"""Figure classes for MNE-Python's 2D plots. Class Hierarchy --------------- MNEFigParams Container object, attached to MNEFigure by default. Sets close_key='escape' plus whatever other key-value pairs are passed to its constructor. matplotlib.figure.Figure └ MNEFigure ├ MNEBrowseFigure Interactive figure for scrollable data. │ Generated by: │ - raw.plot() │ - epochs.plot() │ - ica.plot_sources(raw) │ - ica.plot_sources(epochs) │ ├ MNEAnnotationFigure GUI for adding annotations to Raw │ ├ MNESelectionFigure GUI for spatial channel selection. raw.plot() │ and epochs.plot() will generate one of these │ alongside an MNEBrowseFigure when │ group_by == 'selection' or 'position' │ └ MNELineFigure Interactive figure for non-scrollable data. Generated by: - spectrum.plot() - evoked.plot() TODO Not yet implemented - evoked.plot_white() TODO Not yet implemented - evoked.plot_joint() TODO Not yet implemented """ # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import datetime import platform from collections import OrderedDict from contextlib import contextmanager from functools import partial import matplotlib.pyplot as plt import numpy as np from matplotlib import get_backend from matplotlib.figure import Figure from .._fiff.pick import ( _DATA_CH_TYPES_ORDER_DEFAULT, _DATA_CH_TYPES_SPLIT, _EYETRACK_CH_TYPES_SPLIT, _FNIRS_CH_TYPES_SPLIT, _VALID_CHANNEL_TYPES, channel_indices_by_type, pick_types, ) from ..fixes import _close_event from ..utils import Bunch, _click_ch_name, check_version, logger from ._figure import BrowserBase from .utils import ( DraggableLine, _events_off, _fake_click, _fake_keypress, _fake_scroll, _merge_annotations, _set_window_title, _validate_if_list_of_axes, plot_sensors, plt_show, ) name = "matplotlib" BACKEND = get_backend() # CONSTANTS (inches) ANNOTATION_FIG_PAD = 0.1 ANNOTATION_FIG_MIN_H = 2.9 # fixed part, not including radio buttons/labels ANNOTATION_FIG_W = 5.0 ANNOTATION_FIG_CHECKBOX_COLUMN_W = 0.5 _OLD_BUTTONS = not check_version("matplotlib", "3.7") class MNEFigure(Figure): """Base class for 2D figures & dialogs; wraps matplotlib.figure.Figure.""" def __init__(self, **kwargs): from matplotlib import rcParams # figsize is the only kwarg we pass to matplotlib Figure() figsize = kwargs.pop("figsize", None) super().__init__(figsize=figsize) # things we'll almost always want defaults = dict( fgcolor=rcParams["axes.edgecolor"], bgcolor=rcParams["axes.facecolor"] ) for key, value in defaults.items(): if key not in kwargs: kwargs[key] = value # add param object if not already added (e.g. by BrowserBase) if not hasattr(self, "mne"): from mne.viz._figure import BrowserParams self.mne = BrowserParams(**kwargs) else: for key in [k for k in kwargs if not hasattr(self.mne, k)]: setattr(self.mne, key, kwargs[key]) def _close(self, event=None): """Handle close events.""" logger.debug(f"Closing {self!r}") # remove references from parent fig to child fig is_child = getattr(self.mne, "parent_fig", None) is not None is_named = getattr(self.mne, "fig_name", None) is not None if is_child: try: self.mne.parent_fig.mne.child_figs.remove(self) except ValueError: pass # already removed (on its own, probably?) if is_named: setattr(self.mne.parent_fig.mne, self.mne.fig_name, None) def _keypress(self, event): """Handle keypress events.""" if event.key == self.mne.close_key: plt.close(self) elif event.key == "f11": # full screen self.canvas.manager.full_screen_toggle() def _buttonpress(self, event): """Handle buttonpress events.""" pass def _pick(self, event): """Handle matplotlib pick events.""" pass def _resize(self, event): """Handle window resize events.""" pass def _add_default_callbacks(self, **kwargs): """Remove some matplotlib default callbacks and add MNE-Python ones.""" # Remove matplotlib default keypress catchers default_callbacks = list( self.canvas.callbacks.callbacks.get("key_press_event", {}) ) for callback in default_callbacks: self.canvas.callbacks.disconnect(callback) # add our event callbacks callbacks = dict( resize_event=self._resize, key_press_event=self._keypress, button_press_event=self._buttonpress, close_event=self._close, pick_event=self._pick, ) callbacks.update(kwargs) callback_ids = dict() for event, callback in callbacks.items(): callback_ids[event] = self.canvas.mpl_connect(event, callback) # store callback references so they aren't garbage-collected self.mne._callback_ids = callback_ids def _get_dpi_ratio(self): """Get DPI ratio (to handle hi-DPI screens).""" dpi_ratio = 1.0 for key in ("_dpi_ratio", "_device_scale"): dpi_ratio = getattr(self.canvas, key, dpi_ratio) return dpi_ratio def _get_size_px(self): """Get figure size in pixels.""" dpi_ratio = self._get_dpi_ratio() return self.get_size_inches() * self.dpi / dpi_ratio def _inch_to_rel(self, dim_inches, horiz=True): """Convert inches to figure-relative distances.""" fig_w, fig_h = self.get_size_inches() w_or_h = fig_w if horiz else fig_h return dim_inches / w_or_h class MNEAnnotationFigure(MNEFigure): """Interactive dialog figure for annotations.""" def _close(self, event): """Handle close events (via keypress or window [x]).""" parent = self.mne.parent_fig # disable span selector parent.mne.ax_main.selector.active = False # clear hover line parent._remove_annotation_hover_line() # disconnect hover callback callback_id = parent.mne._callback_ids["motion_notify_event"] parent.canvas.callbacks.disconnect(callback_id) # do all the other cleanup activities super()._close(event) def _keypress(self, event): """Handle keypress events.""" text = self.label.get_text() key = event.key if key == self.mne.close_key: plt.close(self) elif key == "backspace": text = text[:-1] elif key == "enter": self.mne.parent_fig._add_annotation_label(event) return elif len(key) > 1 or key == ";": # ignore modifier keys return else: text = text + key self.label.set_text(text) self.canvas.draw() def _radiopress(self, event, *, draw=True): """Handle Radiobutton clicks for Annotation label selection.""" # update which button looks active buttons = self.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] idx = labels.index(buttons.value_selected) self._set_active_button(idx, draw=False) # update click-drag rectangle color color = self.mne.parent_fig.mne.annotation_segment_colors[labels[idx]] selector = self.mne.parent_fig.mne.ax_main.selector # https://github.com/matplotlib/matplotlib/issues/20618 # https://github.com/matplotlib/matplotlib/pull/20693 selector.set_props(color=color, facecolor=color) if draw: self.canvas.draw() def _click_override(self, event): """Override MPL radiobutton click detector to use transData.""" assert _OLD_BUTTONS ax = self.mne.radio_ax buttons = ax.buttons if buttons.ignore(event) or event.button != 1 or event.inaxes != ax: return pclicked = ax.transData.inverted().transform((event.x, event.y)) distances = {} for i, (p, t) in enumerate(zip(buttons.circles, buttons.labels)): if ( t.get_window_extent().contains(event.x, event.y) or np.linalg.norm(pclicked - p.center) < p.radius ): distances[i] = np.linalg.norm(pclicked - p.center) if len(distances) > 0: closest = min(distances, key=distances.get) buttons.set_active(closest) def _set_active_button(self, idx, *, draw=True): """Set active button in annotation dialog figure.""" buttons = self.mne.radio_ax.buttons logger.debug(f"buttons: {buttons}") logger.debug(f"active idx: {idx}") with _events_off(buttons): buttons.set_active(idx) if _OLD_BUTTONS: logger.debug(f"circles: {buttons.circles}") for circle in buttons.circles: circle.set_facecolor(self.mne.parent_fig.mne.bgcolor) # active circle gets filled in, partially transparent color = list(buttons.circles[idx].get_edgecolor()) logger.debug(f"color: {color}") color[-1] = 0.5 buttons.circles[idx].set_facecolor(color) if draw: self.canvas.draw() class MNESelectionFigure(MNEFigure): """Interactive dialog figure for channel selections.""" def _close(self, event): """Handle close events.""" self.mne.parent_fig.mne.child_figs.remove(self) self.mne.fig_selection = None # selection fig & main fig tightly integrated; closing one closes both plt.close(self.mne.parent_fig) def _keypress(self, event): """Handle keypress events.""" if event.key in ("up", "down", "b"): self.mne.parent_fig._keypress(event) else: # check for close key super()._keypress(event) def _radiopress(self, event): """Handle RadioButton clicks for channel selection groups.""" logger.debug(f"Got radio press: {repr(event)}") selections_dict = self.mne.parent_fig.mne.ch_selections buttons = self.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] this_label = buttons.value_selected parent = self.mne.parent_fig if this_label == "Custom" and not len(selections_dict["Custom"]): with _events_off(buttons): buttons.set_active(self.mne.old_selection) return # clicking a selection cancels butterfly mode if parent.mne.butterfly: logger.debug("Disabling butterfly mode") parent._toggle_butterfly() with _events_off(buttons): buttons.set_active(labels.index(this_label)) parent._update_selection() def _set_custom_selection(self): """Set custom selection by lasso selector.""" chs = self.lasso.selection parent = self.mne.parent_fig buttons = self.mne.radio_ax.buttons if not len(chs): return labels = [label.get_text() for label in buttons.labels] inds = np.isin(parent.mne.ch_names, chs) parent.mne.ch_selections["Custom"] = inds.nonzero()[0] buttons.set_active(labels.index("Custom")) def _style_radio_buttons_butterfly(self): """Handle RadioButton state for keyboard interactions.""" # Show all radio buttons as selected when in butterfly mode parent = self.mne.parent_fig buttons = self.mne.radio_ax.buttons color = buttons.activecolor if parent.mne.butterfly else parent.mne.bgcolor if _OLD_BUTTONS: for circle in buttons.circles: circle.set_facecolor(color) # when leaving butterfly mode, make most-recently-used selection active if not parent.mne.butterfly: with _events_off(buttons): buttons.set_active(self.mne.old_selection) # update the sensors too parent._update_highlighted_sensors() class MNEBrowseFigure(BrowserBase, MNEFigure): """Interactive figure with scrollbars, for data browsing.""" def __init__(self, inst, figsize, ica=None, xlabel="Time (s)", **kwargs): from matplotlib.colors import to_rgba_array from matplotlib.patches import Rectangle from matplotlib.ticker import ( FixedFormatter, FixedLocator, FuncFormatter, NullFormatter, ) from matplotlib.transforms import blended_transform_factory from matplotlib.widgets import Button from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from mpl_toolkits.axes_grid1.axes_size import Fixed self.backend_name = "matplotlib" kwargs.update({"inst": inst, "figsize": figsize, "ica": ica, "xlabel": xlabel}) BrowserBase.