"""Functions to make 3D plots with M/EEG data.""" # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. from __future__ import annotations # only needed for Python ≤ 3.9 import os import os.path as op import warnings from collections import defaultdict from collections.abc import Iterable from dataclasses import dataclass from functools import partial from itertools import cycle from pathlib import Path import numpy as np from scipy.spatial import ConvexHull, Delaunay from scipy.spatial.distance import cdist from scipy.stats import rankdata from .._fiff.constants import FIFF from .._fiff.meas_info import Info, create_info, read_fiducials from .._fiff.pick import ( _FNIRS_CH_TYPES_SPLIT, _MEG_CH_TYPES_SPLIT, channel_type, pick_info, pick_types, ) from .._fiff.tag import _loc_to_coil_trans from .._freesurfer import ( _check_mri, _get_head_surface, _get_skull_surface, _read_mri_info, read_freesurfer_lut, ) from ..defaults import DEFAULTS from ..fixes import _crop_colorbar, _get_img_fdata from ..surface import ( _CheckInside, _DistanceQuery, _project_onto_surface, _read_mri_surface, _reorder_ccw, get_meg_helmet_surf, ) from ..transforms import ( Transform, _ensure_trans, _find_trans, _frame_to_str, _get_trans, _get_transforms_to_coord_frame, _print_coord_trans, apply_trans, combine_transforms, read_ras_mni_t, rot_to_quat, rotation, transform_surface_to, ) from ..utils import ( _check_option, _check_subject, _ensure_int, _import_nibabel, _pl, _to_rgb, _validate_type, check_version, fill_doc, get_config, get_subjects_dir, logger, verbose, warn, ) from ._dipole import _check_concat_dipoles, _plot_dipole_3d, _plot_dipole_mri_outlines from .evoked_field import EvokedField from .utils import ( _check_time_unit, _get_cmap, _get_color_list, figure_nobar, plt_show, ) verbose_dec = verbose FIDUCIAL_ORDER = (FIFF.FIFFV_POINT_LPA, FIFF.FIFFV_POINT_NASION, FIFF.FIFFV_POINT_RPA) # XXX: to unify with digitization def _fiducial_coords(points, coord_frame=None): """Generate 3x3 array of fiducial coordinates.""" points = points or [] # None -> list if coord_frame is not None: points = [p for p in points if p["coord_frame"] == coord_frame] points_ = {p["ident"]: p for p in points if p["kind"] == FIFF.FIFFV_POINT_CARDINAL} if points_: return np.array([points_[i]["r"] for i in FIDUCIAL_ORDER]) else: # XXX eventually this should probably live in montage.py if coord_frame is None or coord_frame == FIFF.FIFFV_COORD_HEAD: # Try converting CTF HPI coils to fiducials out = np.empty((3, 3)) out.fill(np.nan) for p in points: if p["kind"] == FIFF.FIFFV_POINT_HPI: if np.isclose(p["r"][1:], 0, atol=1e-6).all(): out[0 if p["r"][0] < 0 else 2] = p["r"] elif np.isclose(p["r"][::2], 0, atol=1e-6).all(): out[1] = p["r"] if np.isfinite(out).all(): return out return np.array([]) @fill_doc def plot_head_positions( pos, mode="traces", cmap="viridis", direction="z", *, show=True, destination=None, info=None, color="k", axes=None, ): """Plot head positions. Parameters ---------- pos : ndarray, shape (n_pos, 10) | list of ndarray The head position data. Can also be a list to treat as a concatenation of runs. mode : str Can be 'traces' (default) to show position and quaternion traces, or 'field' to show the position as a vector field over time. cmap : colormap Colormap to use for the trace plot, default is "viridis". direction : str Can be any combination of "x", "y", or "z" (default: "z") to show directional axes in "field" mode. show : bool Show figure if True. Defaults to True. destination : str | array-like, shape (3,) | None The destination location for the head, assumed to be in head coordinates. See :func:`mne.preprocessing.maxwell_filter` for details. .. versionadded:: 0.16 %(info)s If provided, will be used to show the destination position when ``destination is None``, and for showing the MEG sensors. .. versionadded:: 0.16 color : color object The color to use for lines in ``mode == 'traces'`` and quiver arrows in ``mode == 'field'``. .. versionadded:: 0.16 axes : array-like, shape (3, 2) The matplotlib axes to use. .. versionadded:: 0.16 .. versionchanged:: 1.8 Added support for making use of this argument when ``mode="field"``. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ import matplotlib.pyplot as plt from ..chpi import head_pos_to_trans_rot_t from ..preprocessing.maxwell import _check_destination _check_option("mode", mode, ["traces", "field"]) dest_info = dict(dev_head_t=None) if info is None else info destination = _check_destination(destination, dest_info, head_frame=True) if destination is not None: destination = _ensure_trans(destination, "head", "meg") # probably inv destination = destination["trans"][:3].copy() destination[:, 3] *= 1000 if not isinstance(pos, (list, tuple)): pos = [pos] pos = list(pos) # make our own mutable copy for ii, p in enumerate(pos): _validate_type(p, np.ndarray, f"pos[{ii}]") p = np.array(p, float) if p.ndim != 2 or p.shape[1] != 10: raise ValueError( "pos (or each entry in pos if a list) must be " f"dimension (N, 10), got {p.shape}" ) if ii > 0: # concatenation p[:, 0] += pos[ii - 1][-1, 0] - p[0, 0] pos[ii] = p borders = np.cumsum([len(pp) for pp in pos]) pos = np.concatenate(pos, axis=0) trans, rot, t = head_pos_to_trans_rot_t(pos) # also ensures pos is okay # trans, rot, and t are for dev_head_t, but what we really want # is head_dev_t (i.e., where the head origin is in device coords) use_trans = ( np.einsum("ijk,ik->ij", rot[:, :3, :3].transpose([0, 2, 1]), -trans) * 1000 ) use_rot = rot.transpose([0, 2, 1]) use_quats = -pos[:, 1:4] # inverse (like doing rot.T) surf = rrs = lims = None if info is not None: meg_picks = pick_types(info, meg=True, ref_meg=False, exclude=()) if len(meg_picks) > 0: rrs = 1000 * np.array( [info["chs"][pick]["loc"][:3] for pick in meg_picks], float ) if mode == "traces": lims = np.array((rrs.min(0), rrs.max(0))).T else: # mode == 'field' surf = get_meg_helmet_surf(info) transform_surface_to(surf, "meg", info["dev_head_t"], copy=False) surf["rr"] *= 1000.0 helmet_color = DEFAULTS["coreg"]["helmet_color"] if mode == "traces": if axes is None: axes = plt.subplots(3, 2, sharex=True)[1] else: axes = np.array(axes) if axes.shape != (3, 2): raise ValueError(f"axes must have shape (3, 2), got {axes.shape}") fig = axes[0, 0].figure labels = ["xyz", ("$q_1$", "$q_2$", "$q_3$")] for ii, (quat, coord) in enumerate(zip(use_quats.T, use_trans.T)): axes[ii, 0].plot(t, coord, color, lw=1.0, zorder=3) axes[ii, 0].set(ylabel=labels[0][ii], xlim=t[[0, -1]]) axes[ii, 1].plot(t, quat, color, lw=1.0, zorder=3) axes[ii, 1].set(ylabel=labels[1][ii], xlim=t[[0, -1]]) for b in borders[:-1]: for jj in range(2): axes[ii, jj].axvline(t[b], color="r") for ii, title in enumerate(("Position (mm)", "Rotation (quat)")): axes[0, ii].set(title=title) axes[-1, ii].set(xlabel="Time (s)") if rrs is not None: pos_bads = np.any( [ (use_trans[:, ii] <= lims[ii, 0]) | (use_trans[:, ii] >= lims[ii, 1]) for ii in range(3) ], axis=0, ) for ii in range(3): oidx = list(range(ii)) + list(range(ii + 1, 3)) # knowing it will generally be spherical, we can approximate # how far away we are along the axis line by taking the # point to the left and right with the smallest distance dists = cdist(rrs[:, oidx], use_trans[:, oidx]) left = rrs[:, [ii]] < use_trans[:, ii] left_dists_all = dists.copy() left_dists_all[~left] = np.inf # Don't show negative Z