"""Base classes and functions for 2D browser backends.""" # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import importlib from abc import ABC, abstractmethod from collections import OrderedDict from contextlib import contextmanager from copy import deepcopy from itertools import cycle import numpy as np from .._fiff.pick import _DATA_CH_TYPES_SPLIT from ..defaults import _handle_default from ..filter import _iir_filter, _overlap_add_filter from ..fixes import _compare_version from ..utils import ( _check_option, _get_stim_channel, _validate_type, get_config, logger, set_config, verbose, ) from .backends._utils import VALID_BROWSE_BACKENDS from .utils import _get_color_list, _setup_plot_projector, _show_browser MNE_BROWSER_BACKEND = None backend = None class BrowserParams: """Container object for 2D browser parameters.""" def __init__(self, **kwargs): # default key to close window self.close_key = "escape" vars(self).update(**kwargs) class BrowserBase(ABC): """A base class containing for the 2D browser. This class contains all backend-independent attributes and methods. """ def __init__(self, **kwargs): from ..epochs import BaseEpochs from ..io import BaseRaw from ..preprocessing import ICA self.backend_name = None self._data = None self._times = None self.mne = BrowserParams(**kwargs) inst = kwargs.get("inst", None) ica = kwargs.get("ica", None) # what kind of data are we dealing with? if isinstance(ica, ICA): self.mne.instance_type = "ica" elif isinstance(inst, BaseRaw): self.mne.instance_type = "raw" elif isinstance(inst, BaseEpochs): self.mne.instance_type = "epochs" else: raise TypeError( f"Expected an instance of Raw, Epochs, or ICA, got {type(inst)}." ) logger.debug(f"Opening {self.mne.instance_type} browser...") self.mne.ica_type = None if self.mne.instance_type == "ica": if isinstance(self.mne.ica_inst, BaseRaw): self.mne.ica_type = "raw" elif isinstance(self.mne.ica_inst, BaseEpochs): self.mne.ica_type = "epochs" self.mne.is_epochs = "epochs" in (self.mne.instance_type, self.mne.ica_type) # things that always start the same self.mne.ch_start = 0 self.mne.projector = None if hasattr(self.mne, "projs"): self.mne.projs_active = np.array([p["active"] for p in self.mne.projs]) self.mne.whitened_ch_names = list() if hasattr(self.mne, "noise_cov"): self.mne.use_noise_cov = self.mne.noise_cov is not None # allow up to 10000 zorder levels for annotations self.mne.zorder = dict( patch=0, grid=1, ann=2, events=10003, bads=10004, data=10005, mag=10006, grad=10007, scalebar=10008, vline=10009, ) # additional params for epochs (won't affect raw / ICA) self.mne.epoch_traces = list() self.mne.bad_epochs = list() if inst is not None: self.mne.sampling_period = np.diff(inst.times[:2])[0] / inst.info["sfreq"] # annotations self.mne.annotations = list() self.mne.hscroll_annotations = list() self.mne.annotation_segments = list() self.mne.annotation_texts = list() self.mne.new_annotation_labels = list() self.mne.annotation_segment_colors = dict() self.mne.annotation_hover_line = None self.mne.draggable_annotations = False # lines self.mne.event_lines = list() self.mne.event_texts = list() self.mne.vline_visible = False # decim self.mne.decim_times = None self.mne.decim_data = None # scalings if hasattr(self.mne, "butterfly"): self.mne.scale_factor = 0.5 if self.mne.butterfly else 1.0 self.mne.scalebars = dict() self.mne.scalebar_texts = dict() # ancillary child figures self.mne.child_figs = list() self.mne.fig_help = None self.mne.fig_proj = None self.mne.fig_histogram = None self.mne.fig_selection = None self.mne.fig_annotation = None # extra attributes for epochs if self.mne.is_epochs: # add epoch boundaries & center epoch numbers between boundaries self.mne.midpoints = ( np.convolve(self.mne.boundary_times, np.ones(2), mode="valid") / 2 ) # initialize picks and projectors self._update_picks() if not self.mne.instance_type == "ica": self._update_projector() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ANNOTATIONS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _get_annotation_labels(self): """Get the unique labels in the raw object and added in the UI.""" return