel=f"Time ({time_unit})") elif plot_type == "image": for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)): use_nave = evoked.nave if ai == 0 else None this_picks = list(picks[types == this_type]) _plot_image( evoked.data, ax, this_type, this_picks, cmap, unit, units, scalings, times, xlim, ylim, titles, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, nave=use_nave, time_unit=time_unit, show_names=show_names, ch_names=evoked.ch_names, ) if proj == "interactive": _check_delayed_ssp(evoked) params = dict( evoked=evoked, fig=fig, projs=info["projs"], axes=axes, types=types, units=units, scalings=scalings, unit=unit, ch_types_used=ch_types_used, picks=picks, plot_update_proj_callback=_plot_update_evoked, plot_type=plot_type, ) _draw_proj_checkbox(None, params) plt.setp(fig.axes[: len(ch_types_used) - 1], xlabel="") if draw: fig.canvas.draw() # for axes plots update axes. plt_show(show) return fig def _plot_lines( data, info, picks, fig, axes, spatial_colors, unit, units, scalings, hline, gfp, types, zorder, xlim, ylim, times, bad_ch_idx, titles, ch_types_used, selectable, psd, line_alpha, nave, time_unit, sphere, *, highlight, ): """Plot data as butterfly plot.""" from matplotlib import patheffects from matplotlib import pyplot as plt from matplotlib.widgets import SpanSelector assert len(axes) == len(ch_types_used) texts = list() idxs = list() lines = list() sphere = _check_sphere(sphere, info) path_effects = [patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75)] gfp_path_effects = [patheffects.withStroke(linewidth=5, foreground="w", alpha=0.75)] if selectable: selectables = np.ones(len(ch_types_used), dtype=bool) for type_idx, this_type in enumerate(ch_types_used): idx = picks[types == this_type] if len(idx) < 2 or (this_type == "grad" and len(idx) < 4): # prevent unnecessary warnings for e.g. EOG if this_type in _DATA_CH_TYPES_SPLIT: logger.info( "Need more than one channel to make " f"topography for {this_type}. Disabling interactivity." ) selectables[type_idx] = False if selectable: # Parameters for butterfly interactive plots params = dict( axes=axes, texts=texts, lines=lines, ch_names=info["ch_names"], idxs=idxs, need_draw=False, path_effects=path_effects, ) fig.canvas.mpl_connect("pick_event", partial(_butterfly_onpick, params=params)) fig.canvas.mpl_connect( "button_press_event", partial(_butterfly_on_button_press, params=params) ) for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)): line_list = list() # 'line_list' contains the lines for this axes if unit is False: this_scaling = 1.0 ch_unit = "NA" # no unit else: this_scaling = 1.0 if scalings is None else scalings[this_type] ch_unit = units[this_type] idx = list(picks[types == this_type]) idxs.append(idx) if len(idx) > 0: # Set amplitude scaling D = this_scaling * data[idx, :] _check_if_nan(D) gfp_only = gfp == "only" if not gfp_only: chs = [info["chs"][i] for i in idx] locs3d = np.array([ch["loc"][:3] for ch in chs]) # _plot_psd can pass spatial_colors=color (e.g., "black") so # we need to use "is True" here _spat_col = _check_spatial_colors(info, idx, spatial_colors) if _spat_col is True and not _check_ch_locs(info=info, picks=idx): warn("Channel locations not available. Disabling spatial colors.") _spat_col = selectable = False if _spat_col is True and len(idx) != 1: x, y, z = locs3d.T colors = _rgb(x, y, z) _handle_spatial_colors( colors, info, idx, this_type, psd, ax, sphere ) bad_color = (0.5, 0.5, 0.5) else: if isinstance(_spat_col, (tuple, str)): col = [_spat_col] else: col = ["k"] bad_color = "r" colors = col * len(idx) for i in bad_ch_idx: if i in idx: colors[idx.index(i)] = bad_color if zorder == "std": # find the channels with the least activity # to map them in front of the more active ones z_ord = D.std(axis=1).argsort() elif zorder == "unsorted": z_ord = list(range(D.shape[0])) elif not callable(zorder): error = '`zorder` must be a function, "std" or "unsorted", not {0}.' raise TypeError(error.format(type(zorder))) else: z_ord = zorder(D) # plot channels for ch_idx, z in enumerate(z_ord): line_list.append( ax.plot( times, D[ch_idx], picker=True, zorder=z + 1 if _spat_col else 1, color=colors[ch_idx], alpha=line_alpha, linewidth=0.5, )[0] ) line_list[-1].set_pickradius(3.0) # Plot GFP / RMS if gfp: if gfp in [True, "only"]: if this_type == "eeg": this_gfp = D.std(axis=0, ddof=0) label = "GFP" else: this_gfp = np.linalg.norm(D, axis=0) / np.sqrt(len(D)) label = "RMS" gfp_color = 3 * (0.0,) if spatial_colors is True else (0.0, 1.0, 0.0) this_ylim = ( ax.get_ylim() if (ylim is None or this_type not in ylim.keys()) else ylim[this_type] ) if gfp_only: y_offset = 0.0 else: y_offset = this_ylim[0] this_gfp += y_offset ax.autoscale(False) ax.fill_between( times, y_offset, this_gfp, color="none", facecolor=gfp_color, zorder=1, alpha=0.2, ) line_list.append( ax.plot( times, this_gfp, color=gfp_color, zorder=3, alpha=line_alpha )[0] ) ax.text( times[0] + 0.01 * (times[-1] - times[0]), this_gfp[0] + 0.05 * np.diff(ax.get_ylim())[0], label, zorder=4, color=gfp_color, path_effects=gfp_path_effects, ) for ii, line in zip(idx, line_list): if ii in bad_ch_idx: line.set_zorder(2) if spatial_colors is True: line.set_linestyle("--") ax.set_ylabel(ch_unit) texts.append( ax.text( 0, 0, "", zorder=3, verticalalignment="baseline", horizontalalignment="left", fontweight="bold", alpha=0, clip_on=True, ) ) if xlim is not None: if xlim == "tight": xlim = (times[0], times[-1]) ax.set_xlim(xlim) if ylim is not None and this_type in ylim: ax.set_ylim(ylim[this_type]) ax.set(title=rf"{titles[this_type]} ({len(D)} channel{_pl(len(D))})") if ai == 0: _add_nave(ax, nave) if hline is not None: for h in hline: c = "grey" if spatial_colors is True else "r" ax.axhline(h, linestyle="--", linewidth=2, color=c) # Plot highlights if highlight is not None: this_ylim = ( ax.get_ylim() if (ylim is None or this_type not in ylim.keys()) else ylim[this_type] ) for this_highlight in highlight: ax.fill_betweenx( this_ylim, this_highlight[0], this_highlight[1], facecolor="orange", alpha=0.15, zorder=99, ) # Put back the y limits as fill_betweenx messes them up ax.set_ylim(this_ylim) lines.append(line_list) if selectable: for ax in np.array(axes)[selectables]: if len(ax.lines) == 1: continue text = ax.annotate( "Loading...", xy=(0.01, 0.1), xycoords="axes fraction", fontsize=20, color="green", zorder=3, ) text.set_visible(False) callback_onselect = partial( _line_plot_onselect, ch_types=ch_types_used, info=info, data=data, times=times, text=text, psd=psd, time_unit=time_unit, sphere=sphere, ) blit = False if plt.get_backend() == "MacOSX" else True minspan = 0 if len(times) < 2 else times[1] - times[0] ax._span_selector = SpanSelector( ax, callback_onselect, "horizontal", minspan=minspan, useblit=blit, props=dict(alpha=0.5, facecolor="red"), ) def _add_nave(ax, nave): """Add nave to axes.""" if nave is not None: ax.annotate( r"N$_{\mathrm{ave}}$=" + f"{nave}", ha="right", va="bottom", xy=(1, 1), xycoords="axes fraction", xytext=(0, 5), textcoords="offset pixels", ) def _handle_spatial_colors(colors, info, idx, ch_type, psd, ax, sphere): """Set up spatial colors.""" used_nm = np.array(_clean_names(info["ch_names"]))[idx] # find indices for bads bads = [np.where(used_nm == bad)[0][0] for bad in info["bads"] if bad in used_nm] pos, outlines = _get_pos_outlines(info, idx, sphere=sphere) loc = 1 if psd else 2 # Legend in top right for psd plot. _plot_legend(pos, colors, ax, bads, outlines, loc) def _plot_image( data, ax, this_type, picks, cmap, unit, units, scalings, times, xlim, ylim, titles, colorbar=True, mask=None, mask_cmap=None, mask_style=None, mask_alpha=0.25, nave=None, time_unit="s", show_names=False, ch_names=None, ): """Plot images.""" import matplotlib.pyplot as plt assert time_unit is not None if show_names == "auto": if picks is not None: show_names = "all" if len(picks) < 25 else True else: show_names = False cmap = _setup_cmap(cmap) ch_unit = units[this_type] this_scaling = scalings[this_type] if unit is False: this_scaling = 1.0 ch_unit = "NA" # no unit if picks is not None: data = data[picks] if mask is not None: mask = mask[picks] # Show the image # Set amplitude scaling data = this_scaling * data if ylim is None or this_type not in ylim: vmax = np.abs(data).max() vmin = -vmax else: vmin, vmax = ylim[this_type] _check_if_nan(data) im, t_end = _plot_masked_image( ax, data, times, mask, yvals=None, cmap=cmap[0], vmin=vmin, vmax=vmax, mask_style=mask_style, mask_alpha=mask_alpha, mask_cmap=mask_cmap, ) # ignore xlim='tight'; happens automatically with `extent` in imshow xlim = None if xlim == "tight" else xlim if xlim is not None: ax.set_xlim(xlim) if colorbar: cbar = plt.colorbar(im, ax=ax) cbar.ax.set_title(ch_unit) if cmap[1]: ax.CB = DraggableColorbar(cbar, im, "evoked_image", this_type) ylabel = "Channels" if show_names else "Channel (index)" t = titles[this_type] + f" ({len(data)} channel{_pl(data)}" + t_end ax.set(ylabel=ylabel, xlabel=f"Time ({time_unit})", title=t) _add_nave(ax, nave) yticks = np.arange(len(picks)) if show_names != "all": yticks = np.intersect1d(np.round(ax.get_yticks()).astype(int), yticks) yticklabels = np.array(ch_names)[picks] if show_names else np.array(picks) ax.set(yticks=yticks, yticklabels=yticklabels[yticks]) @verbose def plot_evoked( evoked, picks=None, exclude="bads", unit=True, show=True, ylim=None, xlim="tight", proj=False, hline=None, units=None, scalings=None, titles=None, axes=None, gfp=False, window_title=None, spatial_colors=False, zorder="unsorted", selectable=True, noise_cov=None, time_unit="s", sphere=None, *, highlight=None, verbose=None, ): """Plot