__init__(self, **kwargs) MNEFigure.__init__(self, **kwargs) # MAIN AXES: default sizes (inches) # XXX simpler with constrained_layout? (when it's no longer "beta") l_margin = 1.0 r_margin = 0.1 b_margin = 0.45 t_margin = 0.25 scroll_width = 0.25 hscroll_dist = 0.25 vscroll_dist = 0.1 help_width = scroll_width * 2 # MAIN AXES: default margins (figure-relative coordinates) left = self._inch_to_rel(l_margin - vscroll_dist - help_width) right = 1 - self._inch_to_rel(r_margin) bottom = self._inch_to_rel(b_margin, horiz=False) top = 1 - self._inch_to_rel(t_margin, horiz=False) width = right - left height = top - bottom position = [left, bottom, width, height] # Main axes must be a subplot for subplots_adjust to work (so user can # adjust margins). That's why we don't use the Divider class directly. ax_main = self.add_subplot(1, 1, 1, position=position) self.subplotpars.update(left=left, bottom=bottom, top=top, right=right) div = make_axes_locatable(ax_main) # this only gets shown in zen mode self.mne.zen_xlabel = ax_main.set_xlabel(xlabel) self.mne.zen_xlabel.set_visible(not self.mne.scrollbars_visible) # make sure background color of the axis is set if "bgcolor" in kwargs: ax_main.set_facecolor(kwargs["bgcolor"]) # SCROLLBARS ax_hscroll = div.append_axes( position="bottom", size=Fixed(scroll_width), pad=Fixed(hscroll_dist) ) ax_vscroll = div.append_axes( position="right", size=Fixed(scroll_width), pad=Fixed(vscroll_dist) ) ax_hscroll.get_yaxis().set_visible(False) ax_hscroll.set_xlabel(xlabel) ax_vscroll.set_axis_off() # HORIZONTAL SCROLLBAR PATCHES (FOR MARKING BAD EPOCHS) if self.mne.is_epochs: epoch_nums = self.mne.inst.selection for ix, _ in enumerate(epoch_nums): start = self.mne.boundary_times[ix] width = np.diff(self.mne.boundary_times[:2])[0] ax_hscroll.add_patch( Rectangle( (start, 0), width, 1, color="none", zorder=self.mne.zorder["patch"], ) ) # both axes, major ticks: gridlines for _ax in (ax_main, ax_hscroll): _ax.xaxis.set_major_locator(FixedLocator(self.mne.boundary_times[1:-1])) _ax.xaxis.set_major_formatter(NullFormatter()) grid_kwargs = dict( color=self.mne.fgcolor, axis="x", zorder=self.mne.zorder["grid"] ) ax_main.grid(linewidth=2, linestyle="dashed", **grid_kwargs) ax_hscroll.grid(alpha=0.5, linewidth=0.5, linestyle="solid", **grid_kwargs) # main axes, minor ticks: ticklabel (epoch number) for every epoch ax_main.xaxis.set_minor_locator(FixedLocator(self.mne.midpoints)) ax_main.xaxis.set_minor_formatter(FixedFormatter(epoch_nums)) # hscroll axes, minor ticks: up to 20 ticklabels (epoch numbers) ax_hscroll.xaxis.set_minor_locator( FixedLocator(self.mne.midpoints, nbins=20) ) ax_hscroll.xaxis.set_minor_formatter( FuncFormatter(lambda x, pos: self._get_epoch_num_from_time(x)) ) # hide some ticks ax_main.tick_params(axis="x", which="major", bottom=False) ax_hscroll.tick_params(axis="x", which="both", bottom=False) else: # RAW / ICA X-AXIS TICK & LABEL FORMATTING ax_main.xaxis.set_major_formatter( FuncFormatter(partial(self._xtick_formatter, ax_type="main")) ) ax_hscroll.xaxis.set_major_formatter( FuncFormatter(partial(self._xtick_formatter, ax_type="hscroll")) ) if self.mne.time_format != "float": for _ax in (ax_main, ax_hscroll): _ax.set_xlabel("Time (HH:MM:SS)") # VERTICAL SCROLLBAR PATCHES (COLORED BY CHANNEL TYPE) ch_order = self.mne.ch_order for ix, pick in enumerate(ch_order): this_color = ( self.mne.ch_color_bad if self.mne.ch_names[pick] in self.mne.info["bads"] else self.mne.ch_color_dict ) if isinstance(this_color, dict): this_color = this_color[self.mne.ch_types[pick]] ax_vscroll.add_patch( Rectangle( (0, ix), 1, 1, color=this_color, zorder=self.mne.zorder["patch"] ) ) ax_vscroll.set_ylim(len(ch_order), 0) ax_vscroll.set_visible(not self.mne.butterfly) # SCROLLBAR VISIBLE SELECTION PATCHES sel_kwargs = dict( alpha=0.3, linewidth=4, clip_on=False, edgecolor=self.mne.fgcolor ) vsel_patch = Rectangle( (0, 0), 1, self.mne.n_channels, facecolor=self.mne.bgcolor, **sel_kwargs ) ax_vscroll.add_patch(vsel_patch) hsel_facecolor = np.average( np.vstack( (to_rgba_array(self.mne.fgcolor), to_rgba_array(self.mne.bgcolor)) ), axis=0, weights=(3, 1), ) # 75% foreground, 25% background hsel_patch = Rectangle( (self.mne.t_start, 0), self.mne.duration, 1, facecolor=hsel_facecolor, **sel_kwargs, ) ax_hscroll.add_patch(hsel_patch) ax_hscroll.set_xlim( self.mne.first_time, self.mne.first_time + self.mne.n_times / self.mne.info["sfreq"], ) # VLINE vline_color = (0.0, 0.75, 0.0) vline_kwargs = dict(visible=False, zorder=self.mne.zorder["vline"]) if self.mne.is_epochs: x = np.arange(self.mne.n_epochs) vline = ax_main.vlines(x, 0, 1, colors=vline_color, **vline_kwargs) vline.set_transform( blended_transform_factory(ax_main.transData, ax_main.transAxes) ) vline_hscroll = None else: vline = ax_main.axvline(0, color=vline_color, **vline_kwargs) vline_hscroll = ax_hscroll.axvline(0, color=vline_color, **vline_kwargs) vline_text = ax_main.annotate( "", xy=(0, 0), xycoords="axes fraction", xytext=(-2, 0), textcoords="offset points", fontsize=10, ha="right", va="center", color=vline_color, **vline_kwargs, ) # HELP BUTTON: initialize in the wrong spot... ax_help = div.append_axes( position="left", size=Fixed(help_width), pad=Fixed(vscroll_dist) ) # HELP BUTTON: ...move it down by changing its locator loc = div.new_locator(nx=0, ny=0) ax_help.set_axes_locator(loc) # HELP BUTTON: make it a proper button with _patched_canvas(ax_help.figure): self.mne.button_help = Button(ax_help, "Help") # PROJ BUTTON ax_proj = None if len(self.mne.projs) and not self.mne.inst.proj: proj_button_pos = [ 1 - self._inch_to_rel(r_margin + scroll_width), # left self._inch_to_rel(b_margin, horiz=False), # bottom self._inch_to_rel(scroll_width), # width self._inch_to_rel(scroll_width, horiz=False), # height ] loc = div.new_locator(nx=4, ny=0) ax_proj = self.add_axes(proj_button_pos) ax_proj.set_axes_locator(loc) with _patched_canvas(ax_help.figure): self.mne.button_proj = Button(ax_proj, "Prj") # INIT TRACES self.mne.trace_kwargs = dict(antialiased=True, linewidth=0.5) self.mne.traces = ax_main.plot( np.full((1, self.mne.n_channels), np.nan), **self.mne.trace_kwargs ) # SAVE UI ELEMENT HANDLES vars(self.mne).update( ax_main=ax_main, ax_help=ax_help, ax_proj=ax_proj, ax_hscroll=ax_hscroll, ax_vscroll=ax_vscroll, vsel_patch=vsel_patch, hsel_patch=hsel_patch, vline=vline, vline_hscroll=vline_hscroll, vline_text=vline_text, ) def _get_size(self): return self.get_size_inches() def _resize(self, event): """Handle resize event for mne_browse-style plots (Raw/Epochs/ICA).""" old_width, old_height = self.mne.fig_size_px new_width, new_height = self._get_size_px() new_margins = _calc_new_margins( self, old_width, old_height, new_width, new_height ) self.subplots_adjust(**new_margins) # zen mode bookkeeping self.mne.zen_w *= old_width / new_width self.mne.zen_h *= old_height / new_height self.mne.fig_size_px = (new_width, new_height) self.canvas.draw_idle() def _hover(self, event): """Handle motion event when annotating.""" if ( event.button is not None or event.xdata is None or event.inaxes != self.mne.ax_main ): return if not self.mne.draggable_annotations: self._remove_annotation_hover_line() return from matplotlib.patheffects import Normal, Stroke for coll in self.mne.annotations: if coll.contains(event)[0]: path = coll.get_paths() assert len(path) == 1 path = path[0] color = coll.get_edgecolors()[0] ylim = self.mne.ax_main.get_ylim() # are we on the left or right edge? _l = path.vertices[:, 0].min() _r = path.vertices[:, 0].max() x = _l if abs(event.xdata - _l) < abs(event.xdata - _r) else _r mask = path.vertices[:, 0] == x def drag_callback(x0): path.vertices[mask, 0] = x0 # create or update the DraggableLine hover_line = self.mne.annotation_hover_line if hover_line is None: line = self.mne.ax_main.plot( [x, x], ylim, color=color, linewidth=2, pickradius=5.0 )[0] hover_line = DraggableLine( line, self._modify_annotation, drag_callback ) else: hover_line.set_x(x) hover_line.drag_callback = drag_callback # style the line line = hover_line.line patheff = [Stroke(linewidth=4, foreground=color, alpha=0.5), Normal()] line.set_path_effects( patheff if line.contains(event)[0] else patheff[1:] ) self.mne.ax_main.selector.active = False self.mne.annotation_hover_line = hover_line self.canvas.draw_idle() return self._remove_annotation_hover_line() def _keypress(self, event): """Handle keypress events.""" key = event.key n_channels = self.mne.n_channels if self.mne.is_epochs: last_time = self.mne.n_times / self.mne.info["sfreq"] else: last_time = self.mne.inst.times[-1] # scroll up/down if key in ("down", "up", "shift+down", "shift+up"): key = key.split("+")[-1] direction = -1 if key == "up" else 1 # butterfly case if self.mne.butterfly: return # group_by case elif self.mne.fig_selection is not None: buttons = self.mne.fig_selection.