direction if ii != 2 and np.isfinite(left_dists_all).any(): idx = np.argmin(left_dists_all, axis=0) left_dists = rrs[idx, ii] bads = ( ~np.isfinite(left_dists_all[idx, np.arange(len(idx))]) | pos_bads ) left_dists[bads] = np.nan axes[ii, 0].plot( t, left_dists, color=helmet_color, ls="-", lw=0.5, zorder=2 ) else: axes[ii, 0].axhline( lims[ii][0], color=helmet_color, ls="-", lw=0.5, zorder=2 ) right_dists_all = dists right_dists_all[left] = np.inf if np.isfinite(right_dists_all).any(): idx = np.argmin(right_dists_all, axis=0) right_dists = rrs[idx, ii] bads = ( ~np.isfinite(right_dists_all[idx, np.arange(len(idx))]) | pos_bads ) right_dists[bads] = np.nan axes[ii, 0].plot( t, right_dists, color=helmet_color, ls="-", lw=0.5, zorder=2 ) else: axes[ii, 0].axhline( lims[ii][1], color=helmet_color, ls="-", lw=0.5, zorder=2 ) for ii in range(3): axes[ii, 1].set(ylim=[-1, 1]) if destination is not None: vals = np.array( [destination[:, 3], rot_to_quat(destination[:, :3])] ).T.ravel() for ax, val in zip(fig.axes, vals): ax.axhline(val, color="r", ls=":", zorder=2, lw=1.0) else: # mode == 'field': from matplotlib.colors import Normalize from mpl_toolkits.mplot3d import Axes3D # noqa: F401, analysis:ignore from mpl_toolkits.mplot3d.art3d import Line3DCollection _validate_type(axes, (Axes3D, None), "ax", extra="when mode='field'") if axes is None: _, ax = plt.subplots( 1, subplot_kw=dict(projection="3d"), layout="constrained" ) else: ax = axes fig = ax.get_figure() del axes # First plot the trajectory as a colormap: # http://matplotlib.org/examples/pylab_examples/multicolored_line.html pts = use_trans[:, np.newaxis] segments = np.concatenate([pts[:-1], pts[1:]], axis=1) norm = Normalize(t[0], t[-2]) lc = Line3DCollection(segments, cmap=cmap, norm=norm) lc.set_array(t[:-1]) ax.add_collection(lc) # now plot the head directions as a quiver dir_idx = dict(x=0, y=1, z=2) kwargs = dict(pivot="tail") for d, length in zip(direction, [5.0, 2.5, 1.0]): use_dir = use_rot[:, :, dir_idx[d]] # draws stems, then heads array = np.concatenate((t, np.repeat(t, 2))) ax.quiver( use_trans[:, 0], use_trans[:, 1], use_trans[:, 2], use_dir[:, 0], use_dir[:, 1], use_dir[:, 2], norm=norm, cmap=cmap, array=array, length=length, **kwargs, ) if destination is not None: ax.quiver( destination[0, 3], destination[1, 3], destination[2, 3], destination[dir_idx[d], 0], destination[dir_idx[d], 1], destination[dir_idx[d], 2], color=color, length=length, **kwargs, ) mins = use_trans.min(0) maxs = use_trans.max(0) if surf is not None: ax.plot_trisurf( *surf["rr"].T, triangles=surf["tris"], color=helmet_color, alpha=0.1, shade=False, ) ax.scatter(*rrs.T, s=1, color=helmet_color) mins = np.minimum(mins, rrs.min(0)) maxs = np.maximum(maxs, rrs.max(0)) scale = (maxs - mins).max() / 2.0 xlim, ylim, zlim = (maxs + mins)[:, np.newaxis] / 2.0 + [-scale, scale] ax.set(xlabel="x", ylabel="y", zlabel="z", xlim=xlim, ylim=ylim, zlim=zlim) _set_aspect_equal(ax) ax.view_init(30, 45) plt_show(show) return fig def _set_aspect_equal(ax): # XXX recent MPL throws an error for 3D axis aspect setting, not much # we can do about it at this point try: ax.set_aspect("equal") except NotImplementedError: pass @verbose def plot_evoked_field( evoked, surf_maps, time=None, time_label="t = %0.0f ms", n_jobs=None, fig=None, vmax=None, n_contours=21, *, show_density=True, alpha=None, interpolation="nearest", interaction="terrain", time_viewer="auto", verbose=None, ): """Plot MEG/EEG fields on head surface and helmet in 3D. Parameters ---------- evoked : instance of mne.Evoked The evoked object. surf_maps : list The surface mapping information obtained with make_field_map. time : float | None The time point at which the field map shall be displayed. If None, the average peak latency (across sensor types) is used. time_label : str | None How to print info about the time instant visualized. %(n_jobs)s fig : Figure3D | mne.viz.Brain | None If None (default), a new figure will be created, otherwise it will plot into the given figure. .. versionadded:: 0.20 .. versionadded:: 1.4 ``fig`` can also be a ``Brain`` figure. vmax : float | dict | None Maximum intensity. Can be a dictionary with two entries ``"eeg"`` and ``"meg"`` to specify separate values for EEG and MEG fields respectively. Can be ``None`` to use the maximum value of the data. .. versionadded:: 0.21 .. versionadded:: 1.4 ``vmax`` can be a dictionary to specify separate values for EEG and MEG fields. n_contours : int The number of contours. .. versionadded:: 0.21 show_density : bool Whether to draw the field density as an overlay on top of the helmet/head surface. Defaults to ``True``. .. versionadded:: 1.6 alpha : float | dict | None Opacity of the meshes (between 0 and 1). Can be a dictionary with two entries ``"eeg"`` and ``"meg"`` to specify separate values for EEG and MEG fields respectively. Can be ``None`` to use 1.0 when a single field map is shown, or ``dict(eeg=1.0, meg=0.5)`` when both field maps are shown. .. versionadded:: 1.4 %(interpolation_brain_time)s .. versionadded:: 1.6 %(interaction_scene)s Defaults to ``'terrain'``. .. versionadded:: 1.1 time_viewer : bool | str Display time viewer GUI. Can also be ``"auto"``, which will mean ``True`` if there is more than one time point and ``False`` otherwise. .. versionadded:: 1.6 %(verbose)s Returns ------- fig : Figure3D | mne.viz.EvokedField Without the time viewer active, the figure is returned. With the time viewer active, an object is returned that can be used to control different aspects of the figure. """ ef = EvokedField( evoked, surf_maps, time=time, time_label=time_label, n_jobs=n_jobs, fig=fig, vmax=vmax, n_contours=n_contours, alpha=alpha, show_density=show_density, interpolation=interpolation, interaction=interaction, time_viewer=time_viewer, verbose=verbose, ) if ef.time_viewer: return ef else: return ef._renderer.scene() @verbose def plot_alignment( info=None, trans=None, subject=None, subjects_dir=None, surfaces="auto", coord_frame="auto", meg=None, eeg="original", fwd=None, dig=False, ecog=True, src=None, mri_fiducials=False, bem=None, seeg=True, fnirs=True, show_axes=False, dbs=True, fig=None, interaction="terrain", sensor_colors=None, verbose=None, ): """Plot head, sensor, and source space alignment in 3D. Parameters ---------- %(info)s If None (default), no sensor information will be shown. %(trans)s "auto" will load trans from the FreeSurfer directory specified by ``subject`` and ``subjects_dir`` parameters. .. versionchanged:: 0.19 Support for 'fsaverage' argument. %(subject)s Can be omitted if ``src`` is provided. %(subjects_dir)s surfaces : str | list | dict Surfaces to plot. Supported values: * scalp: one of 'head', 'outer_skin' (alias for 'head'), 'head-dense', or 'seghead' (alias for 'head-dense') * skull: 'outer_skull', 'inner_skull', 'brain' (alias for 'inner_skull') * brain: one of 'pial', 'white', 'inflated', or 'brain' (alias for 'pial'). Can be dict to specify alpha values for each surface. Use None to specify default value. Specified values must be between 0 and 1. for example:: surfaces=dict(brain=0.4, outer_skull=0.6, head=None) Defaults to 'auto', which will look for a head surface and plot it if found. .. note:: For single layer BEMs it is recommended to use ``'brain'``. coord_frame : 'auto' | 'head' | 'meg' | 'mri' The coordinate frame to use. If ``'auto'`` (default), chooses ``'mri'`` if ``trans`` was passed, and ``'head'`` otherwise. .. versionchanged:: 1.0 Defaults to ``'auto'``. %(meg)s %(eeg)s %(fwd)s dig : bool | 'fiducials' If True, plot the digitization points; 'fiducials' to plot fiducial points only. %(ecog)s src : instance of SourceSpaces | None If not None, also plot the source space points. mri_fiducials : bool | str | path-like Plot MRI fiducials (default False). If ``True``, look for a file with the canonical name (``bem/{subject}-fiducials.fif``). If ``str``, it can be ``'estimated'`` to use :func:`mne.coreg.get_mni_fiducials`, otherwise it should provide the full path to the fiducials file. .. versionadded:: 0.22 Support for ``'estimated'``. bem : list of dict | instance of ConductorModel | None Can be either the BEM surfaces (list of dict), a BEM solution or a sphere model. If None, we first try loading ``'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'``, and then look for ``'$SUBJECT*$SOURCE.fif'`` in the same directory. For ``'outer_skin'``, the subjects bem and bem/flash folders are searched. Defaults to None. %(seeg)s %(fnirs)s .. versionadded:: 0.20 show_axes : bool If True (default False), coordinate frame axis indicators will be shown: * head in pink. * MRI in gray (if ``trans is not None``). * MEG in blue (if MEG sensors are present). .. versionadded:: 0.16 %(dbs)s fig : Figure3D | None PyVista scene in which to plot the alignment. If ``None``, creates a new 600x600 pixel figure with black background. .. versionadded:: 0.16 %(interaction_scene)s .. versionadded:: 0.16 .. versionchanged:: 1.0 Defaults to ``'terrain'``. %(sensor_colors)s .. versionchanged:: 1.6 Support for passing a ``dict`` was added. %(verbose)s Returns ------- fig : instance of Figure3D The figure. See Also -------- mne.viz.plot_bem Notes ----- This function serves the purpose of checking the validity of the many different steps of source reconstruction: - Transform matrix (keywords ``trans``, ``meg`` and ``mri_fiducials``), - BEM surfaces (keywords ``bem`` and ``surfaces``), - sphere conductor model (keywords ``bem`` and ``surfaces``) and - source space (keywords ``surfaces`` and ``src``). .. versionadded:: 0.15 """ # Update the backend from ..bem import ConductorModel, _bem_find_surface, _ensure_bem_surfaces from ..source_space._source_space import _ensure_src from .backends.renderer import _get_renderer meg, eeg, fnirs, warn_meg, sensor_alpha = _handle_sensor_types(meg, eeg, fnirs) _check_option("interaction", interaction, ["trackball", "terrain"]) info = create_info(1, 1000.0, "misc") if info is None else info _validate_type(info, "info") # Handle surfaces: if surfaces == "auto" and trans is None: surfaces = list() # if no `trans` can't plot mri surfaces if isinstance(surfaces, str): surfaces = [surfaces] if isinstance(surfaces, dict): user_alpha = surfaces.copy() for key, val in user_alpha.items(): _validate_type(key, "str", f"surfaces key {repr(key)}") _validate_type(val, (None, "numeric"), f"surfaces[{repr(key)}]") if val is not None: user_alpha[key] = float(val) if not 0 <= user_alpha[key] <= 1: raise ValueError( f"surfaces[{repr(key)}] ({val}) must be between 0 and 1" ) else: user_alpha = {} surfaces = list(surfaces) for si, s in enumerate(surfaces): _validate_type(s, "str", f"surfaces[{si}]") bem = _ensure_bem_surfaces(bem, extra_allow=(ConductorModel, None)) assert isinstance(bem, ConductorModel) or bem is None _check_option("coord_frame", coord_frame, ["head", "meg", "mri", "auto"]) if coord_frame == "auto": coord_frame = "head" if trans is None else "mri" if src is not None: src = _ensure_src(src) src_subject = src._subject subject = src_subject if subject is None else subject if src_subject is not None and subject != src_subject: raise ValueError( f'subject ("{subject}") did not match the ' f'subject name in src ("{src_subject}")' ) # configure transforms if isinstance(trans, str) and trans == "auto": subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) trans = _find_trans(subject, subjects_dir) trans, trans_type = _get_trans(trans, fro="head", to="mri") picks = pick_types( info, meg=("sensors" in meg), ref_meg=("ref" in meg), eeg=(len(eeg) > 0), ecog=ecog, seeg=seeg, dbs=dbs, fnirs=(len(fnirs) > 0), ) if trans_type == "identity": # Some stuff is natively in head coords, others in MRI coords msg = ( "A head<->mri transformation matrix (trans) is required " f"to plot {{}} in {coord_frame} coordinates, " "`trans=None` is not allowed" ) if fwd is not None: fwd_frame = _frame_to_str[fwd["coord_frame"]] if fwd_frame != coord_frame: raise ValueError( msg.format(f"a {fwd_frame}-coordinate forward solution") ) if src is not None: src_frame = _frame_to_str[src[0]["coord_frame"]] if src_frame != coord_frame: raise ValueError(msg.format(f"a {src_frame}-coordinate source space")) if mri_fiducials is not False and coord_frame != "mri": raise ValueError(msg.format("mri fiducials")) # only enforce needing `trans` if there are channels in "head"/"device" if picks.size and coord_frame == "mri": raise ValueError(msg.format("sensors")) # if only plotting sphere model no trans needed if bem is not None: if not bem["is_sphere"]: if coord_frame != "mri": raise ValueError(msg.format("a BEM")) elif surfaces not in (["brain"], []): # can only plot these raise ValueError(msg.format(", ".join(surfaces) + " surfaces")) elif len(surfaces) > 0 and coord_frame != "mri": raise ValueError(msg.format(", ".join(surfaces) + " surfaces")) trans = Transform("head", "mri") # not used so just use identity # get transforms head_mri_t = _get_trans(trans, "head", "mri")[0] to_cf_t = _get_transforms_to_coord_frame(info, head_mri_t, coord_frame=coord_frame) # Surfaces: # both the head and helmet will be in MRI coordinates after this surfs = dict() # Brain surface: brain = sorted(set(surfaces) & set(["brain", "pial", "white", "inflated"])) if len(brain) > 1: raise ValueError(f"Only one brain surface can be plotted, got {brain}.") brain = brain[0] if brain else False if brain is not False: surfaces.pop(surfaces.index(brain)) if bem is not None and bem["is_sphere"] and brain == "brain": surfs["lh"] = _bem_find_surface(bem, "brain") else: brain = "pial" if brain == "brain" else brain subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) for hemi in ["lh", "rh"]: brain_fname = subjects_dir / subject / "surf" / f"{hemi}.