evoked data using butterfly plots. Left click to a line shows the channel name. Selecting an area by clicking and holding left mouse button plots a topographic map of the painted area. .. note:: If bad channels are not excluded they are shown in red. Parameters ---------- evoked : instance of Evoked The evoked data. %(picks_all)s exclude : list of str | ``'bads'`` Channels names to exclude from being shown. If ``'bads'``, the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Show figure if True. %(evoked_ylim_plot)s xlim : ``'tight'`` | tuple | None Limits for the X-axis of the plots. %(proj_plot)s hline : list of float | None The values at which to show an horizontal line. units : dict | None The units of the channel types used for axes labels. If None, defaults to ``dict(eeg='µV', grad='fT/cm', mag='fT')``. scalings : dict | None The scalings of the channel types to be applied for plotting. If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. titles : dict | None The titles associated with the channels. If None, defaults to ``dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')``. axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. gfp : bool | ``'only'`` Plot the global field power (GFP) or the root mean square (RMS) of the data. For MEG data, this will plot the RMS. For EEG, it plots GFP, i.e. the standard deviation of the signal across channels. The GFP is equivalent to the RMS of an average-referenced signal. - ``True`` Plot GFP or RMS (for EEG and MEG, respectively) and traces for all channels. - ``'only'`` Plot GFP or RMS (for EEG and MEG, respectively), and omit the traces for individual channels. The color of the GFP/RMS trace will be green if ``spatial_colors=False``, and black otherwise. .. versionchanged:: 0.23 Plot GFP for EEG instead of RMS. Label RMS traces correctly as such. window_title : str | None The title to put at the top of the figure. %(spatial_colors)s zorder : str | callable Which channels to put in the front or back. Only matters if ``spatial_colors`` is used. If str, must be ``std`` or ``unsorted`` (defaults to ``unsorted``). If ``std``, data with the lowest standard deviation (weakest effects) will be put in front so that they are not obscured by those with stronger effects. If ``unsorted``, channels are z-sorted as in the evoked instance. If callable, must take one argument: a numpy array of the same dimensionality as the evoked raw data; and return a list of unique integers corresponding to the number of channels. .. versionadded:: 0.13.0 selectable : bool Whether to use interactive features. If True (default), it is possible to paint an area to draw topomaps. When False, the interactive features are disabled. Disabling interactive features reduces memory consumption and is useful when using ``axes`` parameter to draw multiaxes figures. .. versionadded:: 0.13.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channel names are shown in italic. Can be a string to load a covariance from disk. See also :meth:`mne.Evoked.plot_white` for additional inspection of noise covariance properties when whitening evoked data. For data processed with SSS, the effective dependence between magnetometers and gradiometers may introduce differences in scaling, consider using :meth:`mne.Evoked.plot_white`. .. versionadded:: 0.16.0 %(time_unit)s .. versionadded:: 0.16 %(sphere_topomap_auto)s highlight : array-like of float, shape(2,) | array-like of float, shape (n, 2) | None Segments of the data to highlight by means of a light-yellow background color. Can be used to put visual emphasis on certain time periods. The time periods must be specified as ``array-like`` objects in the form of ``(t_start, t_end)`` in the unit given by the ``time_unit`` parameter. Multiple time periods can be specified by passing an ``array-like`` object of individual time periods (e.g., for 3 time periods, the shape of the passed object would be ``(3, 2)``. If ``None``, no highlighting is applied. .. versionadded:: 1.1 %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure Figure containing the butterfly plots. See Also -------- mne.viz.plot_evoked_white """ # noqa: E501 return _plot_evoked( evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="butterfly", gfp=gfp, window_title=window_title, spatial_colors=spatial_colors, selectable=selectable, zorder=zorder, noise_cov=noise_cov, time_unit=time_unit, sphere=sphere, highlight=highlight, ) @fill_doc def plot_evoked_topo( evoked, layout=None, layout_scale=0.945, color=None, border="none", ylim=None, scalings=None, title=None, proj=False, vline=(0.0,), fig_background=None, merge_grads=False, legend=True, axes=None, background_color="w", noise_cov=None, exclude="bads", show=True, ): """Plot 2D topography of evoked responses. Clicking on the plot of an individual sensor opens a new figure showing the evoked response for the selected sensor. Parameters ---------- evoked : list of Evoked | Evoked The evoked response to plot. layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout is inferred from the data. layout_scale : float Scaling factor for adjusting the relative size of the layout on the canvas. color : list of color | color | None Everything matplotlib accepts to specify colors. If not list-like, the color specified will be repeated. If None, colors are automatically drawn. border : str Matplotlib borders style to be used for each sensor plot. %(evoked_ylim_plot)s scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. title : str Title of the figure. proj : bool | ``'interactive'`` If true SSP projections are applied before display. If ``'interactive'``, a check box for reversible selection of SSP projection vectors will be shown. vline : list of float | float | None The values at which to show a vertical line. fig_background : None | ndarray A background image for the figure. This must work with a call to ``plt.imshow``. Defaults to None. merge_grads : bool Whether to use RMS value of gradiometer pairs. Only works for Neuromag data. Defaults to False. legend : bool | int | str | tuple If True, create a legend based on evoked.comment. If False, disable the legend. Otherwise, the legend is created and the parameter value is passed as the location parameter to the matplotlib legend call. It can be an integer (e.g. 0 corresponds to upper right corner of the plot), a string (e.g. ``'upper right'``), or a tuple (x, y coordinates of the lower left corner of the legend in the axes coordinate system). See matplotlib documentation for more details. axes : instance of matplotlib Axes | None Axes to plot into. If None, axes will be created. background_color : color Background color. Typically ``'k'`` (black) or ``'w'`` (white; default). .. versionadded:: 0.15.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channel names are shown in italic. Can be a string to load a covariance from disk. .. versionadded:: 0.16.0 exclude : list of str | ``'bads'`` Channels names to exclude from the plot. If ``'bads'``, the bad channels are excluded. By default, exclude is set to ``'bads'``. show : bool Show figure if True. Returns ------- fig : instance of matplotlib.figure.Figure Images of evoked responses at sensor locations. """ if type(evoked) not in (tuple, list): evoked = [evoked] background_color = _to_rgb(background_color, name="background_color") dark_background = np.mean(background_color) < 0.5 if dark_background: fig_facecolor = background_color axis_facecolor = background_color font_color = "w" else: fig_facecolor = background_color axis_facecolor = background_color font_color = "k" if isinstance(color, (tuple, list)): if len(color) != len(evoked): raise ValueError( "Lists of evoked objects and colors must have the same length" ) elif color is None: if dark_background: color = ["w"] + _get_color_list() else: color = _get_color_list() color = color * ((len(evoked) % len(color)) + 1) color = color[: len(evoked)] else: if not isinstance(color, str): raise ValueError("color must be of type tuple, list, str, or None.") color = cycle([color]) return _plot_evoked_topo( evoked=evoked, layout=layout, layout_scale=layout_scale, color=color, border=border, ylim=ylim, scalings=scalings, title=title, proj=proj, vline=vline, fig_facecolor=fig_facecolor, fig_background=fig_background, axis_facecolor=axis_facecolor, font_color=font_color, merge_channels=merge_grads, legend=legend, axes=axes, exclude=exclude, show=show, noise_cov=noise_cov, ) @fill_doc def plot_evoked_image( evoked, picks=None, exclude="bads", unit=True, show=True, clim=None, xlim="tight", proj=False, units=None, scalings=None, titles=None, axes=None, cmap="RdBu_r", colorbar=True, mask=None, mask_style=None, mask_cmap="Greys", mask_alpha=0.25, time_unit="s", show_names="auto", group_by=None, sphere=None, ): """Plot evoked data as images. Parameters ---------- evoked : instance of Evoked The evoked data. %(picks_all)s This parameter can also be used to set the order the channels are shown in, as the channel image is sorted by the order of picks. exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Show figure if True. clim : dict | None Color limits for plots (after scaling has been applied). e.g. ``clim = dict(eeg=[-20, 20])``. Valid keys are eeg, mag, grad, misc. If None, the clim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None X limits for plots. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. units : dict | None The units of the channel types used for axes labels. If None, defaults to ``dict(eeg='µV', grad='fT/cm', mag='fT')``. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. titles : dict | None The titles associated with the channels. If None, defaults to ``dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')``. axes : instance of Axes | list | dict | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. If ``group_by`` is a dict, this cannot be a list, but it can be a dict of lists of axes, with the keys matching those of ``group_by``. In that case, the provided axes will be used for the corresponding groups. Defaults to ``None``. cmap : matplotlib colormap | (colormap, bool) | 'interactive' Colormap. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the scale. Up and down arrows can be used to change the colormap. If 'interactive', translates to ``('RdBu_r', True)``. Defaults to ``'RdBu_r'``. colorbar : bool If True, plot a colorbar. Defaults to True. .. versionadded:: 0.16 mask : ndarray | None An array of booleans of the same shape as the data. Entries of the data that correspond to ``False`` in the mask are masked (see ``do_mask`` below). Useful for, e.g., masking for statistical significance. .. versionadded:: 0.16 mask_style : None | 'both' | 'contour' | 'mask' If ``mask`` is not None: if 'contour', a contour line is drawn around the masked areas (``True`` in ``mask``). If 'mask', entries not ``True`` in ``mask`` are shown transparently. If 'both', both a contour and transparency are used. If ``None``, defaults to 'both' if ``mask`` is not None, and is ignored otherwise. .. versionadded:: 0.16 mask_cmap : matplotlib colormap | (colormap, bool) | 'interactive' The colormap chosen for masked parts of the image (see below), if ``mask`` is not ``None``. If None, ``cmap`` is reused. Defaults to ``Greys``. Not interactive. Otherwise, as ``cmap``. mask_alpha : float A float between 0 and 1. If ``mask`` is not None, this sets the alpha level (degree of transparency) for the masked-out segments. I.e., if 0, masked-out segments are not visible at all. Defaults to .25. .. versionadded:: 0.16 time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 show_names : bool | 'auto' | 'all' Determines if channel names should be plotted on the y axis. If False, no names are shown. If True, ticks are set automatically by matplotlib and the corresponding channel names are shown. If "all", all channel names are shown. If "auto", is set to False if ``picks`` is ``None``, to ``True`` if ``picks`` contains 25 or more entries, or to "all" if ``picks`` contains fewer than 25 entries. group_by : None | dict If a dict, the values must be picks, and ``axes`` must also be a dict with matching keys, or None. If ``axes`` is None, one figure and one axis will be created for each entry in ``group_by``.Then, for each entry, the picked channels will be plotted to the corresponding axis. If ``titles`` are None, keys will become plot titles. This is useful for e.g. ROIs. Each entry must contain only one channel type. For example:: group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8]) If None, all picked channels are plotted to the same axis. %(sphere_topomap_auto)s Returns ------- fig : instance of matplotlib.figure.Figure Figure containing the images. """ return _plot_evoked( evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=clim, proj=proj, xlim=xlim, hline=None, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="image", cmap=cmap, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, group_by=group_by, sphere=sphere, ) def _plot_update_evoked(params, bools): """Update the plot evoked lines.""" picks, evoked = (params[k] for k in ("picks", "evoked")) projs = [ proj for ii, proj in enumerate(params["projs"]) if ii in np.where(bools)[0] ] params["proj_bools"] = bools new_evoked = evoked.copy() new_evoked.info["projs"] = [] new_evoked.add_proj(projs) new_evoked.apply_proj() for ax, t in zip(params["axes"], params["ch_types_used"]): this_scaling = params["scalings"][t] idx = [picks[i] for i in range(len(picks)) if params["types"][i] == t] D = this_scaling * new_evoked.data[idx, :] if params["plot_type"] == "butterfly": for line, di in zip(ax.lines, D): line.set_ydata(di) else: ax.images[0].set_data(D) params["fig"].canvas.draw() @verbose def plot_evoked_white( evoked, noise_cov, show=True, rank=None, time_unit="s", sphere=None, axes=None, *, spatial_colors="auto", verbose=None, ): """Plot whitened evoked response. Plots the whitened evoked response and the whitened GFP as described in :footcite:`EngemannGramfort2015`. This function is especially useful for investigating noise covariance properties to determine if data are properly whitened (e.g., achieving expected values in line with model assumptions, see Notes below). Parameters ---------- evoked : instance of mne.Evoked The evoked response. noise_cov : list | instance of Covariance | path-like The noise covariance. Can be a string to load a covariance from disk. show : bool Show figure if True. %(rank_none)s time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 %(sphere_topomap_auto)s axes : list | None List of axes to plot into. .. versionadded:: 0.21.0 %(spatial_colors)s .. versionadded:: 1.8.0 %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure The figure object containing the plot. See Also -------- mne.Evoked.plot Notes ----- If baseline signals match the assumption of Gaussian white noise, values should be centered at 0, and be within 2 standard deviations (±1.96) for 95%% of the time points. For the global field power (GFP), we expect it to fluctuate around a value of 1. If one single covariance object is passed, the GFP panel (bottom) will depict different sensor types. If multiple covariance objects are passed as a list, the left column will display the whitened evoked responses for each channel based on the whitener from the noise covariance that has the highest log-likelihood. The left column will depict the whitened GFPs based on each estimator separately for each sensor type. Instead of numbers of channels the GFP display shows the estimated rank. Note. The rank estimation will be printed by the logger (if ``verbose=True``) for each noise covariance estimator that is passed. References ---------- .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. """ import matplotlib.pyplot as plt from ..cov import Covariance, _ensure_cov, whiten_evoked time_unit, times = _check_time_unit(time_unit, evoked.times) _validate_type(noise_cov, (list, tuple, Covariance, "path-like")) if not isinstance(noise_cov, (list, tuple)): noise_cov = [noise_cov] for ci, c in enumerate(noise_cov): noise_cov[ci] = _ensure_cov(noise_cov[ci], f"noise_cov[{ci}]", verbose=False) evoked = evoked.copy() # handle ref meg passive_idx = [ idx for idx, proj in enumerate(evoked.info["projs"]) if not proj["active"] ] # either applied already or not-- else issue for idx in passive_idx[::-1]: # reverse order so idx does not change evoked.del_proj(idx) evoked.pick_types(ref_meg=False, exclude="bads", **_PICK_TYPES_DATA_DICT) n_ch_used, rank_list, picks_list, has_sss = _triage_rank_sss( evoked.info, noise_cov, rank, scalings=None ) if has_sss: logger.info( "SSS has been applied to data. Showing mag and grad whitening jointly." ) # get one whitened evoked per cov evokeds_white = [ whiten_evoked(evoked, cov, picks=None, rank=r) for cov, r in zip(noise_cov, rank_list) ] def whitened_gfp(x, rank=None): """Whitened Global Field Power. The MNE inverse solver assumes zero mean whitened data as input. Therefore, a chi^2 statistic will be best to detect model violations. """ return np.sum(x**2, axis=0) / (len(x) if rank is None else rank) # prepare plot if len(noise_cov) > 1: n_columns = 2 n_extra_row = 0 else: n_columns = 1 n_extra_row = 1 n_rows = n_ch_used + n_extra_row want_shape = (n_rows, n_columns) if len(noise_cov) > 1 else (n_rows,) _validate_type(axes, (list, tuple, np.ndarray, None), "axes") if axes is None: _, axes = plt.subplots( n_rows, n_columns, sharex=True, sharey=False, figsize=(8.8, 2.2 * n_rows), layout="constrained", ) else: axes = np.array(axes) for ai, ax in enumerate(axes.flat): _validate_type(ax, plt.Axes, f"axes.flat[{ai}]") if axes.shape != want_shape: raise ValueError(f"axes must have shape {want_shape}, got {axes.shape}.") fig = axes.flat[0].figure if n_columns > 1: suptitle = noise_cov[0].get("method", "empirical") suptitle = ( f'Whitened evoked (left, best estimator = "{suptitle}")\n' "and global field power (right, comparison of estimators)" ) fig.suptitle(suptitle) if any(((n_columns == 1 and n_ch_used >= 1), (n_columns == 2 and n_ch_used == 1))): axes_evoked = axes[:n_ch_used] ax_gfp = axes[-1:] elif n_columns == 2 and n_ch_used > 1: axes_evoked = axes[:n_ch_used, 0] ax_gfp = axes[:, 1] else: raise RuntimeError("Wrong axes inputs") titles_ = _handle_default("titles") colors = [plt.cm.Set1(i) for i in np.linspace(0, 0.5, len(noise_cov))] ch_colors = _handle_default("color", None) iter_gfp = zip(evokeds_white, noise_cov, rank_list, colors) # The first is by law the best noise cov, on the left we plot that one. # When we have data in SSS / MEG-combined mode, we have to do some info # hacks to get it to plot all channels in the same axes, namely setting # the channel unit (most important) and coil type (for consistency) of # all MEG channels to be the same. meg_idx = sss_title = None if has_sss: titles_["meg"] = "MEG (combined)" meg_idx = [ pi for pi, (ch_type, _) in enumerate(picks_list) if ch_type == "meg" ][0] # Hack the MEG channels to all be the same type so they get plotted together picks = picks_list[meg_idx][1] for key in ("coil_type", "unit"): # update both use = evokeds_white[0].info["chs"][picks[0]][key] for pick in picks: evokeds_white[0].info["chs"][pick][key] = use sss_title = f"{titles_['meg']} ({len(picks)} channel{_pl(picks)})" evokeds_white[0].plot( unit=False, axes=axes_evoked, hline=[-1.96, 1.96], show=False, time_unit=time_unit, spatial_colors=spatial_colors, ) if has_sss: axes_evoked[meg_idx].set(title=sss_title) # Now plot the GFP for all covs if indicated. for evoked_white, noise_cov, rank_, color in iter_gfp: i = 0 for ch, sub_picks in picks_list: this_rank = rank_[ch] title = "{} ({}{})".format( titles_[ch] if n_columns > 1 else ch, "rank " if n_columns > 1 else "", this_rank, ) label = noise_cov.get("method", "empirical") ax = ax_gfp[i] ax.set_title( title if n_columns > 1 else f'Whitened GFP, method = "{label}"' ) data = evoked_white.data[sub_picks] gfp = whitened_gfp(data, rank=this_rank) # Wrap SSS-processed data (MEG) to the mag color color_ch = "mag" if ch == "meg" else ch ax.plot( times, gfp, label=label if n_columns > 1 else title, color=color if n_columns > 1 else ch_colors[color_ch], lw=0.5, ) ax.set( xlabel=f"Time ({time_unit})", ylabel=r"GFP ($\chi^2$)", xlim=[times[0], times[-1]], ylim=(0, 10), ) ax.axhline(1, color="red", linestyle="--", lw=2.0) if n_columns > 1: i += 1 ax = ax_gfp[0] if n_columns == 1: ax.legend( # mpl < 1.2.1 compatibility: use prop instead of fontsize loc="upper right", bbox_to_anchor=(0.98, 0.9), prop=dict(size=12) ) else: ax.legend(loc="upper right", prop=dict(size=10)) fig.canvas.draw() plt_show(show) return fig @verbose def plot_snr_estimate(evoked, inv, show=True, axes=None, verbose=None): """Plot a data SNR estimate. Parameters ---------- evoked : instance of Evoked The evoked instance. This should probably be baseline-corrected. inv : instance of InverseOperator The minimum-norm inverse operator. show : bool Show figure if True. axes : instance of Axes | None The axes to plot into. .. versionadded:: 0.21.0 %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure The figure object containing the plot. Notes ----- The bluish green line is the SNR determined by the GFP of the whitened evoked data. The orange line is the SNR estimated based on the mismatch between the data and the data re-estimated from the regularized inverse. .. versionadded:: 0.9.0 """ import matplotlib.pyplot as plt from ..minimum_norm import estimate_snr snr, snr_est = estimate_snr(evoked, inv) _validate_type(axes, (None, plt.Axes)) if axes is None: _, ax = plt.subplots(1, 1, layout="constrained") else: ax = axes del axes fig = ax.figure lims = np.concatenate([evoked.times[[0, -1]], [-1, snr_est.max()]]) ax.axvline(0, color="k", ls=":", lw=1) ax.axhline(0, color="k", ls=":", lw=1) # Colors are "bluish green" and "vermilion" taken from: # http://bconnelly.net/2013/10/creating-colorblind-friendly-figures/ hs = list() labels = ("Inverse", "Whitened GFP") hs.append(ax.plot(evoked.times, snr_est, color=[0.0, 0.6, 0.5])[0]) hs.append(ax.plot(evoked.times, snr - 1, color=[0.8, 0.4, 0.0])[0]) ax.set(xlim=lims[:2], ylim=lims[2:], ylabel="SNR", xlabel="Time (s)") if evoked.comment is not None: ax.set_title(evoked.comment) ax.legend(hs, labels, title="Estimation method") plt_show(show) return fig @fill_doc def plot_evoked_joint( evoked, times="peaks", title="", picks=None, exclude=None, show=True, ts_args=None, topomap_args=None, ): """Plot evoked data as butterfly plot and add topomaps for time points. .. note:: Axes to plot in can be passed by the user through ``ts_args`` or ``topomap_args``. In that case both ``ts_args`` and ``topomap_args`` axes have to be used. Be aware that when the axes are provided, their position may be slightly modified. Parameters ---------- evoked : instance of Evoked The evoked instance. times : float | array of float | "auto" | "peaks" The time point(s) to plot. If ``"auto"``, 5 evenly spaced topographies between the first and last time instant will be shown. If ``"peaks"``, finds time points automatically by checking for 3 local maxima in Global Field Power. Defaults to ``"peaks"``. title : str | None The title. If ``None``, suppress printing channel type title. If an empty string, a default title is created. Defaults to ''. If custom axes are passed make sure to set ``title=None``, otherwise some of your axes may be removed during placement of the title axis. %(picks_all)s exclude : None | list of str | 'bads' Channels names to exclude from being shown. If ``'bads'``, the bad channels are excluded. Defaults to ``None``. show : bool Show figure if ``True``. Defaults to ``True``. ts_args : None | dict A dict of ``kwargs`` that are forwarded to :meth:`mne.Evoked.plot` to style the butterfly plot. If they are not in this dict, the following defaults are passed: ``spatial_colors=True``, ``zorder='std'``. ``show`` and ``exclude`` are illegal. If ``None``, no customizable arguments will be passed. Defaults to ``None``. topomap_args : None | dict A dict of ``kwargs`` that are forwarded to :meth:`mne.Evoked.plot_topomap` to style the topomaps. If it is not in this dict, ``outlines='head'`` will be passed. ``show``, ``times``, ``colorbar`` are illegal. If ``None``, no customizable arguments will be passed. Defaults to ``None``. Returns ------- fig : instance of matplotlib.figure.Figure | list The figure object containing the plot. If ``evoked`` has multiple channel types, a list of figures, one for each channel type, is returned. Notes ----- .. versionadded:: 0.12.0 """ from matplotlib.patches import ConnectionPatch if ts_args is not None and not isinstance(ts_args, dict): raise TypeError(f"ts_args must be dict or None, got type {type(ts_args)}") ts_args = dict() if ts_args is None else ts_args.copy() ts_args["time_unit"], _ = _check_time_unit( ts_args.get("time_unit", "s"), evoked.times ) topomap_args = dict() if topomap_args is None else topomap_args.copy() got_axes = False illegal_args = {"show", "times", "exclude"} for args in (ts_args, topomap_args): if any(x in args for x in illegal_args): raise ValueError( "Don't pass any of {} as *_args.".format(", ".join(list(illegal_args))) ) if ("axes" in ts_args) or ("axes" in topomap_args): if not (("axes" in ts_args) and ("axes" in topomap_args)): raise ValueError( "If one of `ts_args` and `topomap_args` contains " "'axes', the other must, too." ) _validate_if_list_of_axes([ts_args["axes"]], 1) if times in (None, "peaks"): n_topomaps = 3 + 1 else: assert not isinstance(times, str) n_topomaps = len(times) + 1 _validate_if_list_of_axes(list(topomap_args["axes"]), n_topomaps) got_axes = True # channel selection # simply create a new evoked object with the desired channel selection # Need to deal with proj before picking to avoid bad projections proj = topomap_args.get("proj", True) proj_ts = ts_args.get("proj", True) if proj_ts != proj: raise ValueError( f'topomap_args["proj"] (default True, got {proj}) must match ' f'ts_args["proj"] (default True, got {proj_ts})' ) _check_option('topomap_args["proj"]', proj, (True, False, "reconstruct")) evoked = evoked.copy() if proj: evoked.apply_proj() if proj == "reconstruct": evoked._reconstruct_proj() topomap_args["proj"] = ts_args["proj"] = False # don't reapply evoked.pick(picks, exclude=exclude) info = evoked.info ch_types = info.get_channel_types(unique=True, only_data_chs=True) # if multiple sensor types: one plot per channel type, recursive call if len(ch_types) > 1: if got_axes: raise NotImplementedError( "Currently, passing axes manually (via `ts_args` or " "`topomap_args`) is not supported for multiple channel types." ) figs = list() for this_type in ch_types: # pick only the corresponding channel type ev_ = evoked.copy().pick( [ info["ch_names"][idx] for idx in range(info["nchan"]) if channel_type(info, idx) == this_type ] ) if len(ev_.info.get_channel_types(unique=True)) > 1: raise RuntimeError( "Possibly infinite loop due to channel " "selection problem. This should never " "happen! Please check your channel types." ) figs.append( plot_evoked_joint( ev_, times=times, title=title, show=show, ts_args=ts_args, exclude=list(), topomap_args=topomap_args, ) ) return figs # set up time points to show topomaps for times_sec = _process_times(evoked, times, few=True) del times _, times_ts = _check_time_unit(ts_args["time_unit"], times_sec) # prepare axes for topomap if not got_axes: fig, ts_ax, map_ax = _prepare_joint_axes(len(times_sec), figsize=(8.0, 4.2)) cbar_ax = None else: ts_ax = ts_args["axes"] del ts_args["axes"] map_ax = topomap_args["axes"][:-1] cbar_ax = topomap_args["axes"][-1] del topomap_args["axes"] fig = cbar_ax.figure # butterfly/time series plot # most of this code is about passing defaults on demand ts_args_def = dict( picks=None, unit=True, ylim=None, xlim="tight", proj=False, hline=None, units=None, scalings=None, titles=None, gfp=False, window_title=None, spatial_colors=True, zorder="std", sphere=None, draw=False, ) ts_args_def.update(ts_args) _plot_evoked( evoked, axes=ts_ax, show=False, plot_type="butterfly", exclude=[], **ts_args_def ) # handle title # we use a new axis for the title to handle scaling of plots old_title = ts_ax.get_title() ts_ax.set_title("") if title is not None: if title == "": title = old_title fig.suptitle(title) # topomap contours = topomap_args.get("contours", 6) ch_type = ch_types.pop() # set should only contain one element # Since the data has all the ch_types, we get the limits from the plot. vmin, vmax = ts_ax.get_ylim() norm = ch_type == "grad" vmin = 0 if norm else vmin vmin, vmax = _setup_vmin_vmax(evoked.data, vmin, vmax, norm) if not isinstance(contours, (list, np.ndarray)): locator, contours = _set_contour_locator(vmin, vmax, contours) else: locator = None topomap_args_pass = dict(extrapolate="local") if ch_type == "seeg" else