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] current_label = buttons.value_selected current_idx = labels.index(current_label) selections_dict = self.mne.ch_selections penult = current_idx < (len(labels) - 1) pre_penult = current_idx < (len(labels) - 2) has_custom = selections_dict.get("Custom", None) is not None def_custom = len(selections_dict.get("Custom", list())) up_ok = key == "up" and current_idx > 0 down_ok = key == "down" and ( pre_penult or (penult and not has_custom) or (penult and has_custom and def_custom) ) if up_ok or down_ok: buttons.set_active(current_idx + direction) # normal case else: ceiling = len(self.mne.ch_order) - n_channels ch_start = self.mne.ch_start + direction * n_channels self.mne.ch_start = np.clip(ch_start, 0, ceiling) self._update_picks() self._update_vscroll() self._redraw() # scroll left/right elif key in ("right", "left", "shift+right", "shift+left"): old_t_start = self.mne.t_start direction = 1 if key.endswith("right") else -1 if self.mne.is_epochs: denom = 1 if key.startswith("shift") else self.mne.n_epochs else: denom = 1 if key.startswith("shift") else 4 t_max = last_time - self.mne.duration t_start = self.mne.t_start + direction * self.mne.duration / denom self.mne.t_start = np.clip(t_start, self.mne.first_time, t_max) if self.mne.t_start != old_t_start: self._update_hscroll() self._redraw(annotations=True) # scale traces elif key in ("=", "+", "-"): scaler = 1 / 1.1 if key == "-" else 1.1 self.mne.scale_factor *= scaler self._redraw(update_data=False) # change number of visible channels elif ( key in ("pageup", "pagedown") and self.mne.fig_selection is None and not self.mne.butterfly ): new_n_ch = n_channels + (1 if key == "pageup" else -1) self.mne.n_channels = np.clip(new_n_ch, 1, len(self.mne.ch_order)) # add new chs from above if we're at the bottom of the scrollbar ch_end = self.mne.ch_start + self.mne.n_channels if ch_end > len(self.mne.ch_order) and self.mne.ch_start > 0: self.mne.ch_start -= 1 self._update_vscroll() # redraw only if changed if self.mne.n_channels != n_channels: self._update_picks() self._update_trace_offsets() self._redraw(annotations=True) # change duration elif key in ("home", "end"): old_dur = self.mne.duration dur_delta = 1 if key == "end" else -1 if self.mne.is_epochs: # prevent from showing zero epochs, or more epochs than we have self.mne.n_epochs = np.clip( self.mne.n_epochs + dur_delta, 1, len(self.mne.inst) ) # use the length of one epoch as duration change min_dur = len(self.mne.inst.times) / self.mne.info["sfreq"] new_dur = self.mne.duration + dur_delta * min_dur else: # never show fewer than 3 samples min_dur = 3 * np.diff(self.mne.inst.times[:2])[0] # use multiplicative dur_delta dur_delta = 5 / 4 if dur_delta > 0 else 4 / 5 new_dur = self.mne.duration * dur_delta self.mne.duration = np.clip(new_dur, min_dur, last_time) if self.mne.duration != old_dur: if self.mne.t_start + self.mne.duration > last_time: self.mne.t_start = last_time - self.mne.duration self._update_hscroll() self._redraw(annotations=True) elif key == "?": # help window self._toggle_help_fig(event) elif key == "a": # annotation mode self._toggle_annotation_fig() elif key == "b" and self.mne.instance_type != "ica": # butterfly mode self._toggle_butterfly() elif key == "d": # DC shift self.mne.remove_dc = not self.mne.remove_dc self._redraw() elif key == "h": # histogram self._toggle_epoch_histogram() elif key == "j" and len(self.mne.projs): # SSP window self._toggle_proj_fig() elif key == "J" and len(self.mne.projs): self._toggle_proj_checkbox(event, toggle_all=True) elif key == "p": # toggle draggable annotations self._toggle_draggable_annotations(event) if self.mne.fig_annotation is not None: checkbox = self.mne.fig_annotation.mne.drag_checkbox with _events_off(checkbox): checkbox.set_active(0) elif key == "s": # scalebars self._toggle_scalebars(event) elif key == "w": # toggle noise cov whitening self._toggle_whitening() elif key == "z": # zen mode: hide scrollbars and buttons self._toggle_scrollbars() self._redraw(update_data=False) elif key == "t": self._toggle_time_format() else: # check for close key / fullscreen toggle super()._keypress(event) def _buttonpress(self, event): """Handle mouse clicks.""" from matplotlib.collections import PolyCollection from ..annotations import _sync_onset butterfly = self.mne.butterfly annotating = self.mne.fig_annotation is not None ax_main = self.mne.ax_main inst = self.mne.inst # ignore middle clicks, scroll wheel events, and clicks outside axes if event.button not in (1, 3) or event.inaxes is None: return elif event.button == 1: # left-click (primary) # click in main axes if event.inaxes == ax_main and not annotating: if self.mne.instance_type == "epochs" or not butterfly: for line in self.mne.traces + self.mne.epoch_traces: if line.contains(event)[0]: if self.mne.instance_type == "epochs": self._toggle_bad_epoch(event) else: idx = self.mne.traces.index(line) self._toggle_bad_channel(idx) return self._show_vline(event.xdata) # butterfly / not on data trace self._redraw(update_data=False, annotations=False) return # click in vertical scrollbar elif event.inaxes == self.mne.ax_vscroll: if self.mne.fig_selection is not None: self._change_selection_vscroll(event) elif self._check_update_vscroll_clicked(event): self._redraw() # click in horizontal scrollbar elif event.inaxes == self.mne.ax_hscroll: if self._check_update_hscroll_clicked(event): self._redraw(annotations=True) # click on proj button elif event.inaxes == self.mne.ax_proj: self._toggle_proj_fig(event) # click on help button elif event.inaxes == self.mne.ax_help: self._toggle_help_fig(event) else: # right-click (secondary) if annotating: spans = [ span for span in ax_main.collections if isinstance(span, PolyCollection) ] if any(span.contains(event)[0] for span in spans): xdata = event.xdata - self.mne.first_time start = _sync_onset(inst, inst.annotations.onset) end = start + inst.annotations.duration is_onscreen = self.mne.onscreen_annotations # boolean array was_clicked = (xdata > start) & (xdata < end) & is_onscreen # determine which annotation label is "selected" buttons = self.mne.fig_annotation.mne.radio_ax.buttons current_label = buttons.value_selected is_active_label = inst.annotations.description == current_label # use z-order as tiebreaker (or if click wasn't on an active span) # (ax_main.collections only includes *visible* annots, so we offset) visible_zorders = [span.zorder for span in spans] zorders = np.zeros_like(is_onscreen).astype(int) offset = np.where(is_onscreen)[0][0] zorders[offset : (offset + len(visible_zorders))] = visible_zorders # among overlapping clicked spans, prefer removing spans whose label # is the active label; then fall back to zorder as deciding factor active_clicked = was_clicked & is_active_label mask = active_clicked if any(active_clicked) else was_clicked highest = zorders == zorders[mask].max() idx = np.where(highest)[0] inst.annotations.delete(idx) self._remove_annotation_hover_line() self._draw_annotations() self.canvas.draw_idle() elif event.inaxes == ax_main: self._toggle_vline(False) def _pick(self, event): """Handle matplotlib pick events.""" from matplotlib.text import Text if self.mne.butterfly: return # clicked on channel name if isinstance(event.artist, Text): ch_name = event.artist.get_text() ind = self.mne.ch_names[self.mne.picks].tolist().index(ch_name) if event.mouseevent.button == 1: # left click self._toggle_bad_channel(ind) elif event.mouseevent.button == 3: # right click self._create_ch_context_fig(ind) def _create_ch_context_fig(self, idx): fig = super()._create_ch_context_fig(idx) plt_show(fig=fig) def _new_child_figure(self, fig_name, *, layout=None, **kwargs): """Instantiate a new MNE dialog figure (with event listeners).""" fig = _figure( toolbar=False, parent_fig=self, fig_name=fig_name, layout=layout, **kwargs, ) fig._add_default_callbacks() self.mne.child_figs.append(fig) if isinstance(fig_name, str): setattr(self.mne, fig_name, fig) return fig # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # HELP DIALOG # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_help_fig(self): """Create help dialog window.""" text = { key: val for key, val in self._get_help_text().items() if val is not None } keys = "" vals = "" for key, val in text.items(): newsection = "\n" if key.startswith("_") else "" key = key[1:] if key.startswith("_") else key newlines = "\n" * len(val.split("\n")) # handle multiline values keys += f"{newsection}{key} {newlines}" vals += f"{newsection}{val}\n" # calc figure size n_lines = len(keys.split("\n")) longest_key = max(len(k) for k in text.keys()) longest_val = max( max(len(w) for w in v.split("\n")) if "\n" in v else len(v) for v in text.values() ) width = (longest_key + longest_val) / 12 height = (n_lines) / 5 # create figure and axes fig = self._new_child_figure( figsize=(width, height), fig_name="fig_help", window_title="Help" ) ax = fig.add_axes((0.01, 0.01, 0.98, 0.98)) ax.set_axis_off() kwargs = dict(va="top", linespacing=1.5, usetex=False) ax.text(0.42, 1, keys, ma="right", ha="right", **kwargs) ax.text(0.42, 1, vals, ma="left", ha="left", **kwargs) def _toggle_help_fig(self, event): """Show/hide the help dialog window.""" if self.mne.fig_help is None: self._create_help_fig() plt_show(fig=self.mne.fig_help) else: plt.close(self.mne.fig_help) def _get_help_text(self): """Generate help dialog text; `None`-valued entries removed later.""" inst = self.mne.instance_type is_raw = inst == "raw" is_epo = inst == "epochs" is_ica = inst == "ica" has_proj = bool(len(self.mne.projs)) # adapt keys to different platforms is_mac = platform.system() == "Darwin" dur_keys = ("fn + ←", "fn + →") if is_mac else ("Home", "End") ch_keys = ("fn + ↑", "fn + ↓") if is_mac else ("Page up", "Page down") # adapt descriptions to different instance types ch_cmp = "component" if is_ica else "channel" ch_epo = "epoch" if is_epo else "channel" ica_bad = "Mark/unmark component for exclusion" dur_vals = ( [f"Show {n} epochs" for n in ("fewer", "more")] if self.mne.is_epochs else [f"Show {d} time window" for d in ("shorter", "longer")] ) ch_vals = [ f"{inc_dec} number of visible {ch_cmp}s" for inc_dec in ("Increase", "Decrease") ] lclick_data = ica_bad if is_ica else f"Mark/unmark bad {ch_epo}" lclick_name = ica_bad if is_ica else "Mark/unmark bad channel" rclick_name = dict( ica="Show diagnostics for component", epochs="Show