sorted( set(self.mne.inst.annotations.description) | set(self.mne.new_annotation_labels) ) def _setup_annotation_colors(self): """Set up colors for annotations; init some annotation vars.""" segment_colors = getattr(self.mne, "annotation_segment_colors", dict()) labels = self._get_annotation_labels() colors, red = _get_color_list(annotations=True) color_cycle = cycle(colors) for key, color in segment_colors.items(): if color != red and key in labels: next(color_cycle) for idx, key in enumerate(labels): if key.lower().startswith("bad") or key.lower().startswith("edge"): segment_colors[key] = red elif key in segment_colors: continue else: segment_colors[key] = next(color_cycle) self.mne.annotation_segment_colors = segment_colors # init a couple other annotation-related variables self.mne.visible_annotations = {label: True for label in labels} self.mne.show_hide_annotation_checkboxes = None def _update_annotation_segments(self): """Update the array of annotation start/end times.""" from ..annotations import _sync_onset self.mne.annotation_segments = np.array([]) if len(self.mne.inst.annotations): annot_start = _sync_onset(self.mne.inst, self.mne.inst.annotations.onset) durations = self.mne.inst.annotations.duration.copy() durations[durations < 1 / self.mne.info["sfreq"]] = ( 1 / self.mne.info["sfreq"] ) annot_end = annot_start + durations self.mne.annotation_segments = np.vstack((annot_start, annot_end)).T # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # PROJECTOR & BADS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _update_projector(self): """Update the data after projectors (or bads) have changed.""" inds = np.where(self.mne.projs_on)[0] # doesn't include "active" projs # copy projs from full list (self.mne.projs) to info object with self.mne.info._unlock(): self.mne.info["projs"] = [deepcopy(self.mne.projs[ix]) for ix in inds] # compute the projection operator proj, wh_chs = _setup_plot_projector( self.mne.info, self.mne.noise_cov, True, self.mne.use_noise_cov ) self.mne.whitened_ch_names = list(wh_chs) self.mne.projector = proj def _toggle_bad_channel(self, idx): """Mark/unmark bad channels; `idx` is index of *visible* channels.""" pick = self.mne.picks[idx] ch_name = self.mne.ch_names[pick] # add/remove from bads list bads = self.mne.info["bads"] marked_bad = ch_name not in bads if marked_bad: bads.append(ch_name) color = self.mne.ch_color_bad else: while ch_name in bads: # to make sure duplicates are removed bads.remove(ch_name) # Only mpl-backend has ch_colors if hasattr(self.mne, "ch_colors"): color = self.mne.ch_colors[idx] else: color = None self.mne.info["bads"] = bads self._update_projector() return color, pick, marked_bad def _toggle_single_channel_annotation(self, ch_pick, annot_idx): current_ch_names = list(self.mne.inst.annotations.ch_names[annot_idx]) if ch_pick in current_ch_names: current_ch_names.remove(ch_pick) else: current_ch_names.append(ch_pick) self.mne.inst.annotations.ch_names[annot_idx] = tuple(current_ch_names) def _toggle_bad_epoch(self, xtime): epoch_num = self._get_epoch_num_from_time(xtime) epoch_ix = self.mne.inst.selection.tolist().index(epoch_num) if epoch_num in self.mne.bad_epochs: self.mne.bad_epochs.remove(epoch_num) color = "none" else: self.mne.bad_epochs.append(epoch_num) self.mne.bad_epochs.sort() color = self.mne.epoch_color_bad return epoch_ix, color def _toggle_whitening(self): if self.mne.noise_cov is not None: self.mne.use_noise_cov = not self.mne.use_noise_cov self._update_projector() self._update_yaxis_labels() # add/remove italics self._redraw() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # MANAGE TRACES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _update_picks(self): """Compute which channel indices to show.""" if self.mne.butterfly and self.mne.ch_selections is not None: selections_dict = self._make_butterfly_selections_dict() self.mne.picks = np.concatenate(tuple(selections_dict.values())) elif self.mne.butterfly: self.mne.picks = self.mne.ch_order else: _slice = slice(self.mne.ch_start, self.mne.ch_start + self.mne.n_channels) self.mne.picks = self.mne.ch_order[_slice] self.mne.n_channels = len(self.mne.picks) assert isinstance(self.mne.picks, np.ndarray) assert self.mne.picks.dtype.kind == "i" def _make_butterfly_selections_dict(self): """Make an altered copy of the selections dict for butterfly mode.""" selections_dict = deepcopy(self.mne.ch_selections) # remove potential duplicates for selection_group in ("Vertex", "Custom"): selections_dict.pop(selection_group, None) # if present, remove stim channel from non-misc selection groups stim_ch = _get_stim_channel(None, self.mne.info, raise_error=False) if len(stim_ch): stim_pick = self.mne.ch_names.tolist().index(stim_ch[0]) for _sel, _picks in selections_dict.items(): if _sel != "Misc": stim_mask = np.isin(_picks, [stim_pick], invert=True) selections_dict[_sel] = np.array(_picks)[stim_mask] return selections_dict # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # MANAGE DATA # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _get_start_stop(self): # update time start_sec = self.mne.t_start - self.mne.first_time stop_sec = start_sec + self.mne.duration if self.mne.is_epochs: start, stop = np.round( np.array([start_sec, stop_sec]) * self.mne.info["sfreq"] ).astype(int) else: start, stop = self.mne.inst.time_as_index((start_sec, stop_sec)) return start, stop def _load_data(self, start=None, stop=None): """Retrieve the bit of data we need for plotting.""" if "raw" in (self.mne.instance_type, self.mne.ica_type): # Add additional sample to cover the case sfreq!=1000 # when the shown time-range wouldn't correspond to duration anymore if stop is None: return self.mne.inst[:, start:] else: return self.mne.inst[:, start : stop + 2] else: # subtract one sample from tstart before searchsorted, to make sure # we land on the left side of the boundary time (avoid precision # errors) ix_start = np.searchsorted( self.mne.boundary_times, self.mne.t_start - self.mne.sampling_period ) ix_stop = ix_start + self.mne.n_epochs item = slice(ix_start, ix_stop) data = np.concatenate( self.mne.inst.get_data(item=item, copy=False), axis=-1 ) times = np.arange(start, stop) / self.mne.info["sfreq"] return data, times def _apply_filter(self, data, start, stop, picks): """Filter (with same defaults as raw.filter()).""" starts, stops = self.mne.filter_bounds mask = (starts < stop) & (stops > start) starts = np.maximum(starts[mask], start) - start stops = np.minimum(stops[mask], stop) - start for _start, _stop in zip(starts, stops): _picks = np.where(np.isin(picks, self.mne.picks_data))[0] if len(_picks) == 0: break this_data = data[_picks, _start:_stop] if isinstance(self.mne.filter_coefs, np.ndarray): # FIR this_data = _overlap_add_filter( this_data, self.mne.filter_coefs, copy=False ) else: # IIR this_data = _iir_filter( this_data, self.mne.filter_coefs, None, 1, False ) data[_picks, _start:_stop] = this_data def _process_data(self, data, start, stop, picks, thread=None): """Update self.mne.data after user interaction.""" # apply projectors if self.mne.projector is not None: # thread is the loading-thread only available in Qt-backend if thread: thread.processText.emit("Applying Projectors...") data = self.mne.projector @ data # get only the channels we're displaying data = data[picks] # remove DC if self.mne.remove_dc: if thread: thread.processText.emit("Removing DC...") data -= np.nanmean(data, axis=1, keepdims=True) # apply filter if self.mne.filter_coefs is not None: if thread: thread.processText.emit("Apply Filter...") self._apply_filter(data, start, stop, picks) # scale the data for display in a 1-vertical-axis-unit slot if thread: thread.processText.emit("Scale Data...") this_names = self.mne.ch_names[picks] this_types = self.mne.ch_types[picks] stims = this_types == "stim" white = np.logical_and( np.isin(this_names, self.mne.whitened_ch_names), np.isin(this_names, self.mne.info["bads"], invert=True), ) norms = np.vectorize(self.mne.scalings.