dict() topomap_args_pass.update(topomap_args) topomap_args_pass["outlines"] = topomap_args.get("outlines", "head") topomap_args_pass["contours"] = contours evoked.plot_topomap( times=times_sec, axes=map_ax, show=False, colorbar=False, **topomap_args_pass ) if topomap_args.get("colorbar", True): from matplotlib import ticker cbar = fig.colorbar(map_ax[0].images[0], ax=map_ax, cax=cbar_ax, shrink=0.8) cbar.ax.grid(False) # auto-removal deprecated as of 2021/10/05 if isinstance(contours, (list, np.ndarray)): cbar.set_ticks(contours) else: if locator is None: locator = ticker.MaxNLocator(nbins=5) cbar.locator = locator cbar.update_ticks() # connection lines # draw the connection lines between time series and topoplots for timepoint, map_ax_ in zip(times_ts, map_ax): con = ConnectionPatch( xyA=[timepoint, ts_ax.get_ylim()[1]], xyB=[0.5, 0], coordsA="data", coordsB="axes fraction", axesA=ts_ax, axesB=map_ax_, color="grey", linestyle="-", linewidth=1.5, alpha=0.66, zorder=1, clip_on=False, ) fig.add_artist(con) # mark times in time series plot for timepoint in times_ts: ts_ax.axvline( timepoint, color="grey", linestyle="-", linewidth=1.5, alpha=0.66, zorder=0 ) # show and return it plt_show(show) return fig ############################################################################### # The following functions are all helpers for plot_compare_evokeds. # ############################################################################### def _check_loc_legal(loc, what="your choice", default=1): """Check if loc is a legal location for MPL subordinate axes.""" true_default = {"legend": 2, "show_sensors": 1}.get(what, default) if isinstance(loc, (bool, np.bool_)) and loc: loc = true_default loc_dict = { "upper right": 1, "upper left": 2, "lower left": 3, "lower right": 4, "right": 5, "center left": 6, "center right": 7, "lower center": 8, "upper center": 9, "center": 10, } loc_ = loc_dict.get(loc, loc) if loc_ not in range(11): raise ValueError( str(loc) + " is not a legal MPL loc, please supply" "another value for " + what + "." ) return loc_ def _validate_style_keys_pce(styles, conditions, tags): """Validate styles dict keys for plot_compare_evokeds.""" styles = deepcopy(styles) if not set(styles).issubset(tags.union(conditions)): raise ValueError( f'The keys in "styles" ({list(styles)}) must match the keys in ' f'"evokeds" ({conditions}).' ) # make sure all the keys are in there for cond in conditions: if cond not in styles: styles[cond] = dict() # deal with matplotlib's synonymous handling of "c" and "color" / # "ls" and "linestyle" / "lw" and "linewidth" elif "c" in styles[cond]: styles[cond]["color"] = styles[cond].pop("c") elif "ls" in styles[cond]: styles[cond]["linestyle"] = styles[cond].pop("ls") elif "lw" in styles[cond]: styles[cond]["linewidth"] = styles[cond].pop("lw") # transfer styles from partial-matched entries for tag in cond.split("/"): if tag in styles: styles[cond].update(styles[tag]) # remove the (now transferred) partial-matching style entries for key in list(styles): if key not in conditions: del styles[key] return styles def _validate_colors_pce(colors, cmap, conditions, tags): """Check and assign colors for plot_compare_evokeds.""" err_suffix = "" if colors is None: if cmap is None: colors = _get_color_list() err_suffix = " in the default color cycle" else: colors = list(range(len(conditions))) # convert color list to dict if isinstance(colors, (list, tuple, np.ndarray)): if len(conditions) > len(colors): raise ValueError( f"Trying to plot {len(conditions)} conditions, but there are only " f"{len(colors)} colors{err_suffix}. Please specify colors manually." ) colors = dict(zip(conditions, colors)) # should be a dict by now... if not isinstance(colors, dict): raise TypeError( f'"colors" must be a dict, list, or None; got {type(colors).__name__}.' ) # validate color dict keys if not set(colors).issubset(tags.union(conditions)): raise ValueError( f'If "colors" is a dict its keys ({list(colors)}) must match the ' f'keys/conditions in "evokeds" ({conditions}).' ) # validate color dict values color_vals = list(colors.values()) all_numeric = all(_is_numeric(_color) for _color in color_vals) if cmap is not None and not all_numeric: raise TypeError( 'if "cmap" is specified, then "colors" must be ' "None or a (list or dict) of (ints or floats); got {}.".format( ", ".join(color_vals) ) ) # convert provided ints to sequential, rank-ordered ints all_int = all(isinstance(_color, Integral) for _color in color_vals) if all_int: colors = deepcopy(colors) ranks = {val: ix for ix, val in enumerate(sorted(set(color_vals)))} for key, orig_int in colors.items(): colors[key] = ranks[orig_int] # if no cmap, convert color ints to real colors if cmap is None: color_list = _get_color_list() for cond, color_int in colors.items(): colors[cond] = color_list[color_int] # recompute color_vals as a sorted set (we'll need it that way later) color_vals = set(colors.values()) if all_numeric: color_vals = sorted(color_vals) return colors, color_vals def _validate_cmap_pce(cmap, colors, color_vals): """Check and assign colormap for plot_compare_evokeds.""" from matplotlib.colors import Colormap all_int = all(isinstance(_color, Integral) for _color in color_vals) colorbar_title = "" if isinstance(cmap, (list, tuple, np.ndarray)) and len(cmap) == 2: colorbar_title, cmap = cmap if isinstance(cmap, (str, Colormap)): lut = len(color_vals) if all_int else None cmap = _get_cmap(cmap, lut) return cmap, colorbar_title def _validate_linestyles_pce(linestyles, conditions, tags): """Check and assign linestyles for plot_compare_evokeds.""" # make linestyles a list if it's not defined if linestyles is None: linestyles = [None] * len(conditions) # will get changed to defaults # convert linestyle list to dict if isinstance(linestyles, (list, tuple, np.ndarray)): if len(conditions) > len(linestyles): raise ValueError( f"Trying to plot {len(conditions)} conditions, but there are only " f"{len(linestyles)} linestyles. Please specify linestyles manually." ) linestyles = dict(zip(conditions, linestyles)) # should be a dict by now... if not isinstance(linestyles, dict): raise TypeError( '"linestyles" must be a dict, list, or None; got ' f"{type(linestyles).__name__}." ) # validate linestyle dict keys if not set(linestyles).issubset(tags.union(conditions)): raise ValueError( f'If "linestyles" is a dict its keys ({list(linestyles)}) must match the ' f'keys/conditions in "evokeds" ({conditions}).' ) # normalize linestyle values (so we can accurately count unique linestyles # later). See https://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template#L131-L133 # noqa linestyle_map = { "solid": (0, ()), "dotted": (0, (1.0, 1.65)), "dashed": (0, (3.7, 1.6)), "dashdot": (0, (6.4, 1.6, 1.0, 1.6)), "-": (0, ()), ":": (0, (1.0, 1.65)), "--": (0, (3.7, 1.6)), "-.": (0, (6.4, 1.6, 1.0, 1.6)), } for cond, _ls in linestyles.items(): linestyles[cond] = linestyle_map.get(_ls, _ls) return linestyles def _populate_style_dict_pce(condition, condition_styles, style_name, style_dict, cmap): """Transfer styles into condition_styles dict for plot_compare_evokeds.""" defaults = dict(color="gray", linestyle=(0, ())) # (0, ()) == 'solid' # if condition X doesn't yet have style Y defined: if condition_styles.get(style_name, None) is None: # check the style dict for the full condition name try: condition_styles[style_name] = style_dict[condition] # if it's not in there, try the slash-separated condition tags except KeyError: for tag in condition.split("/"): try: condition_styles[style_name] = style_dict[tag] # if the tag's not in there, assign a default value (but also # continue looping in search of a tag that *is* in there) except KeyError: condition_styles[style_name] = defaults[style_name] # if we found a valid tag, keep track of it for colorbar # legend purposes, and also stop looping (so we don't overwrite # a valid tag's style with an invalid tag → default style) else: if style_name == "color" and cmap is not None: condition_styles["cmap_label"] = tag break return condition_styles def _handle_styles_pce(styles, linestyles, colors, cmap, conditions): """Check and assign styles for plot_compare_evokeds.""" styles = deepcopy(styles) # validate style dict structure (doesn't check/assign values yet) tags = set(tag for cond in conditions for tag in cond.split("/")) if styles is None: styles = {cond: dict() for cond in conditions} styles = _validate_style_keys_pce(styles, conditions, tags) # validate color dict colors, color_vals = _validate_colors_pce(colors, cmap, conditions, tags) all_int = all([isinstance(_color, Integral) for _color in color_vals]) # instantiate cmap cmap, colorbar_title = _validate_cmap_pce(cmap, colors, color_vals) # validate linestyles linestyles = _validate_linestyles_pce(linestyles, conditions, tags) # prep for colorbar tick handling colorbar_ticks = None if cmap is None else dict() # array mapping color integers (indices) to tick locations (array values) tick_locs = np.linspace(0, 1, 2 * len(color_vals) + 1)[1::2] # transfer colors/linestyles dicts into styles dict; fall back on defaults color_and_linestyle = dict(color=colors, linestyle=linestyles) for cond, cond_styles in styles.items(): for _name, _style in color_and_linestyle.items(): cond_styles = _populate_style_dict_pce( cond, cond_styles, _name, _style, cmap ) # convert numeric colors into cmap color values; store colorbar ticks if cmap is not None: color_number = cond_styles["color"] cond_styles["color"] = cmap(color_number) tick_loc = tick_locs[color_number] if all_int else color_number key = cond_styles.pop("cmap_label", cond) colorbar_ticks[key] = tick_loc