imageplot for channel", raw="Show channel location", )[inst] # TODO not yet implemented # ldrag = ('Show spectrum plot for selected time span;\nor (in ' # 'annotation mode) add annotation') if inst== 'raw' else None ldrag = "add annotation (in annotation mode)" if is_raw else None noise_cov = None if self.mne.noise_cov is None else "Toggle signal whitening" scrl = "1 epoch" if self.mne.is_epochs else "¼ window" # below, value " " is a hack to make "\n".split(value) have length 1 help_text = OrderedDict( [ ("_NAVIGATION", " "), ("→", f"Scroll {scrl} right (scroll full window with Shift + →)"), ("←", f"Scroll {scrl} left (scroll full window with Shift + ←)"), (dur_keys[0], dur_vals[0]), (dur_keys[1], dur_vals[1]), ("↑", f"Scroll up ({ch_cmp}s)"), ("↓", f"Scroll down ({ch_cmp}s)"), (ch_keys[0], ch_vals[0]), (ch_keys[1], ch_vals[1]), ("_SIGNAL TRANSFORMATIONS", " "), ("+ or =", "Increase signal scaling"), ("-", "Decrease signal scaling"), ("b", "Toggle butterfly mode" if not is_ica else None), ("d", "Toggle DC removal" if is_raw else None), ("w", noise_cov), ("_USER INTERFACE", " "), ("a", "Toggle annotation mode" if is_raw else None), ("h", "Toggle peak-to-peak histogram" if is_epo else None), ("j", "Toggle SSP projector window" if has_proj else None), ("shift+j", "Toggle all SSPs"), ("p", "Toggle draggable annotations" if is_raw else None), ("s", "Toggle scalebars" if not is_ica else None), ("z", "Toggle scrollbars"), ("t", "Toggle time format" if not is_epo else None), ("F11", "Toggle fullscreen" if not is_mac else None), ("?", "Open this help window"), ("esc", "Close focused figure or dialog window"), ("_MOUSE INTERACTION", " "), (f"Left-click {ch_cmp} name", lclick_name), (f"Left-click {ch_cmp} data", lclick_data), ("Left-click-and-drag on plot", ldrag), ("Left-click on plot background", "Place vertical guide"), ("Right-click on plot background", "Clear vertical guide"), ("Right-click on channel name", rclick_name), ] ) return help_text # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ANNOTATIONS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_annotation_fig(self): """Create the annotation dialog window.""" from matplotlib.widgets import Button, CheckButtons, SpanSelector from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from mpl_toolkits.axes_grid1.axes_size import Fixed # make figure labels = np.array(sorted(set(self.mne.inst.annotations.description))) radio_button_h = self._compute_annotation_figsize(len(labels)) figsize = (ANNOTATION_FIG_W, ANNOTATION_FIG_MIN_H + radio_button_h) fig = self._new_child_figure( figsize=figsize, FigureClass=MNEAnnotationFigure, fig_name="fig_annotation", window_title="Annotations", ) # make main axes left = fig._inch_to_rel(ANNOTATION_FIG_PAD) bottom = fig._inch_to_rel(ANNOTATION_FIG_PAD, horiz=False) width = 1 - 2 * left height = 1 - 2 * bottom fig.mne.radio_ax = fig.add_axes( (left, bottom, width, height), frame_on=False, aspect="equal" ) div = make_axes_locatable(fig.mne.radio_ax) # append show/hide checkboxes at right fig.mne.show_hide_ax = div.append_axes( position="right", size=Fixed(ANNOTATION_FIG_CHECKBOX_COLUMN_W), pad=Fixed(ANNOTATION_FIG_PAD), aspect="equal", sharey=fig.mne.radio_ax, ) # populate w/ radio buttons & labels self._update_annotation_fig() # append instructions at top instructions_ax = div.append_axes( position="top", size=Fixed(1), pad=Fixed(5 * ANNOTATION_FIG_PAD) ) instructions = "\n".join( [ r"$\mathbf{Left‐click~&~drag~on~plot:}$ create/modify annotation", r"$\mathbf{Right‐click~on~plot~annotation:}$ delete annotation", r"$\mathbf{Type~in~annotation~window:}$ modify new label name", r"$\mathbf{Enter~(or~click~button):}$ add new label to list", r"$\mathbf{Esc:}$ exit annotation mode & close this window", ] ) instructions_ax.text( 0, 1, instructions, va="top", ha="left", linespacing=1.7, usetex=False ) # force use of MPL mathtext parser instructions_ax.set_axis_off() # append text entry axes at bottom text_entry_ax = div.append_axes( position="bottom", size=Fixed(3 * ANNOTATION_FIG_PAD), pad=Fixed(ANNOTATION_FIG_PAD), ) text_entry_ax.text( 0.4, 0.5, "New label:", va="center", ha="right", weight="bold" ) fig.label = text_entry_ax.text(0.5, 0.5, "BAD_", va="center", ha="left") text_entry_ax.set_axis_off() # append button at bottom button_ax = div.append_axes( position="bottom", size=Fixed(3 * ANNOTATION_FIG_PAD), pad=Fixed(ANNOTATION_FIG_PAD), ) fig.button = Button(button_ax, "Add new label") fig.button.on_clicked(self._add_annotation_label) plt_show(fig=fig) # add "draggable" checkbox drag_ax_height = 3 * ANNOTATION_FIG_PAD drag_ax = div.append_axes( "bottom", size=Fixed(drag_ax_height), pad=Fixed(ANNOTATION_FIG_PAD) ) check_kwargs = _get_check_kwargs() checkbox = CheckButtons( drag_ax, labels=("Draggable edges?",), actives=(self.mne.draggable_annotations,), **check_kwargs, ) checkbox.on_clicked(self._toggle_draggable_annotations) fig.mne.drag_checkbox = checkbox # reposition & resize axes width_in, _ = fig.get_size_inches() width_ax = fig._inch_to_rel( width_in - ANNOTATION_FIG_CHECKBOX_COLUMN_W - 3 * ANNOTATION_FIG_PAD ) aspect = width_ax / fig._inch_to_rel(drag_ax_height) drag_ax.set(xlim=(0, aspect), ylim=(0, 1)) drag_ax.set_axis_off() if _OLD_BUTTONS: rect = checkbox.rectangles[0] _pad, _size = (0.2, 0.6) rect.set_bounds(_pad, _pad, _size, _size) lines = checkbox.lines[0] for line, direction in zip(lines, (1, -1)): line.set_xdata((_pad, _pad + _size)[::direction]) line.set_ydata((_pad, _pad + _size)) text = checkbox.labels[0] text.set(position=(3 * _pad + _size, 0.45), va="center") for artist in lines + (rect, text): artist.set_transform(drag_ax.transData) # setup interactivity in plot window if fig.mne.radio_ax.buttons is None: col = "#ff0000" else: col = self.mne.annotation_segment_colors[self._get_annotation_labels()[0]] selector = SpanSelector( self.mne.ax_main, self._select_annotation_span, "horizontal", minspan=0.1, useblit=True, button=1, props=dict(alpha=0.5, facecolor=col), ) self.mne.ax_main.selector = selector self.mne._callback_ids["motion_notify_event"] = self.canvas.mpl_connect( "motion_notify_event", self._hover ) def _toggle_visible_annotations(self, event): """Enable/disable display of annotations on a per-label basis.""" checkboxes = self.mne.show_hide_annotation_checkboxes labels = [t.get_text() for t in checkboxes.labels] actives = checkboxes.get_status() self.mne.visible_annotations = dict(zip(labels, actives)) self._redraw(update_data=False, annotations=True) def _toggle_draggable_annotations(self, event): """Enable/disable draggable annotation edges.""" self.mne.draggable_annotations = not self.mne.draggable_annotations def _update_annotation_fig(self, *, draw=True): """Draw or redraw the radio buttons and annotation labels.""" from matplotlib.colors import to_rgba from matplotlib.widgets import CheckButtons, RadioButtons # define shorthand variables fig = self.mne.fig_annotation ax = fig.mne.radio_ax labels = self._get_annotation_labels() # compute new figsize radio_button_h = self._compute_annotation_figsize(len(labels)) fig.set_size_inches( ANNOTATION_FIG_W, ANNOTATION_FIG_MIN_H + radio_button_h, forward=True ) # populate center axes with labels & radio buttons ax.clear() title = "Existing labels:" if len(labels) else "No existing labels" ax.set_title(title, size=None, loc="left") if len(labels): if _OLD_BUTTONS: ax.buttons = RadioButtons(ax, labels) radius = 0.15 circles = ax.buttons.circles for circle, label in zip(circles, ax.buttons.labels): circle.set_transform(ax.transData) center = ax.transData.inverted().transform( ax.transAxes.transform((0.1, 0)) ) circle.set_center((center[0], circle.center[1])) circle.set_edgecolor( self.mne.annotation_segment_colors[label.get_text()] ) circle.set_linewidth(4) circle.set_radius(radius / len(labels)) else: edgecolors = [ self.mne.annotation_segment_colors[label] for label in labels ] facecolors = [to_rgba(col)[:3] + (0.5,) for col in edgecolors] radio_props = dict( s=144, linewidth=4, edgecolor=edgecolors, facecolor=facecolors, ) ax.buttons = RadioButtons(ax, labels, radio_props=radio_props) else: ax.buttons = None # adjust xlim to keep equal aspect & full width (keep circles round) aspect = ( ANNOTATION_FIG_W - ANNOTATION_FIG_CHECKBOX_COLUMN_W - 3 * ANNOTATION_FIG_PAD ) / radio_button_h ax.set_xlim((0, aspect)) # style the selected button if len(labels): fig._set_active_button(0, draw=False) # add event listeners if ax.buttons is not None: if _OLD_BUTTONS: ax.buttons.disconnect_events() # clear MPL default listeners ax.buttons.on_clicked(fig._radiopress) if _OLD_BUTTONS: ax.buttons.connect_event("button_press_event", fig._click_override) ax.set_axis_off() # now do the show/hide checkboxes show_hide_ax = fig.mne.show_hide_ax show_hide_ax.clear() show_hide_ax.set_axis_on() aspect = ANNOTATION_FIG_CHECKBOX_COLUMN_W / radio_button_h show_hide_ax.set(xlim=(0, aspect), ylim=(0, 1)) # ensure new labels have checkbox values check_values = {label: False for label in labels} check_values.update(self.mne.visible_annotations) # existing checks actives = [check_values[label] for label in labels] # regenerate checkboxes check_kwargs = _get_check_kwargs() checkboxes = CheckButtons( ax=fig.mne.show_hide_ax, labels=labels, actives=actives, **check_kwargs ) checkboxes.on_clicked(self._toggle_visible_annotations) # add title, hide labels show_hide_title = "show/\nhide " if len(labels) else "" show_hide_ax.set_title(show_hide_title, size=None, loc="right") for label in checkboxes.labels: label.set_visible(False) show_hide_ax.set_axis_off() # fix aspect and right-align if _OLD_BUTTONS: if len(labels) == 1: bounds = (0.05, 0.375, 0.25, 0.25) # undo MPL special case checkboxes.rectangles[0].set_bounds(bounds) for line, step in zip(checkboxes.lines[0], (1, -1)): line.set_xdata((bounds[0], bounds[0] + bounds[2])) line.set_ydata((bounds[1], bounds[1] + bounds[3])[::step]) for rect in checkboxes.rectangles: rect.set_transform(show_hide_ax.transData) bbox = rect.get_bbox() bounds = (aspect, bbox.ymin, -bbox.width, bbox.height) rect.set_bounds(bounds) rect.set_clip_on(False) for line in np.array(checkboxes.lines).ravel(): line.set_transform(show_hide_ax.transData) line.set_xdata(aspect + 0.05 - np.array(line.get_xdata())) # store state self.mne.visible_annotations = check_values self.mne.show_hide_annotation_checkboxes = checkboxes if draw: fig.canvas.draw_idle() def _toggle_annotation_fig(self): """Show/hide the annotation dialog window.""" if self.mne.fig_annotation is None and not self.mne.is_epochs: self._create_annotation_fig() else: plt.close(self.mne.fig_annotation) def _compute_annotation_figsize(self, n_labels): """Adapt size of Annotation UI to accommodate the number of buttons. self._create_annotation_fig() implements the following: Fixed part of height: 0.1 top margin 1.0 instructions 0.5 padding below instructions --- (variable-height axis for label list, returned by this method) 0.1 padding above text entry 0.3 text entry 0.1 padding above button 0.3 button 0.1 padding above checkbox 0.3 checkbox 0.1 bottom margin ------------------------------------------ 2.9 total fixed height """ return max(ANNOTATION_FIG_PAD, 0.7 * n_labels) def _add_annotation_label(self, event): """Add new annotation description.""" text = self.mne.fig_annotation.label.get_text() # If it exists, change this title. If it doesn't, the title will # be set in _update_annotation_fig() if text in self.mne.new_annotation_labels: self.mne.fig_annotation.mne.radio_ax.set_title( f"Existing labels: (duplicate label: {repr(text)})", size=None, loc="left", ) self.mne.fig_annotation.canvas.draw() return self.mne.new_annotation_labels.append(text) self._setup_annotation_colors() self._update_annotation_fig(draw=False) # automatically activate new label's radio button idx = [ label.get_text() for label in self.mne.fig_annotation.mne.radio_ax.buttons.labels ].index(text) self.mne.fig_annotation._set_active_button(idx, draw=False) # simulate a click on the radiobutton → update the span selector color self.mne.fig_annotation._radiopress(event=None, draw=False) # reset the text entry box's text self.mne.fig_annotation.label.set_text("BAD_") self.mne.fig_annotation.canvas.draw() def _select_annotation_span(self, vmin, vmax): """Handle annotation span selector.""" from ..annotations import _sync_onset onset = _sync_onset(self.mne.inst, vmin, True) - self.mne.first_time duration = vmax - vmin buttons = self.mne.fig_annotation.mne.radio_ax.buttons if buttons is None or buttons.value_selected is None: logger.warning( "No annotation-label exists! " "Add one by typing the name and clicking " 'on "Add new label" in the annotation-dialog.' ) else: labels = [label.get_text() for label in buttons.labels] active_idx = labels.index(buttons.value_selected) _merge_annotations( onset, onset + duration, labels[active_idx], self.mne.inst.annotations ) # if adding a span with an annotation label that is hidden, show it if not self.mne.visible_annotations[buttons.value_selected]: self.mne.show_hide_annotation_checkboxes.set_active(active_idx) self._redraw(update_data=False, annotations=True) def _remove_annotation_hover_line(self): """Remove annotation line from the plot and reactivate selector.""" if self.mne.annotation_hover_line is not None: self.mne.annotation_hover_line.remove() self.mne.annotation_hover_line = None self.mne.ax_main.selector.active = True self.canvas.draw() def _modify_annotation(self, old_x, new_x): """Modify annotation.""" from ..annotations import _sync_onset segment = np.array(np.where(self.mne.annotation_segments == old_x)) if segment.shape[1] == 0: return raw = self.mne.inst annotations = raw.annotations first_time = self.mne.first_time idx = [segment[0][0], segment[1][0]] onset = _sync_onset(raw, self.mne.annotation_segments[idx[0]][0], True) ann_idx = np.where(annotations.onset == onset - first_time)[0] if idx[1] == 0: # start of annotation onset = _sync_onset(raw, new_x, True) - first_time duration = annotations.duration[ann_idx] + old_x - new_x else: # end of annotation onset = annotations.onset[ann_idx] duration = _sync_onset(raw, new_x, True) - onset - first_time if duration < 0: onset += duration duration *= -1.0 _merge_annotations( onset, onset + duration, annotations.description[ann_idx], annotations, ann_idx, ) self._draw_annotations() self._remove_annotation_hover_line() self.canvas.draw_idle() def _clear_annotations(self): """Clear all annotations from the figure.""" for annot in list(self.mne.annotations): annot.remove() self.mne.annotations.remove(annot) for annot in list(self.mne.hscroll_annotations): annot.remove() self.mne.hscroll_annotations.remove(annot) for text in list(self.mne.annotation_texts): text.remove() self.mne.annotation_texts.remove(text) def _draw_annotations(self): """Draw (or redraw) the annotation spans.""" self._clear_annotations() self._update_annotation_segments() segments = self.mne.annotation_segments onscreen_annotations = np.zeros(len(segments), dtype=bool) times = self.mne.times ax = self.mne.ax_main ylim = ax.get_ylim() for idx, (start, end) in enumerate(segments): descr = self.mne.inst.annotations.description[idx] segment_color = self.mne.annotation_segment_colors[descr] zorder = self.mne.zorder["ann"] + idx kwargs = dict(color=segment_color, alpha=0.3, zorder=zorder) if self.mne.visible_annotations[descr]: # draw all segments on ax_hscroll annot = self.mne.ax_hscroll.fill_betweenx((0, 1), start, end, **kwargs) self.mne.hscroll_annotations.append(annot) # draw only visible segments on ax_main visible_segment = np.clip([start, end], times[0], times[-1]) if np.diff(visible_segment) > 0: annot = ax.fill_betweenx(ylim, *visible_segment, **kwargs) self.mne.annotations.append(annot) onscreen_annotations[idx] = True xy = (visible_segment.mean(), ylim[1]) text = ax.annotate( descr, xy, xytext=(0, 9), textcoords="offset points", ha="center", va="baseline", color=segment_color, ) self.mne.annotation_texts.append(text) self.mne.onscreen_annotations = onscreen_annotations # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # CHANNEL SELECTION GUI # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_selection_fig(self): """Create channel selection dialog window.""" from matplotlib.colors import to_rgb from matplotlib.widgets import RadioButtons # make figure fig = self._new_child_figure( figsize=(3, 7), FigureClass=MNESelectionFigure, fig_name="fig_selection", window_title="Channel selection", ) gs = fig.add_gridspec(15, 1) # add sensor plot at top fig.mne.sensor_ax = fig.add_subplot(gs[:5]) plot_sensors( self.mne.info, kind="select", ch_type="all", title="", axes=fig.mne.sensor_ax, ch_groups=self.mne.group_by, show=False, ) fig.subplots_adjust(bottom=0.01, top=0.99, left=0.01, right=0.99) # style the sensors so the selection is easier to distinguish fig.lasso.linewidth_selected = 2 self._update_highlighted_sensors() # add radio button axes radio_ax = fig.add_subplot(gs[5:-3], frame_on=False, aspect="equal") fig.mne.radio_ax = radio_ax selections_dict = self.mne.ch_selections selections_dict.update(Custom=np.array([], dtype=int)) # for lasso labels = list(selections_dict) # make & style the radio buttons activecolor = to_rgb(self.mne.fgcolor) + (0.5,) radio_ax.buttons = RadioButtons(radio_ax, labels, activecolor=activecolor) fig.mne.old_selection = 0 if _OLD_BUTTONS: for circle in radio_ax.buttons.circles: circle.set_radius(0.25 / len(labels)) circle.set_linewidth(2) circle.set_edgecolor(self.mne.fgcolor) fig._style_radio_buttons_butterfly() # add instructions at bottom instructions = ( "To use a custom selection, first click-drag on the sensor plot " 'to "lasso" the sensors you want to select, or hold Ctrl while ' "clicking individual sensors. Holding Ctrl while click-dragging " "allows a lasso selection adding to (rather than replacing) the " "existing selection." ) instructions_ax = fig.add_subplot(gs[-3:], frame_on=False) instructions_ax.text( 0.04, 0.08, instructions, va="bottom", ha="left", ma="left", wrap=True ) instructions_ax.set_axis_off() # add event listeners radio_ax.buttons.on_clicked(fig._radiopress) fig.lasso.callbacks.append(fig._set_custom_selection) def _change_selection_vscroll(self, event): """Handle clicks on vertical scrollbar when using selections.""" buttons = self.mne.fig_selection.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] offset = 0 selections_dict = self.mne.ch_selections for idx, label in enumerate(labels): offset += len(selections_dict[label]) if event.ydata < offset: with _events_off(buttons): buttons.set_active(idx) self.mne.fig_selection._radiopress(event) return def _update_selection(self): """Update visible channels based on selection dialog interaction.""" selections_dict = self.mne.ch_selections fig = self.mne.fig_selection buttons = fig.mne.radio_ax.buttons label = buttons.value_selected labels = [_label.get_text() for _label in buttons.labels] self.mne.fig_selection.mne.old_selection = labels.index(label) self.mne.picks = selections_dict[label] self.mne.n_channels = len(self.mne.picks) self._update_highlighted_sensors() # if "Vertex" is defined, some channels appear twice, so if # "Vertex" is selected, ch_start should be the *first* match; # otherwise it should be the *last* match (since "Vertex" is # always the first selection group, if it exists). index = 0 if label == "Vertex" else -1 ch_order = np.concatenate(list(selections_dict.values())) ch_start = np.where(ch_order == self.mne.picks[0])[0][index] self.mne.ch_start = ch_start self._update_trace_offsets() self._update_vscroll() self._redraw(annotations=True) def _update_highlighted_sensors(self): """Update the sensor plot to show what is selected.""" inds = np.isin( self.mne.fig_selection.lasso.ch_names, self.mne.ch_names[self.mne.picks] ).nonzero()[0] self.mne.fig_selection.lasso.select_many(inds) def _update_bad_sensors(self, pick, mark_bad): """Update the sensor plot to reflect (un)marked bad channels.""" # replicate plotting order from plot_sensors(), to get index right sensor_picks = list() ch_indices = channel_indices_by_type(self.mne.info) for this_type in _DATA_CH_TYPES_SPLIT: if this_type in self.mne.ch_types: sensor_picks.extend(ch_indices[this_type]) sensor_idx = np.isin(sensor_picks, pick).nonzero()[0] # change the sensor color fig = self.mne.fig_selection fig.lasso.ec[sensor_idx, 0] = float(mark_bad) # change R of RGBA array fig.lasso.collection.set_edgecolors(fig.lasso.ec) fig.canvas.draw_idle() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # PROJECTORS & BAD CHANNELS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_proj_fig(self): """Create the projectors dialog window.""" from matplotlib.widgets import Button, CheckButtons projs = self.mne.projs labels = [p["desc"] for p in projs] for ix, active in enumerate(self.mne.projs_active): if active: labels[ix] += " (already applied)" # make figure width = max([4.5, max([len(label) for label in labels]) / 8 + 0.5]) height = (len(projs) + 1) / 6 + 1.5 fig = self._new_child_figure( figsize=(width, height), fig_name="fig_proj", window_title="SSP projection vectors", ) # pass through some proj fig keypresses to the parent fig.canvas.mpl_connect( "key_press_event", lambda ev: self._keypress(ev) if ev.key in "jJ" else None ) # make axes offset = 1 / 6 / height position = (0, offset, 1, 0.8 - offset) ax = fig.add_axes(position, frame_on=False, aspect="equal") # make title first_line = ( "Projectors already applied to the data are dimmed.