{brain}" if not brain_fname.is_file(): raise RuntimeError( f"No brain surface found for subject {subject}, " f"expected {brain_fname} to exist" ) surfs[hemi] = _read_mri_surface(brain_fname) subjects_dir = str(subjects_dir) # Head surface: head_keys = ("auto", "head", "outer_skin", "head-dense", "seghead") head = [s for s in surfaces if s in head_keys] if len(head) > 1: raise ValueError(f"Can only supply one head-like surface name, got {head}") head = head[0] if head else False if head is not False: surfaces.pop(surfaces.index(head)) elif "projected" in eeg: raise ValueError( "A head surface is required to project EEG, " '"head", "outer_skin", "head-dense" or "seghead" ' 'must be in surfaces or surfaces must be "auto"' ) # Skull surface: skulls = [s for s in surfaces if s in ("outer_skull", "inner_skull")] for skull_name in skulls: surfaces.pop(surfaces.index(skull_name)) skull = _get_skull_surface( skull_name.split("_")[0], subject, subjects_dir, bem=bem ) skull["name"] = skull_name # set name for alpha surfs[skull_name] = skull # we've looked through all of them, raise if some remain if len(surfaces) > 0: raise ValueError(f"Unknown surface type{_pl(surfaces)}: {surfaces}") # set colors and alphas defaults = DEFAULTS["coreg"] no_deep = not (dbs or seeg) or pick_types(info, dbs=True, seeg=True).size == 0 max_alpha = 1.0 if no_deep else 0.75 hemi_val = 0.5 if src is None or (brain and any(s["type"] == "surf" for s in src)): hemi_val = max_alpha alpha_range = np.linspace(max_alpha / 2.0, 0, 5)[: len(skulls) + 1] if src is None and brain is False and len(skulls) == 0 and not show_axes: head_alpha = max_alpha else: head_alpha = alpha_range[0] alphas = dict(lh=hemi_val, rh=hemi_val) colors = dict(lh=(0.5,) * 3, rh=(0.5,) * 3) for idx, name in enumerate(skulls): alphas[name] = alpha_range[idx + 1] colors[name] = (0.95 - idx * 0.2, 0.85, 0.95 - idx * 0.2) if brain is not False and brain in user_alpha: alphas["lh"] = alphas["rh"] = user_alpha.pop(brain) # replace default alphas with specified user_alpha for k, v in user_alpha.items(): if v is not None: alphas[k] = v if k in head_keys and v is not None: head_alpha = v fid_colors = tuple(defaults[f"{key}_color"] for key in ("lpa", "nasion", "rpa")) # initialize figure renderer = _get_renderer( fig, name=f"Sensor alignment: {subject}", bgcolor=(0.5, 0.5, 0.5), size=(800, 800), ) renderer.set_interaction(interaction) # plot head _, _, head_surf = _plot_head_surface( renderer, head, subject, subjects_dir, bem, coord_frame, to_cf_t, alpha=head_alpha, ) # plot helmet if "helmet" in meg and pick_types(info, meg=True).size > 0: _, _, src_surf = _plot_helmet( renderer, info, to_cf_t, head_mri_t, coord_frame, alpha=sensor_alpha["meg_helmet"], ) # plot surfaces if brain and "lh" not in surfs: # one layer sphere assert bem["coord_frame"] == FIFF.FIFFV_COORD_HEAD center = bem["r0"].copy() center = apply_trans(to_cf_t["head"], center) renderer.sphere(center, scale=0.01, color=colors["lh"], opacity=alphas["lh"]) if show_axes: _plot_axes(renderer, info, to_cf_t, head_mri_t) # plot points _check_option("dig", dig, (True, False, "fiducials")) if dig: if dig is True: _plot_hpi_coils(renderer, info, to_cf_t) _plot_head_shape_points(renderer, info, to_cf_t) _plot_head_fiducials(renderer, info, to_cf_t, fid_colors) if mri_fiducials: _plot_mri_fiducials( renderer, mri_fiducials, subjects_dir, subject, to_cf_t, fid_colors ) for key, surf in surfs.items(): # Surfs can sometimes be in head coords (e.g., if coming from sphere) assert isinstance(surf, dict), f"{key}: {type(surf)}" surf = transform_surface_to( surf, coord_frame, [to_cf_t["mri"], to_cf_t["head"]], copy=True ) renderer.surface( surface=surf, color=colors[key], opacity=alphas[key], backface_culling=(key != "helmet"), ) # plot sensors (NB snapshot_brain_montage relies on the last thing being # plotted being the sensors, so we need to do this after the surfaces) if picks.size > 0: _plot_sensors_3d( renderer, info, to_cf_t, picks, meg, eeg, fnirs, warn_meg, head_surf, "m", sensor_alpha=sensor_alpha, sensor_colors=sensor_colors, ) if src is not None: atlas_ids, colors = read_freesurfer_lut() for ss in src: src_rr = ss["rr"][ss["inuse"].astype(bool)] src_nn = ss["nn"][ss["inuse"].astype(bool)] # update coordinate frame src_trans = to_cf_t[_frame_to_str[src[0]["coord_frame"]]] src_rr = apply_trans(src_trans, src_rr) src_nn = apply_trans(src_trans, src_nn, move=False) # volume sources if ss["type"] == "vol": seg_name = ss.get("seg_name", None) if seg_name is not None and seg_name in colors: color = colors[seg_name][:3] color = tuple(i / 256.0 for i in color) else: color = (1.0, 1.0, 0.0) # surface and discrete sources else: color = (1.0, 1.0, 0.0) if len(src_rr) > 0: renderer.quiver3d( x=src_rr[:, 0], y=src_rr[:, 1], z=src_rr[:, 2], u=src_nn[:, 0], v=src_nn[:, 1], w=src_nn[:, 2], color=color, mode="cylinder", scale=3e-3, opacity=0.75, glyph_height=0.25, glyph_center=(0.0, 0.0, 0.0), glyph_resolution=20, backface_culling=True, ) if fwd is not None: _plot_forward(renderer, fwd, to_cf_t[_frame_to_str[fwd["coord_frame"]]]) renderer.set_camera( azimuth=90, elevation=90, distance=0.6, focalpoint=(0.0, 0.0, 0.0) ) renderer.show() return renderer.scene() def _handle_sensor_types(meg, eeg, fnirs): """Handle plotting inputs for sensors types.""" if eeg is True: eeg = ["original"] elif eeg is False: eeg = list() warn_meg = meg is not None # only warn if the value is explicit if meg is True: meg = ["helmet", "sensors", "ref"] elif meg is None: meg = ["helmet", "sensors"] elif meg is False: meg = list() if fnirs is True: fnirs = ["pairs"] elif fnirs is False: fnirs = list() if isinstance(meg, str): meg = [meg] if isinstance(eeg, str): eeg = [eeg] if isinstance(fnirs, str): fnirs = [fnirs] alpha_map = dict( meg=dict(sensors="meg", helmet="meg_helmet", ref="ref_meg"), eeg=dict(original="eeg", projected="eeg_projected"), fnirs=dict(channels="fnirs", pairs="fnirs_pairs"), ) sensor_alpha = { key: dict(meg_helmet=0.25, meg=0.25).get(key, 0.8) for ch_dict in alpha_map.values() for key in ch_dict.values() } for kind, var in zip(("eeg", "meg", "fnirs"), (eeg, meg, fnirs)): _validate_type(var, (list, tuple, dict), f"{kind}") for ix, x in enumerate(var): which = f"{kind} key {ix}" if isinstance(var, dict) else f"{kind}[{ix}]" _validate_type(x, str, which) if isinstance(var, dict) and x in alpha_map[kind]: alpha = var[x] _validate_type(alpha, "numeric", f"{kind}[{ix}]") if not 0 <= alpha <= 1: raise ValueError( f"{kind}[{ix}] alpha value must be between 0 and 1, got {alpha}" ) sensor_alpha[alpha_map[kind][x]] = alpha meg, eeg, fnirs = tuple(meg), tuple(eeg), tuple(fnirs) for xi, x in enumerate(meg): _check_option(f"meg[{xi}]", x, ("helmet", "sensors", "ref")) for xi, x in enumerate(eeg): _check_option(f"eeg[{xi}]", x, ("original", "projected")) for xi, x in enumerate(fnirs): _check_option(f"fnirs[{xi}]", x, ("channels", "pairs", "sources", "detectors")) # Add these for our True-only options, too -- eventually should support dict. sensor_alpha.update( seeg=0.8, ecog=0.8, source=sensor_alpha["fnirs"], detector=sensor_alpha["fnirs"], ) return meg, eeg, fnirs, warn_meg, sensor_alpha @verbose def _ch_pos_in_coord_frame(info, to_cf_t, warn_meg=True, verbose=None): """Transform positions from head/device/mri to a coordinate frame.""" from ..forward import _create_meg_coils from ..forward._make_forward import _read_coil_defs chs = dict(ch_pos=dict(), sources=dict(), detectors=dict()) unknown_chs = list() # prepare for chs with unknown coordinate frame type_counts = dict() coilset = _read_coil_defs(verbose=False) for idx in range(info["nchan"]): ch_type = channel_type(info, idx) if ch_type in type_counts: type_counts[ch_type] += 1 else: type_counts[ch_type] = 1 type_slices = dict(ch_pos=slice(0, 3)) if ch_type in _FNIRS_CH_TYPES_SPLIT: # add sensors and detectors too for fNIRS type_slices.update(sources=slice(3, 6), detectors=slice(6, 9)) for type_name, type_slice in type_slices.items(): if ch_type in _MEG_CH_TYPES_SPLIT + ("ref_meg",): coil_trans = _loc_to_coil_trans(info["chs"][idx]["loc"]) # Here we prefer accurate geometry in case we need to # ConvexHull the coil, we want true 3D geometry (and not, for # example, a straight line / 1D geometry) this_coil = [info["chs"][idx]] try: coil = _create_meg_coils( this_coil, acc="accurate", coilset=coilset )[0] except RuntimeError: # we don't have an accurate one