return styles, linestyles, colors, cmap, colorbar_title, colorbar_ticks def _evoked_sensor_legend(info, picks, ymin, ymax, show_sensors, ax, sphere): """Show sensor legend (location of a set of sensors on the head).""" if show_sensors is True: ymin, ymax = np.abs(ax.get_ylim()) show_sensors = "lower right" if ymin > ymax else "upper right" pos, outlines = _get_pos_outlines(info, picks, sphere=sphere) show_sensors = _check_loc_legal(show_sensors, "show_sensors") _plot_legend(pos, ["k"] * len(picks), ax, list(), outlines, show_sensors, size=25) def _draw_colorbar_pce(ax, colors, cmap, colorbar_title, colorbar_ticks): """Draw colorbar for plot_compare_evokeds.""" from matplotlib.colorbar import ColorbarBase from matplotlib.transforms import Bbox from mpl_toolkits.axes_grid1 import make_axes_locatable # create colorbar axes orig_bbox = ax.get_position() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.1) cax.yaxis.tick_right() cb = ColorbarBase(cax, cmap=cmap, norm=None, orientation="vertical") cb.set_label(colorbar_title) # handle ticks ticks = sorted(set(colorbar_ticks.values())) ticklabels = [""] * len(ticks) for label, tick in colorbar_ticks.items(): idx = ticks.index(tick) if len(ticklabels[idx]): # handle labels with the same color/location ticklabels[idx] = "\n".join([ticklabels[idx], label]) else: ticklabels[idx] = label assert all(len(label) for label in ticklabels) cb.set_ticks(ticks) cb.set_ticklabels(ticklabels) # shrink colorbar if discrete colors color_vals = set(colors.values()) if all([isinstance(_color, Integral) for _color in color_vals]): fig = ax.get_figure() fig.canvas.draw() fig_aspect = np.divide(*fig.get_size_inches()) new_bbox = ax.get_position() cax_width = 0.75 * (orig_bbox.xmax - new_bbox.xmax) # add extra space for multiline colorbar labels h_mult = max(2, max([len(label.split("\n")) for label in ticklabels])) cax_height = len(color_vals) * h_mult * cax_width / fig_aspect x0 = orig_bbox.xmax - cax_width y0 = (new_bbox.ymax + new_bbox.ymin - cax_height) / 2 x1 = orig_bbox.xmax y1 = y0 + cax_height new_bbox = Bbox([[x0, y0], [x1, y1]]) cax.set_axes_locator(None) cax.set_position(new_bbox) def _draw_legend_pce( legend, split_legend, styles, linestyles, colors, cmap, do_topo, ax ): """Draw legend for plot_compare_evokeds.""" import matplotlib.lines as mlines lines = list() # triage if split_legend is None: split_legend = cmap is not None n_colors = len(set(colors.values())) n_linestyles = len(set(linestyles.values())) draw_styles = cmap is None and not split_legend draw_colors = cmap is None and split_legend and n_colors > 1 draw_linestyles = (cmap is None or split_legend) and n_linestyles > 1 # create the fake lines for the legend if draw_styles: for label, cond_styles in styles.items(): line = mlines.Line2D([], [], label=label, **cond_styles) lines.append(line) else: if draw_colors: for label, color in colors.items(): line = mlines.Line2D( [], [], label=label, linestyle="solid", color=color ) lines.append(line) if draw_linestyles: for label, linestyle in linestyles.items(): line = mlines.Line2D( [], [], label=label, linestyle=linestyle, color="black" ) lines.append(line) # legend params ncol = 1 + (len(lines) // 5) loc = _check_loc_legal(legend, "legend") legend_params = dict(loc=loc, frameon=True, ncol=ncol) # special placement (above dedicated legend axes) in topoplot if do_topo and isinstance(legend, bool): legend_params.update(loc="lower right", bbox_to_anchor=(1, 1)) # draw the legend if any([draw_styles, draw_colors, draw_linestyles]): labels = [_abbreviate_label(line.get_label()) for line in lines] ax.legend(lines, labels, **legend_params) _LABEL_LIMIT = 40 # don't let labels be excessively long def _abbreviate_label(label): if len(label) > _LABEL_LIMIT: label = label[:_LABEL_LIMIT] + " …" return label def _draw_axes_pce( ax, ymin, ymax, truncate_yaxis, truncate_xaxis, invert_y, vlines, tmin, tmax, unit, skip_axlabel=True, time_unit="s", ): """Position, draw, and truncate axes for plot_compare_evokeds.""" # avoid matplotlib errors if ymin == ymax: ymax += 1e-15 if tmin == tmax: tmax += 1e-9 ax.set_xlim(tmin, tmax) # for dark backgrounds: ax.patch.set_alpha(0) if not np.isfinite([ymin, ymax]).all(): # nothing plotted return ax.set_ylim(ymin, ymax) ybounds = (ymin, ymax) # determine ymin/ymax for spine truncation trunc_y = True if truncate_yaxis == "auto" else truncate_yaxis if truncate_yaxis: if isinstance(truncate_yaxis, bool): # truncate to half the max abs. value and round to a nice-ish # number. ylims are already symmetric about 0 or have a lower bound # of 0, so div. by 2 should suffice. ybounds = np.array([ymin, ymax]) / 2.0 precision = 0.25 ybounds = np.round(ybounds / precision) * precision elif truncate_yaxis == "auto": # truncate to existing max/min ticks ybounds = _trim_ticks(ax.get_yticks(), ymin, ymax)[[0, -1]] else: raise ValueError( f'"truncate_yaxis" must be bool or "auto", got {truncate_yaxis}' ) _setup_ax_spines( ax, vlines, tmin, tmax, ybounds[0], ybounds[1], invert_y, unit, truncate_xaxis, trunc_y, skip_axlabel, time_unit=time_unit, ) def _get_data_and_ci( evoked, combine, combine_func, ch_type, picks, scaling=1, ci_fun=None ): """Compute (sensor-aggregated, scaled) time series and possibly CI.""" picks = np.array(picks).flatten() # apply scalings data = np.array([evk.data[picks] * scaling for evk in evoked]) # combine across sensors if combine is not None: if combine == "gfp" and ch_type == "eeg": msg = f"GFP ({ch_type} channels)" elif combine == "gfp" and ch_type in ("mag", "grad"): msg = f"RMS ({ch_type} channels)" else: msg = f'"{combine}"' logger.info(f"combining channels using {msg}") data = combine_func(data) # get confidence band if ci_fun is not None: ci = ci_fun(data) # get grand mean across evokeds data = np.mean(data, axis=0) _check_if_nan(data) return (data,) if ci_fun is None else (data, ci) def _get_ci_function_pce(ci, do_topo=False): """Get confidence interval function for plot_compare_evokeds.""" if ci is None: return None elif callable(ci): return ci elif isinstance(ci, bool) and not ci: return None elif isinstance(ci, bool): ci = 0.95 if isinstance(ci, float): from ..stats import _ci method = "parametric" if do_topo else "bootstrap" return partial(_ci, ci=ci, method=method) else: raise TypeError( f'"ci" must be None, bool, float or callable, got {type(ci).__name__}' ) def _plot_compare_evokeds( ax, data_dict, conditions, times, ci_dict, styles, title, topo ): """Plot evokeds (to compare them; with CIs) based on a data_dict.""" for condition in conditions: # plot the actual data ('dat') as a line dat = data_dict[condition].T ax.plot( times, dat, zorder=1000, label=condition, clip_on=False, **styles[condition] ) # plot the confidence interval if available if ci_dict.get(condition, None) is not None: ci_ = ci_dict[condition] ax.fill_between( times, ci_[0].flatten(), ci_[1].flatten(), zorder=9, color=styles[condition]["color"], alpha=0.3, clip_on=False, ) if topo: ax.text(-0.1, 1, title, transform=ax.transAxes) else: ax.set_title(title) def _title_helper_pce(title, picked_types, picks, ch_names, ch_type, combine): """Format title for plot_compare_evokeds.""" if title is None: title = ( _handle_default("titles").get(picks, None) if picked_types else _set_title_multiple_electrodes(title, combine, ch_names) ) # add the `combine` modifier do_combine = picked_types or len(ch_names) > 1 if title is not None and len(title) and isinstance(combine, str) and do_combine: if combine == "gfp": _comb = "RMS" if ch_type in ("mag", "grad") else "GFP" elif combine == "std": _comb = "std. dev." else: _comb = combine title += f" ({_comb})" return title def _ascii_minus_to_unicode(s): """Replace ASCII-encoded "minus-hyphen" characters with Unicode minus. Aux function for ``plot_compare_evokeds`` to prettify ``Evoked.comment``. """ if s is None: return # replace ASCII minus operators with Unicode minus characters s = s.replace(" - ", " − ") # replace leading minus operator if present if s.startswith("-"): s = f"−{s[1:]}" return s @fill_doc def plot_compare_evokeds( evokeds, picks=None, colors=None, linestyles=None, styles=None, cmap=None, vlines="auto", ci=True, truncate_yaxis="auto", truncate_xaxis=True, ylim=None, invert_y=False, show_sensors=None, legend=True, split_legend=None, axes=None, title=None, show=True, combine=None, sphere=None, time_unit="s", ): """Plot evoked time courses for one or more conditions and/or channels. Parameters ---------- evokeds : instance of mne.Evoked | list | dict If a single Evoked instance, it is plotted as a time series. If a list of Evokeds, the contents are plotted with their ``.comment`` attributes used as condition labels. If no comment is set, the index of the respective Evoked the list will be used instead, starting with ``1`` for the first Evoked. If a dict whose values are Evoked objects, the contents are plotted as single time series each and the keys are used as labels. If a [dict/list] of lists, the unweighted mean is plotted as a time series and the parametric confidence interval is plotted as a shaded area. All instances must have the same shape - channel numbers, time points etc. If dict, keys must be of type :class:`str`. %(picks_all_data)s * If picks is None or a (collection of) data channel types, the global field power will be plotted for all data channels. Otherwise, picks will be averaged. * If multiple channel types are selected, one figure will be returned for each channel type. * If the selected channels are gradiometers, the signal from corresponding (gradiometer) pairs will be combined. colors : list | dict | None Colors to use when