__getitem__)(this_types) norms[stims] = data[stims].max(axis=-1) norms[white] = self.mne.scalings["whitened"] norms[norms == 0] = 1 data /= 2 * norms[:, np.newaxis] return data def _update_data(self): start, stop = self._get_start_stop() # get the data data, times = self._load_data(start, stop) # process the data data = self._process_data(data, start, stop, self.mne.picks) # set the data as attributes self.mne.data = data self.mne.times = times def _get_epoch_num_from_time(self, time): epoch_nums = self.mne.inst.selection return epoch_nums[np.searchsorted(self.mne.boundary_times[1:], time)] def _redraw(self, update_data=True, annotations=False): """Redraws backend if necessary.""" if update_data: self._update_data() self._draw_traces() if annotations and not self.mne.is_epochs: self._draw_annotations() def _close(self, event): """Handle close events (via keypress or window [x]).""" from matplotlib.pyplot import close logger.debug(f"Closing {self.mne.instance_type} browser...") # write out bad epochs (after converting epoch numbers to indices) if self.mne.instance_type == "epochs": bad_ixs = np.isin(self.mne.inst.selection, self.mne.bad_epochs).nonzero()[0] self.mne.inst.drop(bad_ixs) logger.info( "The following epochs were marked as bad " "and are dropped:\n" f"{self.mne.bad_epochs}" ) # write bad channels back to instance (don't do this for proj; # proj checkboxes are for viz only and shouldn't modify the instance) if self.mne.instance_type in ("raw", "epochs"): self.mne.inst.info["bads"] = self.mne.info["bads"] logger.info(f"Channels marked as bad:\n{self.mne.info['bads'] or 'none'}") # ICA excludes elif self.mne.instance_type == "ica": self.mne.ica.exclude = [ self.mne.ica._ica_names.index(ch) for ch in self.mne.info["bads"] ] # write window size to config str_size = ",".join([str(i) for i in self._get_size()]) set_config("MNE_BROWSE_RAW_SIZE", str_size, set_env=False) # Clean up child figures (don't pop(), child figs remove themselves) while len(self.mne.child_figs): fig = self.mne.child_figs[-1] close(fig) self._close_event(fig) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # CHILD FIGURES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # @abstractmethod def _new_child_figure(self, fig_name, **kwargs): pass def _create_ch_context_fig(self, idx): """Show context figure; idx is index of **visible** channels.""" inst = self.mne.instance_type pick = self.mne.picks[idx] if inst == "raw": fig = self._create_ch_location_fig(pick) elif inst == "ica": fig = self._create_ica_properties_fig(pick) else: fig = self._create_epoch_image_fig(pick) return fig def _create_ch_location_fig(self, pick): """Show channel location figure.""" from .utils import _channel_type_prettyprint, plot_sensors ch_name = self.mne.ch_names[pick] ch_type = self.mne.ch_types[pick] if ch_type not in _DATA_CH_TYPES_SPLIT: return # create figure and axes title = f"Location of {ch_name}" fig = self._new_child_figure(figsize=(4, 4), fig_name=None, window_title=title) fig.suptitle(title) ax = fig.add_subplot(111) title = f"{ch_name} position ({_channel_type_prettyprint[ch_type]})" _ = plot_sensors( self.mne.info, ch_type=ch_type, axes=ax, title=title, kind="select", show=False, ) # highlight desired channel & disable interactivity inds = np.isin(fig.lasso.ch_names, [ch_name]) fig.lasso.disconnect() fig.lasso.alpha_other = 0.3 fig.lasso.linewidth_selected = 3 fig.lasso.style_sensors(inds) return fig def _create_ica_properties_fig(self, idx): """Show ICA properties for the selected component.""" from mne.viz.ica import ( _create_properties_layout, _fast_plot_ica_properties, _prepare_data_ica_properties, ) ch_name = self.mne.ch_names[idx] if ch_name not in self.mne.ica._ica_names: # for EOG chans: do nothing return pick = self.mne.ica._ica_names.index(ch_name) title = f"{ch_name} properties" fig = self._new_child_figure(figsize=(7, 6), fig_name=None, window_title=title) fig.suptitle(title) fig, axes = _create_properties_layout(fig=fig) if not hasattr(self.mne, "data_ica_properties"): # Precompute epoch sources only once self.mne.data_ica_properties = _prepare_data_ica_properties( self.mne.ica_inst, self.mne.ica ) _fast_plot_ica_properties( self.mne.ica, self.mne.ica_inst, picks=pick, axes=axes, precomputed_data=self.mne.data_ica_properties, show=False, ) return fig def _create_epoch_image_fig(self, pick): """Show epochs image for the selected channel.""" from matplotlib.gridspec