coil = _create_meg_coils(this_coil, acc="normal", coilset=coilset)[ 0 ] # store verts as ch_coord ch_coord, triangles = _sensor_shape(coil) ch_coord = apply_trans(coil_trans, ch_coord) if len(ch_coord) == 0 and warn_meg: warn(f"MEG sensor {info.ch_names[idx]} not found.") else: ch_coord = info["chs"][idx]["loc"][type_slice] ch_coord_frame = info["chs"][idx]["coord_frame"] if ch_coord_frame not in ( FIFF.FIFFV_COORD_UNKNOWN, FIFF.FIFFV_COORD_DEVICE, FIFF.FIFFV_COORD_HEAD, FIFF.FIFFV_COORD_MRI, ): raise RuntimeError( f"Channel {info.ch_names[idx]} has coordinate frame " f'{ch_coord_frame}, must be "meg", "head" or "mri".' ) # set unknown as head first if ch_coord_frame == FIFF.FIFFV_COORD_UNKNOWN: unknown_chs.append(info.ch_names[idx]) ch_coord_frame = FIFF.FIFFV_COORD_HEAD ch_coord = apply_trans(to_cf_t[_frame_to_str[ch_coord_frame]], ch_coord) if ch_type in _MEG_CH_TYPES_SPLIT + ("ref_meg",): chs[type_name][info.ch_names[idx]] = (ch_coord, triangles) else: chs[type_name][info.ch_names[idx]] = ch_coord if unknown_chs: warn( f'Got coordinate frame "unknown" for {unknown_chs}, assuming ' '"head" coordinates.' ) logger.info( "Channel types::\t" + ", ".join([f"{ch_type}: {count}" for ch_type, count in type_counts.items()]) ) return chs["ch_pos"], chs["sources"], chs["detectors"] def _plot_head_surface( renderer, head, subject, subjects_dir, bem, coord_frame, to_cf_t, alpha, color=None ): """Render a head surface in a 3D scene.""" color = DEFAULTS["coreg"]["head_color"] if color is None else color actor = None src_surf = dst_surf = None if head is not False: src_surf = _get_head_surface(head, subject, subjects_dir, bem=bem) src_surf = transform_surface_to( src_surf, coord_frame, [to_cf_t["mri"], to_cf_t["head"]], copy=True ) actor, dst_surf = renderer.surface( surface=src_surf, color=color, opacity=alpha, backface_culling=False ) return actor, dst_surf, src_surf def _plot_helmet( renderer, info, to_cf_t, head_mri_t, coord_frame, *, alpha=0.25, scale=1.0, ): color = DEFAULTS["coreg"]["helmet_color"] src_surf = get_meg_helmet_surf(info, head_mri_t) assert src_surf["coord_frame"] == FIFF.FIFFV_COORD_MRI if to_cf_t is not None: src_surf = transform_surface_to( src_surf, coord_frame, [to_cf_t["mri"], to_cf_t["head"]], copy=True ) actor, dst_surf = renderer.surface( surface=src_surf, color=color, opacity=alpha, backface_culling=False ) return actor, dst_surf, src_surf def _plot_axes(renderer, info, to_cf_t, head_mri_t): """Render different axes a 3D scene.""" axes = [(to_cf_t["head"], (0.9, 0.3, 0.3))] # always show head if not np.allclose(head_mri_t["trans"], np.eye(4)): # Show MRI axes.append((to_cf_t["mri"], (0.6, 0.6, 0.6))) if pick_types(info, meg=True).size > 0: # Show MEG axes.append((to_cf_t["meg"], (0.0, 0.6, 0.6))) actors = list() for ax in axes: x, y, z = np.tile(ax[0]["trans"][:3, 3], 3).reshape((3, 3)).T u, v, w = ax[0]["trans"][:3, :3] actor, _ = renderer.sphere( center=np.column_stack((x[0], y[0], z[0])), color=ax[1], scale=3e-3 ) actors.append(actor) actor, _ = renderer.quiver3d( x=x, y=y, z=z, u=u, v=v, w=w, mode="arrow", scale=2e-2, color=ax[1], scale_mode="scalar", resolution=20, scalars=[0.33, 0.66, 1.0], ) actors.append(actor) return actors def _plot_head_fiducials(renderer, info, to_cf_t, fid_colors): defaults = DEFAULTS["coreg"] car_loc = _fiducial_coords(info["dig"], FIFF.FIFFV_COORD_HEAD) car_loc = apply_trans(to_cf_t["head"], car_loc) if len(car_loc) == 0: warn("Digitization points not found. Cannot plot digitization.") actors = list() for color, data in zip(fid_colors, car_loc): actor, _ = renderer.sphere( center=data, color=color, scale=defaults["dig_fid_scale"], opacity=defaults["dig_fid_opacity"], backface_culling=True, ) actors.append(actor) return actors def _plot_mri_fiducials( renderer, mri_fiducials, subjects_dir, subject, to_cf_t, fid_colors ): from ..coreg import get_mni_fiducials defaults = DEFAULTS["coreg"] if mri_fiducials is True: subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if subject is None: raise ValueError( "Subject needs to be specified to " "automatically find the fiducials file." ) mri_fiducials = subjects_dir / subject / "bem" / (subject + "-fiducials.fif") if isinstance(mri_fiducials, str) and mri_fiducials == "estimated": mri_fiducials = get_mni_fiducials(subject, subjects_dir) elif isinstance(mri_fiducials, (str, Path, os.PathLike)): mri_fiducials, cf = read_fiducials(mri_fiducials) if cf != FIFF.FIFFV_COORD_MRI: raise ValueError("Fiducials are not in MRI space") if isinstance(mri_fiducials, np.ndarray): fid_loc = mri_fiducials else: fid_loc = _fiducial_coords(mri_fiducials, FIFF.FIFFV_COORD_MRI) fid_loc = apply_trans(to_cf_t["mri"], fid_loc) transform = np.eye(4) transform[:3, :3] = to_cf_t["mri"]["trans"][:3, :3] * defaults["mri_fid_scale"] # rotate around Z axis 45 deg first transform = transform @ rotation(0, 0, np.pi / 4) actors = list() for color, data in zip(fid_colors, fid_loc): actor, _ = renderer.quiver3d( x=data[0], y=data[1], z=data[2], u=1.0, v=0.0, w=0.0, color=color, mode="oct", scale=1.0, opacity=defaults["mri_fid_opacity"], backface_culling=True, solid_transform=transform, ) actors.append(actor) return actors def _plot_hpi_coils( renderer, info, to_cf_t, opacity=0.5, scale=None, orient_glyphs=False, scale_by_distance=False, surf=None, check_inside=None, nearest=None, ): defaults = DEFAULTS["coreg"] scale = defaults["hpi_scale"] if scale is None else scale hpi_loc = np.array( [ d["r"] for d in (info["dig"] or []) if ( d["kind"] == FIFF.FIFFV_POINT_HPI and d["coord_frame"] == FIFF.FIFFV_COORD_HEAD ) ] ) hpi_loc = apply_trans(to_cf_t["head"], hpi_loc) actor, _ = _plot_glyphs( renderer=renderer, loc=hpi_loc, color=defaults["hpi_color"], scale=scale, opacity=opacity, orient_glyphs=orient_glyphs, scale_by_distance=scale_by_distance, surf=surf, backface_culling=True, check_inside=check_inside, nearest=nearest, ) return actor def _get_nearest(nearest, check_inside, project_to_trans, proj_rr): idx = nearest.query(proj_rr)[1] proj_pts = apply_trans(project_to_trans, nearest.data[idx]) proj_nn = apply_trans(project_to_trans, check_inside.surf["nn"][idx], move=False) return proj_pts, proj_nn def _orient_glyphs( pts, surf, project_to_surface=False, mark_inside=False, check_inside=None, nearest=None, ): if check_inside is None: check_inside = _CheckInside(surf, mode="pyvista") if nearest is None: nearest = _DistanceQuery(surf["rr"]) project_to_trans = np.eye(4) inv_trans = np.linalg.inv(project_to_trans) proj_rr = apply_trans(inv_trans, pts) proj_pts, proj_nn = _get_nearest(nearest, check_inside, project_to_trans, proj_rr) vec = pts - proj_pts # point to the surface nn = proj_nn scalars = np.ones(len(pts)) if mark_inside and not project_to_surface: scalars[:] = ~check_inside(proj_rr) dist = np.linalg.norm(vec, axis=-1, keepdims=True) vectors = (250 * dist + 1) * nn return scalars, vectors, proj_pts def _plot_glyphs( renderer, loc, color, scale, opacity=1, mode="cylinder", orient_glyphs=False, scale_by_distance=False, project_points=False, mark_inside=False, surf=None, backface_culling=False, check_inside=None, nearest=None, ): from matplotlib.colors import ListedColormap, to_rgba _validate_type(mark_inside, bool, "mark_inside") if surf is not None and len(loc) > 0: defaults = DEFAULTS["coreg"] scalars, vectors, proj_pts = _orient_glyphs( loc, surf, project_points, mark_inside, check_inside, nearest ) if mark_inside: colormap = ListedColormap([to_rgba("darkslategray"), to_rgba(color)]) color = None clim = [0, 1] else: scalars = None colormap = None clim = None mode = "cylinder" if orient_glyphs else "sphere" scale_mode = "vector" if scale_by_distance else "none" x, y, z = proj_pts.T if project_points else loc.T u, v, w = vectors.T return renderer.quiver3d( x, y, z, u, v, w, color=color, scale=scale, mode=mode, glyph_height=defaults["eegp_height"], glyph_center=(0.0, -defaults["eegp_height"], 0), resolution=16, glyph_resolution=16, glyph_radius=None, opacity=opacity, scale_mode=scale_mode, scalars=scalars, colormap=colormap, clim=clim, ) else: return renderer.sphere( center=loc, color=color, scale=scale, opacity=opacity, backface_culling=backface_culling, ) @verbose def _plot_head_shape_points( renderer, info, to_cf_t, opacity=0.25, orient_glyphs=False, scale_by_distance=False, mark_inside=False, surf=None, mask=None, check_inside=None, nearest=None, verbose=False, ): defaults = DEFAULTS["coreg"] ext_loc = np.array( [ d["r"] for d in (info["dig"] or []) if ( d["kind"] == FIFF.FIFFV_POINT_EXTRA and d["coord_frame"] == FIFF.FIFFV_COORD_HEAD ) ] ) ext_loc = apply_trans(to_cf_t["head"], ext_loc) ext_loc = ext_loc[mask] if mask is not None else ext_loc actor, _ = _plot_glyphs( renderer=renderer, loc=ext_loc, color=defaults["extra_color"], scale=defaults["extra_scale"], opacity=opacity, orient_glyphs=orient_glyphs, scale_by_distance=scale_by_distance, mark_inside=mark_inside, surf=surf, backface_culling=True, check_inside=check_inside, nearest=nearest, ) return actor def _plot_forward(renderer, fwd, fwd_trans, fwd_scale=1, scale=1.5e-3, alpha=1): from ..forward import Forward _validate_type(fwd, [Forward]) n_dipoles = fwd["source_rr"].shape[0] fwd_rr = fwd["source_rr"] if fwd["source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI: fwd_nn = fwd["source_nn"].reshape(-1, 1, 3) else: fwd_nn = fwd["source_nn"].reshape(-1, 3, 3) # update coordinate frame fwd_rr = apply_trans(fwd_trans, fwd_rr) * fwd_scale fwd_nn = apply_trans(fwd_trans, fwd_nn, move=False) red = (1.0, 0.0, 0.0) green = (0.0, 1.0, 0.0) blue = (0.0, 0.0, 1.0) actors = list() for ori, color in zip(range(fwd_nn.shape[1]), (red, green, blue)): actor, _ = renderer.quiver3d( *fwd_rr.T, *fwd_nn[:, ori].T, color=color, mode="arrow", scale_mode="scalar", scalars=np.ones(n_dipoles), scale=scale, opacity=alpha, ) actors.append(actor) return actors def _plot_sensors_3d( renderer, info, to_cf_t, picks, meg, eeg, fnirs, warn_meg, head_surf, units, sensor_alpha, orient_glyphs=False, scale_by_distance=False, project_points=False, surf=None, check_inside=None, nearest=None, sensor_colors=None, ): """Render sensors in a 3D scene.""" from matplotlib.colors import to_rgba_array defaults = DEFAULTS["coreg"] ch_pos, sources, detectors = _ch_pos_in_coord_frame( pick_info(info, picks), to_cf_t=to_cf_t, warn_meg=warn_meg ) actors = defaultdict(lambda: list()) locs = defaultdict(lambda: list()) unit_scalar = 1 if units == "m" else 1e3 for ch_name, ch_coord in ch_pos.items(): ch_type = channel_type(info, info.ch_names.index(ch_name)) # for default picking if ch_type in _FNIRS_CH_TYPES_SPLIT: ch_type = "fnirs" elif ch_type in _MEG_CH_TYPES_SPLIT: ch_type = "meg" # only plot sensor locations if channels/original in selection plot_sensors = (ch_type != "fnirs" or "channels" in fnirs) and ( ch_type != "eeg" or "original" in eeg ) # plot sensors if isinstance(ch_coord, tuple): # is meg, plot coil ch_coord = dict(rr=ch_coord[0] * unit_scalar, tris=ch_coord[1]) if plot_sensors: locs[ch_type].append(ch_coord) if ch_name in sources and "sources" in fnirs: locs["source"].append(sources[ch_name]) if ch_name in detectors and "detectors" in fnirs: locs["detector"].append(detectors[ch_name]) # Plot these now if ch_name in sources and ch_name in detectors and "pairs" in fnirs: actor, _ = renderer.tube( # array of origin and dest points origin=sources[ch_name][np.newaxis] * unit_scalar, destination=detectors[ch_name][np.newaxis] * unit_scalar, radius=0.001 * unit_scalar, opacity=sensor_alpha["fnirs_pairs"], ) actors[ch_type].append(actor) del ch_type # now actually plot the sensors extra = "" types = (dict, None) if len(locs) == 0: return elif len(locs) == 1: # Upsample from array-like to dict when there is one channel type extra = "(or array-like since only one sensor type is plotted)" if sensor_colors is not None and not isinstance(sensor_colors, dict): sensor_colors = { list(locs)[0]: to_rgba_array(sensor_colors), } else: extra = f"when more than one channel type ({list(locs)}) is plotted" _validate_type(sensor_colors, types, "sensor_colors", extra=extra) del extra, types if sensor_colors is None: sensor_colors = dict() assert isinstance(sensor_colors, dict) for ch_type, sens_loc in locs.items(): logger.debug(f"Drawing {ch_type} sensors") assert len(sens_loc) # should be guaranteed above colors = to_rgba_array(sensor_colors.get(ch_type, defaults[ch_type + "_color"])) _check_option( f"len(sensor_colors[{repr(ch_type)}])", colors.shape[0], (len(sens_loc), 1), ) scale = defaults[ch_type + "_scale"] * unit_scalar this_alpha = sensor_alpha[ch_type] if isinstance(sens_loc[0], dict): # meg coil if len(colors) == 1: colors = [colors[0]] * len(sens_loc) for surface, color in zip(sens_loc, colors): actor, _ = renderer.surface( surface=surface, color=color[:3], opacity=this_alpha * color[3], backface_culling=False, # visible from all sides ) actors[ch_type].append(actor) else: sens_loc = np.array(sens_loc, float) mask = ~np.isnan(sens_loc).any(axis=1) if len(colors) == 1: # Single color mode (one actor) actor, _ = _plot_glyphs( renderer=renderer, loc=sens_loc[mask] * unit_scalar, color=colors[0, :3], scale=scale, opacity=this_alpha * colors[0, 3], orient_glyphs=orient_glyphs, scale_by_distance=scale_by_distance, project_points=project_points, surf=surf, check_inside=check_inside, nearest=nearest, ) actors[ch_type].append(actor) else: # Multi-color mode (multiple actors) for loc, color, usable in zip(sens_loc, colors, mask): if not usable: continue actor, _ = _plot_glyphs( renderer=renderer, loc=loc * unit_scalar, color=color[:3], scale=scale, opacity=this_alpha * color[3], orient_glyphs=orient_glyphs, scale_by_distance=scale_by_distance, project_points=project_points, surf=surf, check_inside=check_inside, nearest=nearest, ) actors[ch_type].append(actor) if ch_type == "eeg" and "projected" in eeg: logger.info("Projecting sensors to the head surface") eegp_loc, eegp_nn = _project_onto_surface( sens_loc[mask], head_surf, project_rrs=True, return_nn=True )[2:4] eegp_loc *= unit_scalar actor, _ = renderer.quiver3d( x=eegp_loc[:, 0], y=eegp_loc[:, 1], z=eegp_loc[:, 2], u=eegp_nn[:, 0], v=eegp_nn[:, 1], w=eegp_nn[:, 2], color=defaults["eegp_color"], mode="cylinder", scale=defaults["eegp_scale"] * unit_scalar, opacity=sensor_alpha["eeg_projected"], glyph_height=defaults["eegp_height"], glyph_center=(0.0, -defaults["eegp_height"] / 2.0, 0), glyph_resolution=20, backface_culling=True, ) actors["eeg"].append(actor) actors = dict(actors) # get rid of defaultdict return actors def _make_tris_fan(n_vert): """Make tris given a number of vertices of a circle-like obj.""" tris = np.zeros((n_vert - 2, 3), int) tris[:, 2] = np.arange(2, n_vert) tris[:, 1] = tris[:, 2] - 1 return tris def _sensor_shape(coil): """Get the sensor shape