plotting the ERP/F lines and confidence bands. If ``cmap`` is not ``None``, ``colors`` must be a :class:`list` or :class:`dict` of :class:`ints ` or :class:`floats ` indicating steps or percentiles (respectively) along the colormap. If ``cmap`` is ``None``, list elements or dict values of ``colors`` must be :class:`ints ` or valid :ref:`matplotlib colors `; lists are cycled through sequentially, while dicts must have keys matching the keys or conditions of an ``evokeds`` dict (see Notes for details). If ``None``, the current :doc:`matplotlib color cycle ` is used. Defaults to ``None``. linestyles : list | dict | None Styles to use when plotting the ERP/F lines. If a :class:`list` or :class:`dict`, elements must be valid :doc:`matplotlib linestyles `. Lists are cycled through sequentially; dictionaries must have keys matching the keys or conditions of an ``evokeds`` dict (see Notes for details). If ``None``, all lines will be solid. Defaults to ``None``. styles : dict | None Dictionary of styles to use when plotting ERP/F lines. Keys must match keys or conditions of ``evokeds``, and values must be a :class:`dict` of legal inputs to :func:`matplotlib.pyplot.plot`. Those values will be passed as parameters to the line plot call of the corresponding condition, overriding defaults (e.g., ``styles={"Aud/L": {"linewidth": 3}}`` will set the linewidth for "Aud/L" to 3). As with ``colors`` and ``linestyles``, keys matching conditions in ``/``-separated ``evokeds`` keys are supported (see Notes for details). cmap : None | str | tuple | instance of matplotlib.colors.Colormap Colormap from which to draw color values when plotting the ERP/F lines and confidence bands. If not ``None``, ints or floats in the ``colors`` parameter are mapped to steps or percentiles (respectively) along the colormap. If ``cmap`` is a :class:`str`, it will be passed to ``matplotlib.colormaps``; if ``cmap`` is a tuple, its first element will be used as a string to label the colorbar, and its second element will be passed to ``matplotlib.colormaps`` (unless it is already an instance of :class:`~matplotlib.colors.Colormap`). .. versionchanged:: 0.19 Support for passing :class:`~matplotlib.colors.Colormap` instances. vlines : ``"auto"`` | list of float A list in seconds at which to plot dashed vertical lines. If ``"auto"`` and the supplied data includes 0, it is set to ``[0.]`` and a vertical bar is plotted at time 0. If an empty list is passed, no vertical lines are plotted. ci : float | bool | callable | None Confidence band around each ERP/F time series. If ``False`` or ``None`` no confidence band is drawn. If :class:`float`, ``ci`` must be between 0 and 1, and will set the threshold for a bootstrap (single plot)/parametric (when ``axes=='topo'``) estimation of the confidence band; ``True`` is equivalent to setting a threshold of 0.95 (i.e., the 95%% confidence band is drawn). If a callable, it must take a single array (n_observations × n_times) as input and return upper and lower confidence margins (2 × n_times). Defaults to ``True``. truncate_yaxis : bool | ``'auto'`` Whether to shorten the y-axis spine. If ``'auto'``, the spine is truncated at the minimum and maximum ticks. If ``True``, it is truncated at the multiple of 0.25 nearest to half the maximum absolute value of the data. If ``truncate_xaxis=False``, only the far bound of the y-axis will be truncated. Defaults to ``'auto'``. truncate_xaxis : bool Whether to shorten the x-axis spine. If ``True``, the spine is truncated at the minimum and maximum ticks. If ``truncate_yaxis=False``, only the far bound of the x-axis will be truncated. Defaults to ``True``. %(evoked_ylim_plot)s invert_y : bool Whether to plot negative values upward (as is sometimes done for ERPs out of tradition). Defaults to ``False``. show_sensors : bool | int | str | None Whether to display an inset showing sensor locations on a head outline. If :class:`int` or :class:`str`, indicates position of the inset (see :func:`mpl_toolkits.axes_grid1.inset_locator.inset_axes`). If ``None``, treated as ``True`` if there is only one channel in ``picks``. If ``True``, location is upper or lower right corner, depending on data values. Defaults to ``None``. legend : bool | int | str Whether to show a legend for the colors/linestyles of the conditions plotted. If :class:`int` or :class:`str`, indicates position of the legend (see :func:`mpl_toolkits.axes_grid1.inset_locator.inset_axes`). If ``True``, equivalent to ``'upper left'``. Defaults to ``True``. split_legend : bool | None Whether to separate color and linestyle in the legend. If ``None``, a separate linestyle legend will still be shown if ``cmap`` is specified. Defaults to ``None``. axes : None | Axes instance | list of Axes | ``'topo'`` :class:`~matplotlib.axes.Axes` object to plot into. If plotting multiple channel types (or multiple channels when ``combine=None``), ``axes`` should be a list of appropriate length containing :class:`~matplotlib.axes.Axes` objects. If ``'topo'``, a new :class:`~matplotlib.figure.Figure` is created with one axis for each channel, in a topographical layout. If ``None``, a new :class:`~matplotlib.figure.Figure` is created for each channel type. Defaults to ``None``. title : str | None Title printed above the plot. If ``None``, a title will be automatically generated based on channel name(s) or type(s) and the value of the ``combine`` parameter. Defaults to ``None``. show : bool Whether to show the figure. Defaults to ``True``. %(combine_plot_compare_evokeds)s %(sphere_topomap_auto)s %(time_unit)s .. versionadded:: 1.1 Returns ------- fig : list of Figure instances A list of the figure(s) generated. Notes ----- If the parameters ``styles``, ``colors``, or ``linestyles`` are passed as :class:`dicts `, then ``evokeds`` must also be a :class:`python:dict`, and the keys of the plot-style parameters must either match the keys of ``evokeds``, or match a ``/``-separated partial key ("condition") of ``evokeds``. For example, if evokeds has keys "Aud/L", "Aud/R", "Vis/L", and "Vis/R", then ``linestyles=dict(L='--', R='-')`` will plot both Aud/L and Vis/L conditions with dashed lines and both Aud/R and Vis/R conditions with solid lines. Similarly, ``colors=dict(Aud='r', Vis='b')`` will plot Aud/L and Aud/R conditions red and Vis/L and Vis/R conditions blue. Color specification depends on whether a colormap has been provided in the ``cmap`` parameter. The following table summarizes how the ``colors`` parameter is interpreted: .. cssclass:: table-bordered .. rst-class:: midvalign +-------------+----------------+------------------------------------------+ | ``cmap`` | ``colors`` | result | +=============+================+==========================================+ | | None | matplotlib default color cycle; unique | | | | color for each condition | | +----------------+------------------------------------------+ | | | matplotlib default color cycle; lowest | | | list or dict | integer mapped to first cycle color; | | | of integers | conditions with same integer get same | | None | | color; unspecified conditions are "gray" | | +----------------+------------------------------------------+ | | list or dict | ``ValueError`` | | | of floats | | | +----------------+------------------------------------------+ | | list or dict | the specified hex colors; unspecified | | | of hexadecimal | conditions are "gray" | | | color strings | | +-------------+----------------+------------------------------------------+ | | None | equally spaced colors on the colormap; | | | | unique color for each condition | | +----------------+------------------------------------------+ | | | equally spaced colors on the colormap; | | | list or dict | lowest integer mapped to first cycle | | string or | of integers | color; conditions with same integer | | instance of | | get same color | | matplotlib +----------------+------------------------------------------+ | Colormap | list or dict | floats mapped to corresponding colormap | | | of floats | values | | +----------------+------------------------------------------+ | | list or dict | | | | of hexadecimal | ``TypeError`` | | | color strings | | +-------------+----------------+------------------------------------------+ """ import matplotlib.pyplot as plt from ..evoked import Evoked, _check_evokeds_ch_names_times # build up evokeds into a dict, if it's not already if isinstance(evokeds, Evoked): evokeds = [evokeds] if isinstance(evokeds, (list, tuple)): evokeds_copy = evokeds.copy() evokeds = dict() comments = [ _ascii_minus_to_unicode(getattr(_evk, "comment", None)) for _evk in evokeds_copy ] for idx, (comment, _evoked) in enumerate(zip(comments, evokeds_copy)): key = str(idx + 1) if comment: # only update key if comment is non-empty if comments.count(comment) == 1: # comment is unique key = comment else: # comment is non-unique: prepend index key = f"{key}: {comment}" evokeds[key] = _evoked del evokeds_copy if not isinstance(evokeds, dict): raise TypeError( '"evokeds" must be a dict, list, or instance of ' f"mne.Evoked; got {type(evokeds).