\n" if any(self.mne.projs_active) else "" ) second_line = 'Projectors marked with "X" are active on the plot.' ax.set_title(f"{first_line}{second_line}") # draw checkboxes checkboxes = CheckButtons( ax, labels=labels, actives=self.mne.projs_on, **_get_check_kwargs(labels=labels), ) # gray-out already applied projectors if _OLD_BUTTONS: for label, rect, lines in zip( checkboxes.labels, checkboxes.rectangles, checkboxes.lines ): if label.get_text().endswith("(already applied)"): label.set_color("0.5") rect.set_edgecolor("0.7") [x.set_color("0.7") for x in lines] rect.set_linewidth(1) # add "toggle all" button ax_all = fig.add_axes((0.25, 0.01, 0.5, offset), frame_on=True) fig.mne.proj_all = Button(ax_all, "Toggle all") # add event listeners checkboxes.on_clicked(self._toggle_proj_checkbox) fig.mne.proj_all.on_clicked( partial(self._toggle_proj_checkbox, toggle_all=True) ) # save params fig.mne.proj_checkboxes = checkboxes # show figure self.mne.fig_proj.canvas.draw() plt_show(fig=self.mne.fig_proj, warn=False) def _toggle_proj_fig(self, event=None): """Show/hide the projectors dialog window.""" if self.mne.fig_proj is None: self._create_proj_fig() else: plt.close(self.mne.fig_proj) def _toggle_proj_checkbox(self, event, toggle_all=False): """Perform operations when proj boxes clicked.""" on = self.mne.projs_on applied = self.mne.projs_active fig = self.mne.fig_proj new_state = ( np.full_like(on, not all(on)) if toggle_all else np.array(fig.mne.proj_checkboxes.get_status()) ) # update Xs when toggling all if fig is not None: if toggle_all: with _events_off(fig.mne.proj_checkboxes): for ix in np.where(on != new_state)[0]: fig.mne.proj_checkboxes.set_active(ix) # don't allow disabling already-applied projs with _events_off(fig.mne.proj_checkboxes): for ix in np.where(applied)[0]: if not new_state[ix]: fig.mne.proj_checkboxes.set_active(ix) new_state[applied] = True # update the data if necessary if not np.array_equal(on, new_state): self.mne.projs_on = new_state self._update_projector() self._redraw() def _toggle_epoch_histogram(self): """Show or hide peak-to-peak histogram of channel amplitudes.""" if self.mne.instance_type == "epochs": if self.mne.fig_histogram is None: self._create_epoch_histogram() else: plt.close(self.mne.fig_histogram) def _toggle_bad_channel(self, idx): """Mark/unmark bad channels; `idx` is index of *visible* channels.""" color, pick, marked_bad = super()._toggle_bad_channel(idx) # update sensor color (if in selection mode) if self.mne.fig_selection is not None: self._update_bad_sensors(pick, marked_bad) # update vscroll color vscroll_idx = (self.mne.ch_order == pick).nonzero()[0] for _idx in vscroll_idx: self.mne.ax_vscroll.patches[_idx].set_color(color) # redraw self._redraw() def _toggle_bad_epoch(self, event): """Mark/unmark bad epochs.""" epoch_ix, color = super()._toggle_bad_epoch(event.xdata) self.mne.ax_hscroll.patches[epoch_ix].set_color(color) self._redraw(update_data=False) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # SCROLLBARS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _update_zen_mode_offsets(self): """Compute difference between main axes edges and scrollbar edges.""" self.mne.fig_size_px = self._get_size_px() self.mne.zen_w = ( self.mne.ax_vscroll.get_position().xmax - self.mne.ax_main.get_position().xmax ) self.mne.zen_h = ( self.mne.ax_main.get_position().ymin - self.mne.ax_hscroll.get_position().ymin ) def _toggle_scrollbars(self): """Show or hide scrollbars (A.K.A. zen mode).""" self._update_zen_mode_offsets() # grow/shrink main axes to take up space from (or make room for) # scrollbars. We can't use ax.set_position() because axes are # locatable, so we use subplots_adjust should_show = not self.mne.scrollbars_visible margins = { side: getattr(self.subplotpars, side) for side in ("left", "bottom", "right", "top") } # if should_show, bottom margin moves up; right margin moves left margins["bottom"] += (1 if should_show else -1) * self.mne.zen_h margins["right"] += (-1 if should_show else 1) * self.mne.zen_w self.subplots_adjust(**margins) # handle x-axis label self.mne.zen_xlabel.set_visible(not should_show) # show/hide other UI elements for elem in ("ax_hscroll", "ax_vscroll", "ax_proj", "ax_help"): if elem == "ax_vscroll" and self.mne.butterfly: continue # sometimes we don't have a proj button (ax_proj) if getattr(self.mne, elem, None) is not None: getattr(self.mne, elem).set_visible(should_show) self.mne.scrollbars_visible = should_show def _update_vscroll(self): """Update the vertical scrollbar (channel) selection indicator.""" self.mne.vsel_patch.set_xy((0, self.mne.ch_start)) self.mne.vsel_patch.set_height(self.mne.n_channels) self._update_yaxis_labels() def _update_hscroll(self): """Update the horizontal scrollbar (time) selection indicator.""" self.mne.hsel_patch.set_xy((self.mne.t_start, 0)) self.mne.hsel_patch.set_width(self.mne.duration) def _check_update_hscroll_clicked(self, event): """Handle clicks on horizontal scrollbar.""" time = event.xdata - self.mne.duration / 2 max_time = ( self.mne.n_times / self.mne.info["sfreq"] + self.mne.first_time - self.mne.duration ) time = np.clip(time, self.mne.first_time, max_time) if self.mne.is_epochs: ix = np.searchsorted(self.mne.boundary_times[1:], time) time = self.mne.boundary_times[ix] if self.mne.t_start != time: self.mne.t_start = time self._update_hscroll() return True return False def _check_update_vscroll_clicked(self, event): """Update vscroll patch on click, return True if location changed.""" new_ch_start = np.clip( int(round(event.ydata - self.mne.n_channels / 2)), 0, len(self.mne.ch_order) - self.mne.n_channels, ) if self.mne.ch_start != new_ch_start: self.mne.ch_start = new_ch_start self._update_picks() self._update_vscroll() return True return False # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # SCALEBARS & AXIS LABELS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _show_scalebars(self): """Add channel scale bars.""" for pi, pick in enumerate(self.mne.picks): this_name = self.mne.ch_names[pick] this_type = self.mne.ch_types[pick] # TODO: Simplify this someday -- we have to duplicate the challenging # logic of _draw_traces here offset_ixs = ( self.mne.picks if self.mne.butterfly and self.mne.ch_selections is None else slice(None) ) offset = self.mne.trace_offsets[offset_ixs][pi] if ( this_type not in self.mne.scalebars and this_type != "stim" and this_type in self.mne.scalings and this_type in getattr(self.mne, "units", {}) and this_type in getattr(self.mne, "unit_scalings", {}) and this_name not in self.mne.info["bads"] and this_name not in self.mne.whitened_ch_names ): x = (self.mne.times[0] + self.mne.first_time,) * 2 denom = 4 if self.mne.butterfly else 2 y = tuple(np.array([-1, 1]) / denom + offset) self._draw_one_scalebar(x, y, this_type) if self.mne.is_epochs: x = ( self.mne.times[0], self.mne.times[0] + self.mne.boundary_times[1] / 2, ) y_value = self.mne.n_channels - 0.5 y = (y_value, y_value) self._draw_one_scalebar(x, y, "time") def _hide_scalebars(self): """Remove channel scale bars.""" for bar in self.mne.scalebars.values(): bar.remove() for text in self.mne.scalebar_texts.values(): text.remove() self.mne.scalebars = dict() self.mne.scalebar_texts = dict() def _toggle_scalebars(self, event): """Show/hide the scalebars.""" if self.mne.scalebars_visible: self._hide_scalebars() else: self._update_picks() self._show_scalebars() # toggle self.mne.scalebars_visible = not self.mne.scalebars_visible self._redraw(update_data=False) def _draw_one_scalebar(self, x, y, ch_type): """Draw a scalebar.""" from .utils import _simplify_float color = "#AA3377" # purple kwargs = dict(color=color, zorder=self.mne.zorder["scalebar"]) if ch_type == "time": label = f"{self.mne.boundary_times[1] / 2:.2f} s" text = self.mne.ax_main.text( x[0] + 0.015, y[1] - 0.05, label, va="bottom", ha="left", size="xx-small", **kwargs, ) else: scaler = 1 if self.mne.butterfly else 2 inv_norm = ( scaler * self.mne.scalings[ch_type] * self.mne.unit_scalings[ch_type] / self.mne.scale_factor ) label = f"{_simplify_float(inv_norm)} {self.mne.units[ch_type]} " text = self.mne.ax_main.text( x[1], y[1], label, va="baseline", ha="right", size="xx-small", **kwargs ) bar = self.mne.ax_main.plot(x, y, lw=4, **kwargs)[0] self.mne.scalebars[ch_type] = bar self.mne.scalebar_texts[ch_type] = text def _update_yaxis_labels(self): """Change the y-axis labels.""" if self.mne.butterfly and self.mne.fig_selection is not None: exclude = ("Vertex", "Custom") ticklabels = list(self.mne.ch_selections) keep_mask = np.isin(ticklabels, exclude, invert=True) ticklabels = [ t.replace("Left-", "L-").replace("Right-", "R-") for t in ticklabels ] # avoid having to rotate labels ticklabels = np.array(ticklabels)[keep_mask] elif self.mne.butterfly: _, ixs, _ = np.intersect1d( _DATA_CH_TYPES_ORDER_DEFAULT, self.mne.ch_types, return_indices=True ) ixs.sort() ticklabels = np.array(_DATA_CH_TYPES_ORDER_DEFAULT)[ixs] else: ticklabels = self.mne.ch_names[self.mne.picks] texts = self.mne.ax_main.set_yticklabels(ticklabels, picker=True) for text in texts: sty = ( "italic" if text.get_text() in self.mne.whitened_ch_names else "normal" ) text.set_style(sty) def _xtick_formatter(self, x, pos=None, ax_type="main"): """Change the x-axis labels.""" tickdiff = np.diff(self.mne.ax_main.get_xticks())[0] digits = np.ceil(-np.log10(tickdiff) + 1).astype(int) # always show millisecond precision for vline text if ax_type == "vline": digits = 3 if self.mne.time_format == "float": # round to integers when possible ('9.0' → '9') if int(x) == x: digits = None if ax_type == "vline": return f"{round(x, digits)} s" return str(round(x, digits)) # format as timestamp meas_date = self.mne.inst.info["meas_date"] first_time = datetime.timedelta(seconds=self.mne.inst.first_time) xtime = datetime.timedelta(seconds=x) xdatetime = meas_date + first_time + xtime xdtstr = xdatetime.strftime("%H:%M:%S") if digits and ax_type != "hscroll" and int(xdatetime.microsecond): xdtstr += f"{round(xdatetime.microsecond * 1e-6, digits)}"[1:] return xdtstr def _toggle_time_format(self): if self.mne.time_format == "float": self.mne.time_format = "clock" x_axis_label = "Time (HH:MM:SS)" else: self.mne.time_format = "float" x_axis_label = "Time (s)" # Change x-axis label for _ax in (self.mne.ax_main, self.mne.ax_hscroll): _ax.set_xlabel(x_axis_label) self._redraw(update_data=False, annotations=False) # Update vline-text if displayed if self.mne.vline is not None and self.mne.vline.get_visible(): self._show_vline(self.mne.vline.get_xdata()) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # DATA TRACES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _toggle_butterfly(self): """Enter or leave butterfly mode.""" self.mne.ax_vscroll.set_visible(self.mne.butterfly) self.mne.butterfly = not self.mne.butterfly self.mne.scale_factor *= 0.5 if self.mne.butterfly else 2.0 self._update_picks() self._update_trace_offsets() self._redraw(annotations=True) if self.mne.fig_selection is not None: self.mne.fig_selection._style_radio_buttons_butterfly() def _update_trace_offsets(self): """Compute viewport height and adjust offsets.""" # simultaneous selection and butterfly modes if self.mne.butterfly and self.mne.ch_selections is not None: self._update_picks() selections_dict = self._make_butterfly_selections_dict() n_offsets = len(selections_dict) sel_order = list(selections_dict) offsets = np.array([]) for pick in self.mne.picks: for sel in sel_order: if pick in selections_dict[sel]: offsets = np.append(offsets, sel_order.index(sel)) # butterfly only elif self.mne.butterfly: unique_ch_types = set(self.mne.ch_types) n_offsets = len(unique_ch_types) ch_type_order = [ _type for _type in _DATA_CH_TYPES_ORDER_DEFAULT if _type in unique_ch_types ] offsets = np.array( [ch_type_order.index(ch_type) for ch_type in self.mne.ch_types] ) # normal mode else: n_offsets = self.mne.n_channels offsets = np.arange(n_offsets, dtype=float) # update ylim, ticks, vertline, and scrollbar patch ylim = (n_offsets - 0.5, -0.5) # inverted y axis → new chs at bottom self.mne.ax_main.set_ylim(ylim) self.mne.ax_main.set_yticks(np.unique(offsets)) self.mne.vsel_patch.set_height(self.mne.n_channels) # store new offsets, update axis labels self.mne.trace_offsets = offsets self._update_yaxis_labels() def _draw_traces(self): """Draw (or redraw) the channel data.""" from matplotlib.colors import to_rgba_array from matplotlib.patches import Rectangle # clear scalebars if self.mne.scalebars_visible: self._hide_scalebars() # get info about currently visible channels picks = self.mne.picks ch_names = self.mne.ch_names[picks] ch_types = self.mne.ch_types[picks] offset_ixs = ( picks if self.mne.butterfly and self.mne.ch_selections is None else slice(None) ) offsets = self.mne.trace_offsets[offset_ixs] bad_bool = np.isin(ch_names, self.mne.info["bads"]) # colors good_ch_colors = [self.mne.ch_color_dict[_type] for _type in ch_types] ch_colors = to_rgba_array( [ self.mne.ch_color_bad if _bad else _color for _bad, _color in zip(bad_bool, good_ch_colors) ] ) self.mne.ch_colors = np.array(good_ch_colors) # use for unmarking bads labels = self.mne.ax_main.yaxis.get_ticklabels() if self.mne.butterfly: for label in labels: label.set_color(self.mne.fgcolor) else: for label, color in zip(labels, ch_colors): label.set_color(color) # decim decim = np.ones_like(picks) data_picks_mask = np.isin(picks, self.mne.picks_data) decim[data_picks_mask] = self.mne.decim # decim can vary by channel type, so compute different `times` vectors decim_times = { decim_value: self.mne.times[::decim_value] + self.mne.first_time for decim_value in set(decim) } # add more traces if needed n_picks = len(picks) if n_picks > len(self.mne.traces): n_new_chs = n_picks - len(self.mne.traces) new_traces = self.mne.ax_main.plot( np.full((1, n_new_chs), np.nan), **self.mne.trace_kwargs ) self.mne.traces.extend(new_traces) # remove extra traces if needed extra_traces = self.mne.traces[n_picks:] for trace in extra_traces: trace.remove() self.mne.traces = self.mne.traces[:n_picks] # check for bad epochs time_range = (self.mne.times + self.mne.first_time)[[0, -1]] if self.mne.instance_type == "epochs": epoch_ix = np.searchsorted(self.mne.boundary_times, time_range) epoch_ix = np.arange(epoch_ix[0], epoch_ix[1]) epoch_nums = self.mne.inst.selection[epoch_ix[0] : epoch_ix[-1] + 1] (visible_bad_epoch_ix,) = np.isin(epoch_nums, self.mne.bad_epochs).nonzero() while len(self.mne.epoch_traces): self.mne.epoch_traces.pop(-1).remove() # handle custom epoch colors (for autoreject integration) if self.mne.epoch_colors is None: # shape: n_traces × RGBA → n_traces × n_epochs × RGBA custom_colors = np.tile( ch_colors[:, None, :], (1, self.mne.n_epochs, 1) ) else: custom_colors = np.empty((len(self.mne.picks), self.mne.n_epochs, 4)) for ii, _epoch_ix in enumerate(epoch_ix): this_colors = self.mne.epoch_colors[_epoch_ix] custom_colors[:, ii] = to_rgba_array( [this_colors[_ch] for _ch in picks] ) # override custom color on bad epochs for _ix in visible_bad_epoch_ix: _cols = np.array( [self.mne.epoch_color_bad, self.mne.ch_color_bad], dtype=object )[bad_bool.astype(int)] custom_colors[:, _ix] = to_rgba_array(_cols) # update traces ylim = self.mne.ax_main.get_ylim() for ii, line in enumerate(self.mne.traces): this_name = ch_names[ii] this_type = ch_types[ii] this_offset = offsets[ii] this_times = decim_times[decim[ii]] this_data = this_offset - self.mne.data[ii] * self.mne.scale_factor this_data = this_data[..., :: decim[ii]] # clip if self.mne.clipping == "clamp": this_data = np.clip(this_data, -0.5, 0.5) elif self.mne.clipping is not None: clip = self.mne.clipping * (0.2 if self.mne.butterfly else 1) bottom = max(this_offset - clip, ylim[1]) height = min(2 * clip, ylim[0] - bottom) rect = Rectangle( xy=np.array([time_range[0], bottom]), width=time_range[1] - time_range[0], height=height, transform=self.mne.ax_main.transData, ) line.set_clip_path(rect) # prep z order is_bad_ch = this_name in self.mne.info["bads"] this_z = self.mne.zorder["bads" if is_bad_ch else "data"] if self.mne.butterfly and not is_bad_ch: this_z = self.mne.zorder.get(this_type, this_z) # plot each trace multiple times to get the desired epoch coloring. # use masked arrays to plot discontinuous epochs that have the same # color in a single plot() call. if self.mne.instance_type == "epochs": this_colors = custom_colors[ii] for cix, color in enumerate(np.unique(this_colors, axis=0)): bool_ixs = (this_colors == color).all(axis=1) mask = np.zeros_like(this_times, dtype=bool) _starts = self.mne.boundary_times[epoch_ix][bool_ixs] _stops = self.mne.boundary_times[epoch_ix + 1][bool_ixs] for _start, _stop in zip(_starts, _stops): _mask = np.logical_and(_start < this_times, this_times <= _stop) mask = mask | _mask _times = np.ma.masked_array(this_times, mask=~mask) # always use the existing traces first if cix == 0: line.set_xdata(_times) line.set_ydata(this_data) line.set_color(color) line.set_zorder(this_z) else: # make new traces as needed _trace = self.mne.ax_main.plot( _times, this_data, color=color, zorder=this_z, **self.mne.trace_kwargs, ) self.mne.epoch_traces.extend(_trace) else: line.set_xdata(this_times) line.set_ydata(this_data) line.set_color(ch_colors[ii]) line.set_zorder(this_z) # update xlim self.mne.ax_main.set_xlim(*time_range) # draw scalebars maybe if self.mne.scalebars_visible: self._show_scalebars() # redraw event lines if self.mne.event_times is not None: self._draw_event_lines() def _redraw(self, update_data=True, annotations=False): """Redraw (convenience method for frequently grouped actions).""" super()._redraw(update_data, annotations) if self.mne.vline_visible and self.mne.is_epochs: # prevent flickering _ = self._recompute_epochs_vlines(None) self.canvas.draw_idle() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # EVENT LINES AND MARKER LINES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _draw_event_lines(self): """Draw the event lines and their labels.""" from matplotlib.collections import LineCollection from matplotlib.colors import to_rgba_array if self.mne.event_nums is not None: mask = np.logical_and( self.mne.event_times >= self.mne.times[0], self.mne.event_times <= self.mne.times[-1], ) this_event_times = self.mne.event_times[mask] this_event_nums = self.mne.event_nums[mask] n_visible_events = len(this_event_times) colors = to_rgba_array( [self.mne.event_color_dict[n] for n in this_event_nums] ) # create event lines ylim = self.mne.ax_main.get_ylim() xs = np.repeat(this_event_times, 2) ys = np.tile(ylim, n_visible_events) segs = np.vstack([xs, ys]).T.reshape(n_visible_events, 2, 2) event_lines = LineCollection( segs, linewidths=0.5, colors=colors, zorder=self.mne.zorder["events"] ) self.mne.ax_main.add_collection(event_lines) self.mne.event_lines = event_lines # create event labels while len(self.mne.event_texts): self.mne.event_texts.pop().remove() for _t, _n, _c in zip(this_event_times, this_event_nums, colors): label = self.mne.event_id_rev.get(_n, _n) this_text = self.mne.ax_main.annotate( label, (_t, ylim[1]), ha="center", va="baseline", color=self.mne.fgcolor, xytext=(0, 2), textcoords="offset points", fontsize=8, ) self.mne.event_texts.append(this_text) def _recompute_epochs_vlines(self, xdata): """Recompute vline x-coords for epochs plots (after scrolling, etc).""" # special case: changed view duration w/ "home" or "end" key # (no click event, hence no xdata) if xdata is None: xdata = np.array(self.mne.vline.get_segments())[0, 0, 0] # compute the (continuous) times for the lines on each epoch epoch_dur = np.diff(self.mne.boundary_times[:2])[0] rel_time = xdata % epoch_dur abs_time = self.mne.times[0] xs = np.arange(self.mne.n_epochs) * epoch_dur + abs_time + rel_time segs = np.array(self.mne.vline.get_segments()) # recreate segs from scratch in case view duration changed # (i.e., handle case when n_segments != n_epochs) segs = np.tile([[0.0], [1.0]], (len(xs), 1, 2)) # y values segs[..., 0] = np.tile(xs[:, None], 2) # x values self.mne.vline.set_segments(segs) return rel_time def _show_vline(self, xdata): """Show the vertical line(s).""" if self.mne.is_epochs: # convert xdata to be epoch-relative (for the text) rel_time = self._recompute_epochs_vlines(xdata) xdata = rel_time + self.mne.inst.times[0] else: self.mne.vline.set_xdata([xdata]) self.mne.vline_hscroll.set_xdata([xdata]) text = self._xtick_formatter(xdata, ax_type="vline")[:12] self.mne.vline_text.set_text(text) self._toggle_vline(True) def _toggle_vline(self, visible): """Show or hide the vertical line(s).""" for artist in (self.mne.vline, self.mne.vline_hscroll, self.mne.vline_text): if artist is not None: artist.set_visible(visible) self.draw_artist(artist) self.mne.vline_visible = visible self.canvas.draw_idle() # workaround: plt.close() doesn't spawn close_event on Agg backend, this method # can be removed once the _close_event in fixes.py is removed def _close_event(self, fig=None): """Force calling of the MPL figure close event.""" fig = fig or self _close_event(fig) def _fake_keypress(self, key, fig=None): fig = fig or self _fake_keypress(fig, key) def _fake_click( self, point, add_points=None, fig=None, ax=None, xform="ax", button=1, kind="press", ): """Fake a click at a relative point within axes.""" fig = fig or self ax = ax or self.mne.ax_main if kind == "drag" and add_points is not None: _fake_click( fig=fig, ax=ax, point=point, xform=xform, button=button, kind="press" ) for apoint in add_points: _fake_click( fig=fig, ax=ax, point=apoint, xform=xform, button=button, kind="motion", ) _fake_click( fig=fig, ax=ax, point=add_points[-1], xform=xform, button=button, kind="release", ) else: _fake_click( fig=fig, ax=ax, point=point, xform=xform, button=button, kind=kind ) def _fake_scroll(self, x, y, step, fig=None): fig = fig or self _fake_scroll(fig, x, y, step) def _click_ch_name(self, ch_index, button): _click_ch_name(self, ch_index, button) def _resize_by_factor(self, factor=None): size = self.canvas.manager.canvas.get_width_height() if isinstance(factor, tuple): size = int(size[0] * factor[0], size[1] * factor[1]) else: size = [int(x * factor) for x in size] self.canvas.manager.resize(*size) def _get_ticklabels(self, orientation): if orientation == "x": labels = self.mne.ax_main.get_xticklabels(minor=self.mne.is_epochs) elif orientation == "y": labels = self.mne.ax_main.get_yticklabels() label_texts = [lb.get_text() for lb in labels] return label_texts def _get_scale_bar_texts(self): texts = tuple(t.get_text().strip() for t in self.mne.ax_main.texts) # First text is empty because of vline texts = texts[1:] return texts class MNELineFigure(MNEFigure): """Interactive figure for non-scrolling line plots.""" def __init__(self, inst, n_axes, figsize, *, layout="constrained", **kwargs): super().__init__( figsize=figsize, inst=inst, layout=layout, sharex=True, **kwargs, ) for ix in range(n_axes): self.add_subplot(n_axes, 1, ix + 1) def _close_all(): """Close all figures (only used in our tests).""" plt.close("all") def _get_n_figs(): return len(plt.get_fignums()) def _figure(toolbar=True, FigureClass=MNEFigure, **kwargs): """Instantiate a new figure.""" from matplotlib import rc_context title = kwargs.pop("window_title", None) # extract title before init if "layout" not in kwargs: kwargs["layout"] = "constrained" rc = dict() if toolbar else dict(toolbar="none") with rc_context(rc=rc): fig = plt.figure(FigureClass=FigureClass, **kwargs) # BACKEND defined globally at the top of this file fig.mne.backend = BACKEND if title is not None: _set_window_title(fig, title) # TODO: for some reason for topomaps->_prepare_trellis the layout=constrained does # not work the first time (maybe toolbar=False?) if kwargs.get("layout") == "constrained": fig.set_layout_engine("constrained") # add event callbacks fig._add_default_callbacks() return fig def _line_figure(inst, axes=None, picks=None, **kwargs): """Instantiate a new line figure.""" from matplotlib.axes import Axes # if picks is None, only show data channels allowed_ch_types = _DATA_CH_TYPES_SPLIT if picks is None else _VALID_CHANNEL_TYPES # figure out expected number of axes ch_types = np.array(inst.get_channel_types()) if picks is not None: ch_types = ch_types[picks] n_axes = len(np.intersect1d(ch_types, allowed_ch_types)) # handle user-provided axes if axes is not None: if isinstance(axes, Axes): axes = [axes] _validate_if_list_of_axes(axes, n_axes) fig = axes[0].get_figure() else: figsize = kwargs.pop("figsize", (10, 2.5 * n_axes + 1)) fig = _figure( inst=inst, toolbar=True, FigureClass=MNELineFigure, figsize=figsize, n_axes=n_axes, **kwargs, ) fig.mne.fig_size_px = fig._get_size_px() # can't do in __init__ axes = fig.axes return fig, axes def _split_picks_by_type(inst, picks, units, scalings, titles): """Separate picks, units, etc, for plotting on separate subplots.""" picks_list = list() units_list = list() scalings_list = list() titles_list = list() # if picks is None, only show data channels allowed_ch_types = _DATA_CH_TYPES_SPLIT if picks is None else _VALID_CHANNEL_TYPES for ch_type in allowed_ch_types: pick_kwargs = dict(meg=False, ref_meg=False, exclude=[]) if ch_type in ("mag", "grad"): pick_kwargs["meg"] = ch_type elif ch_type in _FNIRS_CH_TYPES_SPLIT: pick_kwargs["fnirs"] = ch_type elif ch_type in _EYETRACK_CH_TYPES_SPLIT: pick_kwargs["eyetrack"] = ch_type else: pick_kwargs[ch_type] = True these_picks = pick_types(inst.info, **pick_kwargs) these_picks = np.intersect1d(these_picks, picks) if len(these_picks) > 0: picks_list.append(these_picks) units_list.append(units[ch_type]) scalings_list.append(scalings[ch_type]) titles_list.append(titles[ch_type]) if len(picks_list) == 0: raise RuntimeError("No data channels found") return picks_list, units_list, scalings_list, titles_list def _calc_new_margins(fig, old_width, old_height, new_width, new_height): """Compute new figure-relative values to maintain fixed-size margins.""" new_margins = dict() for side in ("left", "right", "bottom", "top"): ratio = ( (old_width / new_width) if side in ("left", "right") else (old_height / new_height) ) rel_dim = getattr(fig.subplotpars, side) if side in ("right", "top"): new_margins[side] = 1 - ratio * (1 - rel_dim) else: new_margins[side] = ratio * rel_dim # gh-8304: don't allow resizing too small if ( new_margins["bottom"] < new_margins["top"] and new_margins["left"] < new_margins["right"] ): return new_margins @contextmanager def _patched_canvas(fig): old_canvas = fig.canvas if fig.canvas is None: # XXX old MPL (at least 3.0.3) does this for Agg fig.canvas = Bunch(mpl_connect=lambda event, callback: None) try: yield finally: fig.canvas = old_canvas def _init_browser(**kwargs): """Instantiate a new MNE browse-style figure.""" from mne.io import BaseRaw fig = _figure(toolbar=False, FigureClass=MNEBrowseFigure, layout=None, **kwargs) # splash is ignored (maybe we could do it for mpl if we get_backend() and # check if it's Qt... but seems overkill) # initialize zen mode # (can't do in __init__ due to get_position() calls) fig.canvas.draw() fig._update_zen_mode_offsets() fig._resize(None) # needed for MPL # if scrollbars are supposed to start hidden, # set to True and then toggle if not fig.mne.scrollbars_visible: fig.mne.scrollbars_visible = True fig._toggle_scrollbars() # Initialize parts of the plot is_ica = fig.mne.instance_type == "ica" if not is_ica: # make channel selection dialog, # if requested (doesn't work well in init) if fig.mne.group_by in ("selection", "position"): fig._create_selection_fig() # start with projectors dialog open, if requested if getattr(fig.mne, "show_options", False): fig._toggle_proj_fig() # update data, and plot fig._update_trace_offsets() fig._redraw(update_data=True, annotations=False) if isinstance(fig.mne.inst, BaseRaw): fig._setup_annotation_colors() fig._draw_annotations() return fig def _get_check_kwargs(labels=None): check_kwargs = dict() if not _OLD_BUTTONS: check_kwargs.update( check_props=dict(s=144, clip_on=False), frame_props=dict(s=144, clip_on=False), ) if labels is not None: textcolor = list() checkcolor = list() for label in labels: if label.endswith("(already applied)"): textcolor.append("0.5") checkcolor.append("0.7") else: textcolor.append("k") checkcolor.append("k") check_kwargs["check_props"].update(facecolor=checkcolor, linewidth=1) check_kwargs["frame_props"].update(edgecolor=checkcolor, linewidth=1) check_kwargs["label_props"] = dict(color=textcolor) return check_kwargs