import GridSpec from mne.viz import plot_epochs_image ch_name = self.mne.ch_names[pick] title = f"Epochs image ({ch_name})" fig = self._new_child_figure(figsize=(6, 4), fig_name=None, window_title=title) fig.suptitle = title gs = GridSpec(nrows=3, ncols=10, figure=fig) fig.add_subplot(gs[:2, :9]) fig.add_subplot(gs[2, :9]) fig.add_subplot(gs[:2, 9]) plot_epochs_image(self.mne.inst, picks=pick, fig=fig, show=False) return fig def _create_epoch_histogram(self): """Create peak-to-peak histogram of channel amplitudes.""" epochs = self.mne.inst data = OrderedDict() ptp = np.ptp(epochs.get_data(copy=False), axis=2) for ch_type in ("eeg", "mag", "grad"): if ch_type in epochs: data[ch_type] = ptp.T[self.mne.ch_types == ch_type].ravel() units = _handle_default("units") titles = _handle_default("titles") colors = _handle_default("color") scalings = _handle_default("scalings") title = "Histogram of peak-to-peak amplitudes" figsize = (4, 1 + 1.5 * len(data)) fig = self._new_child_figure( figsize=figsize, fig_name="fig_histogram", window_title=title ) for ix, (_ch_type, _data) in enumerate(data.items()): ax = fig.add_subplot(len(data), 1, ix + 1) ax.set(title=titles[_ch_type], xlabel=units[_ch_type], ylabel="Count") # set histogram bin range based on rejection thresholds reject = None _range = None if epochs.reject is not None and _ch_type in epochs.reject: reject = epochs.reject[_ch_type] * scalings[_ch_type] _range = (0.0, reject * 1.1) # plot it ax.hist( _data * scalings[_ch_type], bins=100, color=colors[_ch_type], range=_range, ) if reject is not None: ax.plot((reject, reject), (0, ax.get_ylim()[1]), color="r") # finalize fig.suptitle(title, y=0.99) self.mne.fig_histogram = fig return fig def _close_event(self, fig): """Look at _close_event in mne.fixes.py for why this exists.""" pass def fake_keypress(self, key, fig=None): # noqa: D400 """Pass a fake keypress to the figure. Parameters ---------- key : str The key to fake (e.g., ``'a'``). fig : instance of Figure The figure to pass the keypress to. """ return self._fake_keypress(key, fig=fig) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # TEST METHODS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # @abstractmethod def _get_size(self): pass @abstractmethod def _fake_keypress(self, key, fig): pass @abstractmethod def _fake_click(self, point, fig, axis, xform, button, kind): pass @abstractmethod def _click_ch_name(self, ch_index, button): pass @abstractmethod def _resize_by_factor(self, factor): pass @abstractmethod def _get_ticklabels(self, orientation): pass @abstractmethod def _update_yaxis_labels(self): pass def _load_backend(backend_name): global backend if backend_name == "matplotlib": backend = importlib.import_module(name="._mpl_figure", package="mne.viz") else: from mne_qt_browser import _pg_figure as backend logger.info(f"Using {backend_name} as 2D backend.") return backend def _get_browser(show, block, **kwargs): """Instantiate a new MNE browse-style figure.""" from .utils import _get_figsize_from_config figsize = kwargs.setdefault("figsize", _get_figsize_from_config()) if figsize is None or np.any(np.array(figsize) < 8): kwargs["figsize"] = (8, 8) kwargs["splash"] = kwargs.get("splash", True) and show if kwargs.get("theme", None) is None: kwargs["theme"] = get_config("MNE_BROWSER_THEME", "auto") if kwargs.get("overview_mode", None) is None: kwargs["overview_mode"] = get_config("MNE_BROWSER_OVERVIEW_MODE", "channels") # Initialize browser backend backend_name = get_browser_backend() # Check mne-qt-browser compatibility if backend_name == "qt": import mne_qt_browser from ..epochs import BaseEpochs is_ica = kwargs.get("ica", False) is_epochs = isinstance(kwargs.get("inst", False), BaseEpochs) not_compat = _compare_version(mne_qt_browser.__version__, "<", "0.2.0") inst_str = "ICA" if is_ica else "Epochs" if not_compat and (is_ica or is_epochs): logger.info( f'You set the browser-backend to "qt" but your' f" current version {mne_qt_browser.