__name__}" ) evokeds = deepcopy(evokeds) # avoid modifying dict outside function scope for cond, evoked in evokeds.items(): _validate_type(cond, "str", "Conditions") if isinstance(evoked, Evoked): evokeds[cond] = [evoked] # wrap singleton evokeds in a list for evk in evokeds[cond]: _validate_type(evk, Evoked, "All evokeds entries ", "Evoked") # ensure same channels and times across all evokeds all_evoked = sum(evokeds.values(), []) _check_evokeds_ch_names_times(all_evoked) del all_evoked # get some representative info conditions = list(evokeds) one_evoked = evokeds[conditions[0]][0] times = one_evoked.times info = one_evoked.info sphere = _check_sphere(sphere, info) time_unit, times = _check_time_unit(time_unit, one_evoked.times) tmin, tmax = times[0], times[-1] # set some defaults if ylim is None: ylim = dict() if vlines == "auto": vlines = [0.0] if (tmin < 0 < tmax) else [] _validate_type(vlines, (list, tuple), "vlines", "list or tuple") # is picks a channel type (or None)? orig_picks = deepcopy(picks) picks, picked_types = _picks_to_idx(info, picks, return_kind=True) # some things that depend on picks: ch_names = np.array(one_evoked.ch_names)[picks].tolist() all_types = _DATA_CH_TYPES_SPLIT + ( "misc", # from ICA "emg", "ref_meg", "eyegaze", "pupil", ) ch_types = [ t for t in info.get_channel_types(picks=picks, unique=True) if t in all_types ] picks_by_type = channel_indices_by_type(info, picks) # discard picks from non-data channels (e.g., ref_meg) good_picks = sum([picks_by_type[ch_type] for ch_type in ch_types], []) picks = np.intersect1d(picks, good_picks) if show_sensors is None: show_sensors = len(picks) == 1 _validate_type(combine, types=(None, "callable", str), item_name="combine") # cannot combine a single channel if (len(picks) < 2) and combine is not None: warn( f'Only {len(picks)} channel in "picks"; cannot combine by method ' f'"{combine}".' ) # `combine` defaults to GFP unless picked a single channel or axes='topo' do_topo = isinstance(axes, str) and axes == "topo" if combine is None and len(picks) > 1 and not do_topo: combine = "gfp" # convert `combine` into callable (if None or str) combine_funcs = { ch_type: _make_combine_callable(combine, ch_type=ch_type) for ch_type in ch_types } # title title = _title_helper_pce( title, picked_types, picks=orig_picks, ch_names=ch_names, ch_type=ch_types[0] if len(ch_types) == 1 else None, combine=combine, ) topo_disp_title = False # setup axes if do_topo: show_sensors = False if len(picks) > 70: logger.info( "You are plotting to a topographical layout with >70 " "sensors. This can be extremely slow. Consider using " "mne.viz.plot_topo, which is optimized for speed." ) topo_title = title topo_disp_title = True axes = ["topo"] * len(ch_types) else: if axes is None: axes = ( plt.subplots(figsize=(8, 6), layout="constrained")[1] for _ in ch_types ) elif isinstance(axes, plt.Axes): axes = [axes] _validate_if_list_of_axes(axes, obligatory_len=len(ch_types)) if len(ch_types) > 1: logger.info("Multiple channel types selected, returning one figure per type.") figs = list() for ch_type, ax in zip(ch_types, axes): _picks = picks_by_type[ch_type] _ch_names = np.array(one_evoked.ch_names)[_picks].tolist() _picks = ch_type if picked_types else _picks # don't pass `combine` here; title will run through this helper # function a second time & it will get added then _title = _title_helper_pce( title, picked_types, picks=_picks, ch_names=_ch_names, ch_type=ch_type, combine=None, ) figs.extend( plot_compare_evokeds( evokeds, picks=_picks, colors=colors, cmap=cmap, linestyles=linestyles, styles=styles, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, ylim=ylim, invert_y=invert_y, legend=legend, show_sensors=show_sensors, axes=ax, title=_title, split_legend=split_legend, show=show, sphere=sphere, ) ) return figs # colors and colormap. This yields a `styles` dict with one entry per # condition, specifying at least color and linestyle. THIS MUST BE DONE # AFTER THE "MULTIPLE CHANNEL TYPES" LOOP ( _styles, _linestyles, _colors, _cmap, colorbar_title, colorbar_ticks, ) = _handle_styles_pce(styles, linestyles, colors, cmap, conditions) # From now on there is only 1 channel type if not len(ch_types): got_idx = _picks_to_idx(info, picks=orig_picks) got = np.unique(np.array(info.get_channel_types())[got_idx]).tolist() raise RuntimeError( f"No valid channel type(s) provided. Got {got}. Valid channel types are:" f"\n{all_types}." ) ch_type = ch_types[0] # some things that depend on ch_type: units = _handle_default("units")[ch_type] scalings = _handle_default("scalings")[ch_type] combine_func = combine_funcs[ch_type] # prep for topo pos_picks = picks # need this version of picks for sensor location inset info = pick_info(info, sel=picks, copy=True) all_ch_names = info["ch_names"] if not do_topo: # add vacuous "index" (needed for topo) so same code works for both axes = [(ax, 0) for ax in axes] if np.array(picks).ndim < 2: picks = [picks] # enables zipping w/ axes else: from ..channels.layout import find_layout from .topo import iter_topography fig = plt.figure(figsize=(18, 14), layout=None) # Not "constrained" for topo def click_func( ax_, pick_, evokeds=evokeds, colors=colors, linestyles=linestyles, styles=styles, cmap=cmap, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, truncate_xaxis=truncate_xaxis, ylim=ylim, invert_y=invert_y, show_sensors=show_sensors, legend=legend, split_legend=split_legend, picks=picks, combine=combine, ): plot_compare_evokeds( evokeds=evokeds, colors=colors, linestyles=linestyles, styles=styles, cmap=cmap, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, truncate_xaxis=truncate_xaxis, ylim=ylim, invert_y=invert_y, show_sensors=show_sensors, legend=legend, split_legend=split_legend, picks=picks[pick_], combine=combine, axes=ax_, show=True, sphere=sphere, ) layout = find_layout(info) # make sure everything fits nicely. our figsize is (18, 14) so margins # of 0.25 inch seem OK w_margin = 0.25 / 18 h_margin = 0.25 / 14 axes_width = layout.pos[0, 2] axes_height = layout.pos[0, 3] left_edge = layout.pos[:, 0].min() right_edge = layout.pos[:, 0].max() + axes_width bottom_edge = layout.pos[:, 1].min() top_edge = layout.pos[:, 1].max() + axes_height # compute scale. Use less of vertical height (leave room for title) w_scale = (0.95 - 2 * w_margin) / (right_edge - left_edge) h_scale = (0.9 - 2 * h_margin) / (top_edge - bottom_edge) # apply transformation layout.pos[:, 0] = (layout.pos[:, 0] - left_edge) * w_scale + w_margin + 0.025 layout.pos[:, 1] = (layout.pos[:, 1] - bottom_edge) * h_scale + h_margin + 0.025 # make sure there is room for a legend axis (sometimes not if only a # few channels were picked) data_lefts = layout.pos[:, 0] data_bottoms = layout.pos[:, 1] legend_left = data_lefts.max() legend_bottom = data_bottoms.min() overlap = np.any( np.logical_and( np.logical_and( data_lefts <= legend_left, legend_left <= (data_lefts + axes_width) ), np.logical_and( data_bottoms <= legend_bottom, legend_bottom <= (data_bottoms + axes_height), ), ) ) right_edge = legend_left + axes_width n_columns = (right_edge - data_lefts.min()) / axes_width scale_factor = n_columns / (n_columns + 1) if overlap: layout.pos[:, [0, 2]] *= scale_factor # `axes` will be a list of (axis_object, channel_index) tuples axes = list( iter_topography( info, layout=layout, on_pick=click_func, fig=fig, fig_facecolor="w", axis_facecolor="w", axis_spinecolor="k", layout_scale=None, legend=True, ) ) picks = list(picks) del info # for each axis, compute the grand average and (maybe) the CI # (per sensor if topo, otherwise aggregating over sensors) c_func = None if do_topo else combine_func all_data = list() all_cis = list() for _picks, (ax, idx) in zip(picks, axes): data_dict = dict() ci_dict = dict() for cond in conditions: this_evokeds = evokeds[cond] # assign ci_fun first to get arg checking ci_fun = _get_ci_function_pce(ci, do_topo=do_topo) # for bootstrap or parametric CIs, skip when only 1 observation if not callable(ci): ci_fun = ci_fun if len(this_evokeds) > 1 else None res = _get_data_and_ci( this_evokeds, combine, c_func, ch_type=ch_type, picks=_picks, scaling=scalings, ci_fun=ci_fun, ) data_dict[cond] = res[0] if ci_fun is not None: ci_dict[cond] = res[1] all_data.append(data_dict) # grand means, or indiv. sensors if do_topo all_cis.append(ci_dict) del evokeds # compute ylims allvalues = list() for _dict in all_data: for _array in list(_dict.values()): allvalues.append(_array[np.newaxis]) # to get same .ndim as CIs for _dict in all_cis: allvalues.extend(list(_dict.values())) allvalues = np.concatenate(allvalues) norm = np.all(allvalues > 0) orig_ymin, orig_ymax = ylim.get(ch_type, [None, None]) ymin, ymax = _setup_vmin_vmax(allvalues, orig_ymin, orig_ymax, norm) del allvalues # add empty data and title for the legend axis if do_topo: all_data.append({cond: np.array([]) for cond in data_dict}) all_cis.append({cond: None for cond in ci_dict}) all_ch_names.append("") # plot! for (ax, idx), data, cis in zip(axes, all_data, all_cis): if do_topo: title = all_ch_names[idx] # plot the data _times = [] if idx == -1 else times _plot_compare_evokeds( ax, data, conditions, _times, cis, _styles, title, do_topo ) # draw axes & vlines skip_axlabel = do_topo and (idx != -1) _draw_axes_pce( ax, ymin, ymax, truncate_yaxis, truncate_xaxis, invert_y, vlines, tmin, tmax, units, skip_axlabel, time_unit, ) # add inset scalp plot showing location of sensors picked if show_sensors: _validate_type( show_sensors, (np.int64, bool, str, type(None)), "show_sensors", "numeric, str, None or bool", ) if not _check_ch_locs(info=one_evoked.info, picks=pos_picks): warn( "Cannot find channel coordinates in the supplied Evokeds. " "Not showing channel locations." ) else: _evoked_sensor_legend( one_evoked.info, pos_picks, ymin, ymax, show_sensors, ax, sphere ) # add color/linestyle/colormap legend(s) if legend: _draw_legend_pce( legend, split_legend, _styles, _linestyles, _colors, _cmap, do_topo, ax ) if cmap is not None: _draw_colorbar_pce(ax, _colors, _cmap, colorbar_title, colorbar_ticks) # finish if topo_disp_title: ax.figure.suptitle(topo_title) plt_show(show) return [ax.figure]