__version__}" f" of mne-qt-browser is too low for {inst_str}." f"Update with pip or conda." f"Defaults to matplotlib." ) with use_browser_backend("matplotlib"): # Initialize Browser fig = backend._init_browser(**kwargs) _show_browser(show=show, block=block, fig=fig) return fig # Initialize Browser fig = backend._init_browser(**kwargs) _show_browser(show=show, block=block, fig=fig) return fig def _check_browser_backend_name(backend_name): _validate_type(backend_name, str, "backend_name") backend_name = backend_name.lower() backend_name = "qt" if backend_name == "pyqtgraph" else backend_name _check_option("backend_name", backend_name, VALID_BROWSE_BACKENDS) return backend_name @verbose def set_browser_backend(backend_name, verbose=None): """Set the 2D browser backend for MNE. The backend will be set as specified and operations will use that backend. Parameters ---------- backend_name : str The 2D browser backend to select. See Notes for the capabilities of each backend (``'qt'``, ``'matplotlib'``). The ``'qt'`` browser requires `mne-qt-browser `__. %(verbose)s Returns ------- old_backend_name : str | None The old backend that was in use. Notes ----- This table shows the capabilities of each backend ("✓" for full support, and "-" for partial support): .. table:: :widths: auto +--------------------------------------+------------+----+ | **2D browser function:** | matplotlib | qt | +======================================+============+====+ | :func:`plot_raw` | ✓ | ✓ | +--------------------------------------+------------+----+ | :func:`plot_epochs` | ✓ | ✓ | +--------------------------------------+------------+----+ | :func:`plot_ica_sources` | ✓ | ✓ | +--------------------------------------+------------+----+ +--------------------------------------+------------+----+ | **Feature:** | +--------------------------------------+------------+----+ | Show Events | ✓ | ✓ | +--------------------------------------+------------+----+ | Add/Edit/Remove Annotations | ✓ | ✓ | +--------------------------------------+------------+----+ | Toggle Projections | ✓ | ✓ | +--------------------------------------+------------+----+ | Butterfly Mode | ✓ | ✓ | +--------------------------------------+------------+----+ | Selection Mode | ✓ | ✓ | +--------------------------------------+------------+----+ | Smooth Scrolling | | ✓ | +--------------------------------------+------------+----+ | Overview-Bar (with Z-Score-Mode) | | ✓ | +--------------------------------------+------------+----+ .. versionadded:: 0.24 """ global MNE_BROWSER_BACKEND old_backend_name = MNE_BROWSER_BACKEND backend_name = _check_browser_backend_name(backend_name) if MNE_BROWSER_BACKEND != backend_name: _load_backend(backend_name) MNE_BROWSER_BACKEND = backend_name return old_backend_name def _init_browser_backend(): global MNE_BROWSER_BACKEND # check if MNE_BROWSER_BACKEND is not None and valid or get it from config loaded_backend = MNE_BROWSER_BACKEND or get_config( key="MNE_BROWSER_BACKEND", default=None ) if loaded_backend is not None: set_browser_backend(loaded_backend) return MNE_BROWSER_BACKEND else: errors = dict() # Try import of valid browser backends for name in VALID_BROWSE_BACKENDS: try: _load_backend(name) except ImportError as exc: errors[name] = str(exc) else: MNE_BROWSER_BACKEND = name break else: raise RuntimeError( "Could not load any valid 2D backend:\n" + "\n".join(f"{key}: {val}" for key, val in errors.items()) ) return MNE_BROWSER_BACKEND def get_browser_backend(): """Return the 2D backend currently used. Returns ------- backend_used : str | None The 2D browser backend currently in use. If no backend is found, returns ``None``. """ try: backend_name = _init_browser_backend() except RuntimeError as exc: backend_name = None logger.info(str(exc)) return backend_name @contextmanager def use_browser_backend(backend_name): """Create a 2D browser visualization context using the designated backend. See :func:`mne.viz.set_browser_backend` for more details on the available 2D browser backends and their capabilities. Parameters ---------- backend_name : {'qt', 'matplotlib'} The 2D browser backend to use in the context. """ old_backend = set_browser_backend(backend_name) try: yield backend finally: if old_backend is not None: try: set_browser_backend(old_backend) except Exception: pass