vertices.""" try: from scipy.spatial import QhullError except ImportError: # scipy < 1.8 from scipy.spatial.qhull import QhullError id_ = coil["type"] & 0xFFFF z_value = 0 # Square figure eight if id_ in ( FIFF.FIFFV_COIL_NM_122, FIFF.FIFFV_COIL_VV_PLANAR_W, FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFFV_COIL_VV_PLANAR_T2, ): # wound by right hand rule such that +x side is "up" (+z) long_side = coil["size"] # length of long side (meters) offset = 0.0025 # offset of the center portion of planar grad coil rrs = np.array( [ [offset, -long_side / 2.0], [long_side / 2.0, -long_side / 2.0], [long_side / 2.0, long_side / 2.0], [offset, long_side / 2.0], [-offset, -long_side / 2.0], [-long_side / 2.0, -long_side / 2.0], [-long_side / 2.0, long_side / 2.0], [-offset, long_side / 2.0], ] ) tris = np.concatenate( (_make_tris_fan(4), _make_tris_fan(4)[:, ::-1] + 4), axis=0 ) # Offset for visibility (using heuristic for sanely named Neuromag coils) z_value = 0.001 * (1 + coil["chname"].endswith("2")) # Square elif id_ in ( FIFF.FIFFV_COIL_POINT_MAGNETOMETER, FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2, FIFF.FIFFV_COIL_VV_MAG_T3, FIFF.FIFFV_COIL_KIT_REF_MAG, ): # square magnetometer (potentially point-type) size = 0.001 if id_ == 2000 else (coil["size"] / 2.0) rrs = np.array([[-1.0, 1.0], [1.0, 1.0], [1.0, -1.0], [-1.0, -1.0]]) * size tris = _make_tris_fan(4) # Circle elif id_ in ( FIFF.FIFFV_COIL_MAGNES_MAG, FIFF.FIFFV_COIL_MAGNES_REF_MAG, FIFF.FIFFV_COIL_CTF_REF_MAG, FIFF.FIFFV_COIL_BABY_MAG, FIFF.FIFFV_COIL_BABY_REF_MAG, FIFF.FIFFV_COIL_ARTEMIS123_REF_MAG, ): n_pts = 15 # number of points for circle circle = np.exp(2j * np.pi * np.arange(n_pts) / float(n_pts)) circle = np.concatenate(([0.0], circle)) circle *= coil["size"] / 2.0 # radius of coil rrs = np.array([circle.real, circle.imag]).T tris = _make_tris_fan(n_pts + 1) # Circle elif id_ in ( FIFF.FIFFV_COIL_MAGNES_GRAD, FIFF.FIFFV_COIL_CTF_GRAD, FIFF.FIFFV_COIL_CTF_REF_GRAD, FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD, FIFF.FIFFV_COIL_MAGNES_REF_GRAD, FIFF.FIFFV_COIL_MAGNES_OFFDIAG_REF_GRAD, FIFF.FIFFV_COIL_KIT_GRAD, FIFF.FIFFV_COIL_BABY_GRAD, FIFF.FIFFV_COIL_ARTEMIS123_GRAD, FIFF.FIFFV_COIL_ARTEMIS123_REF_GRAD, ): # round coil 1st order (off-diagonal) gradiometer baseline = coil["base"] if id_ in (5004, 4005) else 0.0 n_pts = 16 # number of points for circle # This time, go all the way around circle to close it fully circle = np.exp(2j * np.pi * np.arange(-1, n_pts) / float(n_pts - 1)) circle[0] = 0 # center pt for triangulation circle *= coil["size"] / 2.0 rrs = np.array( [ # first, second coil np.concatenate( [circle.real + baseline / 2.0, circle.real - baseline / 2.0] ), np.concatenate([circle.imag, -circle.imag]), ] ).T tris = np.concatenate( [_make_tris_fan(n_pts + 1), _make_tris_fan(n_pts + 1) + n_pts + 1] ) else: # 3D convex hull (will fail for 2D geometry) rrs = coil["rmag_orig"].copy() try: tris = _reorder_ccw(rrs, ConvexHull(rrs).simplices) except QhullError: # 2D geometry likely logger.debug("Falling back to planar geometry") u, _, _ = np.linalg.svd(rrs.T, full_matrices=False) u[:, 2] = 0 rr_rot = rrs @ u tris = Delaunay(rr_rot[:, :2]).simplices tris = np.concatenate((tris, tris[:, ::-1])) z_value = None # Go from (x,y) -> (x,y,z) if z_value is not None: rrs = np.pad(rrs, ((0, 0), (0, 1)), mode="constant", constant_values=z_value) assert rrs.ndim == 2 and rrs.shape[1] == 3 return rrs, tris def _process_clim(clim, colormap, transparent, data=0.0, allow_pos_lims=True): """Convert colormap/clim options to dict. This fills in any "auto" entries properly such that round-trip calling gives the same results. """ # Based on type of limits specified, get cmap control points from matplotlib.colors import Colormap _validate_type(colormap, (str, Colormap), "colormap") data = np.asarray(data) if isinstance(colormap, str): if colormap == "auto": if clim == "auto": if allow_pos_lims and (data < 0).any(): colormap = "mne" else: colormap = "hot" else: if "lims" in clim: colormap = "hot" else: # 'pos_lims' in clim colormap = "mne" colormap = _get_cmap(colormap) assert isinstance(colormap, Colormap) diverging_maps = [ "PiYG", "PRGn", "BrBG", "PuOr", "RdGy", "RdBu", "RdYlBu", "RdYlGn", "Spectral", "coolwarm", "bwr", "seismic", ] diverging_maps += [d + "_r" for d in diverging_maps] diverging_maps += ["mne", "mne_analyze"] if clim == "auto": # this is merely a heuristic! if allow_pos_lims and colormap.name in diverging_maps: key = "pos_lims" else: key = "lims" clim = {"kind": "percent", key: [96, 97.5, 99.95]} if not isinstance(clim, dict): raise ValueError(f'"clim" must be "auto" or dict, got {clim}') if ("lims" in clim) + ("pos_lims" in clim) != 1: raise ValueError( f"Exactly one of lims and pos_lims must be specified in clim, got {clim}" ) if "pos_lims" in clim and not allow_pos_lims: raise ValueError('Cannot use "pos_lims" for clim, use "lims" instead') diverging = "pos_lims" in clim ctrl_pts = np.array(clim["pos_lims" if diverging else "lims"], float) ctrl_pts = np.array(ctrl_pts, float) if ctrl_pts.shape != (3,): raise ValueError(f"clim has shape {ctrl_pts.shape}, it must be (3,)") if (np.diff(ctrl_pts) < 0).any(): raise ValueError( f"colormap limits must be monotonically increasing, got {ctrl_pts}" ) clim_kind = clim.get("kind", "percent") _check_option("clim['kind']", clim_kind, ["value", "values", "percent"]) if clim_kind == "percent": perc_data = np.abs(data) if diverging else data ctrl_pts = np.percentile(perc_data, ctrl_pts) logger.info(f"Using control points {ctrl_pts}") assert len(ctrl_pts) == 3 clim = dict(kind="value") clim["pos_lims" if diverging else "lims"] = ctrl_pts mapdata = dict(clim=clim, colormap=colormap, transparent=transparent) return mapdata def _separate_map(mapdata): """Help plotters that cannot handle limit equality.""" diverging = "pos_lims" in mapdata["clim"] key = "pos_lims" if diverging else "lims" ctrl_pts = np.array(mapdata["clim"][key]) assert ctrl_pts.shape == (3,) if len(set(ctrl_pts)) == 1: # three points match if ctrl_pts[0] == 0: # all are zero warn("All data were zero") ctrl_pts = np.arange(3, dtype=float) else: ctrl_pts *= [0.0, 0.5, 1] # all nonzero pts == max elif len(set(ctrl_pts)) == 2: # two points match # if points one and two are identical, add a tiny bit to the # control point two; if points two and three are identical, # subtract a tiny bit from point two. bump = 1e-5 if ctrl_pts[0] == ctrl_pts[1] else -1e-5 ctrl_pts[1] = ctrl_pts[0] + bump * (ctrl_pts[2] - ctrl_pts[0]) mapdata["clim"][key] = ctrl_pts def _linearize_map(mapdata): from matplotlib.colors import ListedColormap diverging = "pos_lims" in mapdata["clim"] scale_pts = mapdata["clim"]["pos_lims" if diverging else "lims"] if diverging: lims = [-scale_pts[2], scale_pts[2]] ctrl_norm = ( np.concatenate( [-scale_pts[::-1] / scale_pts[2], [0], scale_pts / scale_pts[2]] ) / 2 + 0.5 ) linear_norm = [0, 0.25, 0.5, 0.5, 0.5, 0.75, 1] trans_norm = [1, 1, 0, 0, 0, 1, 1] else: lims = [scale_pts[0], scale_pts[2]] range_ = scale_pts[2] - scale_pts[0] mid = (scale_pts[1] - scale_pts[0]) / range_ if range_ > 0 else 0.5 ctrl_norm = [0, mid, 1] linear_norm = [0, 0.5, 1] trans_norm = [0, 1, 1] # do the piecewise linear transformation interp_to = np.linspace(0, 1, 256) colormap = np.array( mapdata["colormap"](np.interp(interp_to, ctrl_norm, linear_norm)) ) if mapdata["transparent"]: colormap[:, 3] = np.interp(interp_to, ctrl_norm, trans_norm) lims = np.array([lims[0], np.mean(lims), lims[1]]) colormap = ListedColormap(colormap) return colormap, lims def _get_map_ticks(mapdata): diverging = "pos_lims" in mapdata["clim"] ticks = mapdata["clim"]["pos_lims" if diverging else "lims"] delta = 1e-2 * (ticks[2] - ticks[0]) if ticks[1] <= ticks[0] + delta: # Only two worth showing ticks = ticks[::2] if ticks[1] <= ticks[0] + delta: # Actually only one ticks = ticks[::2] if diverging: idx = int(ticks[0] == 0) ticks = list(-np.array(ticks[idx:])[::-1]) + [0] + list(ticks[idx:]) return np.array(ticks) def _handle_time(time_label, time_unit, times): """Handle time label string and units.""" _validate_type(time_label, (None, str, "callable"), "time_label") if time_label == "auto": if times is not None and len(times) > 1: if time_unit == "s": time_label = "time=%0.3fs" elif time_unit == "ms": time_label = "time=%0.1fms" else: time_label = None # convert to callable if isinstance(time_label, str): time_label_fmt = time_label def time_label(x): try: return time_label_fmt % x except Exception: return time_label # in case it's static assert time_label is None or callable(time_label) if times is not None: _, times = _check_time_unit(time_unit, times) return time_label, times def _key_pressed_slider(event, params): """Handle key presses for time_viewer slider.""" step = 1 if event.key.startswith("ctrl"): step = 5 event.key = event.key.split("+")[-1] if event.key not in ["left", "right"]: return time_viewer = event.canvas.figure value = time_viewer.slider.val times = params["stc"].times if params["time_unit"] == "ms": times = times * 1000.0 time_idx = np.argmin(np.abs(times - value)) if event.key == "left": time_idx = np.max((0, time_idx - step)) elif event.key == "right": time_idx = np.min((len(times) - 1, time_idx + step)) this_time = times[time_idx] time_viewer.slider.set_val(this_time) def _smooth_plot(this_time, params, *, draw=True): """Smooth source estimate data and plot with mpl.""" from ..morph import _hemi_morph ax = params["ax"] stc = params["stc"] ax.clear() times = stc.times scaler = 1000.0 if params["time_unit"] == "ms" else 1.0 if this_time is None: time_idx = 0 else: time_idx = np.argmin(np.abs(times - this_time / scaler)) if params["hemi_idx"] == 0: data = stc.data[: len(stc.vertices[0]), time_idx : time_idx + 1] else: data = stc.data[len(stc.vertices[0]) :, time_idx : time_idx + 1] morph = _hemi_morph( params["tris"], params["inuse"], params["vertices"], params["smoothing_steps"], maps=None, warn=True, ) array_plot = morph @ data range_ = params["scale_pts"][2] - params["scale_pts"][0] colors = (array_plot - params["scale_pts"][0]) / range_ faces = params["faces"] greymap = params["greymap"] cmap = params["cmap"] polyc = ax.plot_trisurf( *params["coords"].T, triangles=faces, antialiased=False, vmin=0, vmax=1 ) color_ave = np.mean(colors[faces], axis=1).flatten() curv_ave = np.mean(params["curv"][faces], axis=1).flatten() colors = cmap(color_ave) # alpha blend colors[:, :3] *= colors[:, [3]] colors[:, :3] += greymap(curv_ave)[:, :3] * (1.0 - colors[:, [3]]) colors[:, 3] = 1.0 polyc.set_facecolor(colors) if params["time_label"] is not None: ax.set_title( params["time_label"]( times[time_idx] * scaler, ), color="w", ) _set_aspect_equal(ax) ax.axis("off") ax.set(xlim=[-80, 80], ylim=(-80, 80), zlim=[-80, 80]) if draw: ax.figure.canvas.draw() def _plot_mpl_stc( stc, subject=None, surface="inflated", hemi="lh", colormap="auto", time_label="auto", smoothing_steps=10, subjects_dir=None, views="lat", clim="auto", figure=None, initial_time=None, time_unit="s", background="black", spacing="oct6", time_viewer=False, colorbar=True, transparent=True, ): """Plot source estimate using mpl.""" import matplotlib.pyplot as plt import nibabel as nib from matplotlib.widgets import Slider from mpl_toolkits.mplot3d import Axes3D from ..morph import _get_subject_sphere_tris from ..source_space._source_space import _check_spacing, _create_surf_spacing _check_option("hemi", hemi, ("lh", "rh"), extra="when using matplotlib") lh_kwargs = { "lat": {"elev": 0, "azim": 180}, "med": {"elev": 0, "azim": 0}, "ros": {"elev": 0, "azim": 90}, "cau": {"elev": 0, "azim": -90}, "dor": {"elev": 90, "azim": -90}, "ven": {"elev": -90, "azim": -90}, "fro": {"elev": 0, "azim": 106.739}, "par": {"elev": 30, "azim": -120}, } rh_kwargs = { "lat": {"elev": 0, "azim": 0}, "med": {"elev": 0, "azim": 180}, "ros": {"elev": 0, "azim": 90}, "cau": {"elev": 0, "azim": -90}, "dor": {"elev": 90, "azim": -90}, "ven": {"elev": -90, "azim": -90}, "fro": {"elev": 16.739, "azim": 60}, "par": {"elev": 30, "azim": -60}, } time_viewer = False if time_viewer == "auto" else time_viewer kwargs = dict(lh=lh_kwargs, rh=rh_kwargs) views = "lat" if views == "auto" else views _check_option("views", views, sorted(lh_kwargs.keys())) mapdata = _process_clim(clim, colormap, transparent, stc.data) _separate_map(mapdata) colormap, scale_pts = _linearize_map(mapdata) del transparent, mapdata time_label, times = _handle_time(time_label, time_unit, stc.times) # don't use constrained layout because Axes3D does not play well with it fig = plt.figure(figsize=(6, 6), layout=None) if figure is None else figure try: ax = Axes3D(fig, auto_add_to_figure=False) except Exception: # old mpl ax = Axes3D(fig) else: fig.add_axes(ax) hemi_idx = 0 if hemi == "lh" else 1 surf = subjects_dir / subject / "surf" / f"{hemi}.{surface}" if spacing == "all": coords, faces = nib.freesurfer.read_geometry(surf) inuse = slice(None) else: stype, sval, ico_surf, src_type_str = _check_spacing(spacing) surf = _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir) inuse = surf["vertno"] faces = surf["use_tris"] coords = surf["rr"][inuse] shape = faces.shape faces = rankdata(faces, "dense").reshape(shape) - 1 faces = np.round(faces).astype(int) # should really be int-like anyway del surf vertices = stc.vertices[hemi_idx] n_verts = len(vertices) tris = _get_subject_sphere_tris(subject, subjects_dir)[hemi_idx] cmap = _get_cmap(colormap) greymap = _get_cmap("Greys") curv = nib.freesurfer.read_morph_data( subjects_dir / subject / "surf" / f"{hemi}.curv" )[inuse] curv = np.clip(np.array(curv > 0, np.int64), 0.33, 0.66) params = dict( ax=ax, stc=stc, coords=coords, faces=faces, hemi_idx=hemi_idx, vertices=vertices, tris=tris, smoothing_steps=smoothing_steps, n_verts=n_verts, inuse=inuse, cmap=cmap, curv=curv, scale_pts=scale_pts, greymap=greymap, time_label=time_label, time_unit=time_unit, ) _smooth_plot(initial_time, params, draw=False) ax.view_init(**kwargs[hemi][views]) try: ax.set_facecolor(background) except AttributeError: ax.set_axis_bgcolor(background) if time_viewer: time_viewer = figure_nobar(figsize=(4.5, 0.25)) fig.time_viewer = time_viewer ax_time = plt.axes() if initial_time is None: initial_time = 0 slider = Slider( ax=ax_time, label="Time", valmin=times[0], valmax=times[-1], valinit=initial_time, ) time_viewer.slider = slider callback_slider = partial(_smooth_plot, params=params) slider.on_changed(callback_slider) callback_key = partial(_key_pressed_slider, params=params) time_viewer.canvas.mpl_connect("key_press_event", callback_key) fig.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0) # add colorbar from mpl_toolkits.axes_grid1.inset_locator import inset_axes sm = plt.cm.ScalarMappable( cmap=cmap, norm=plt.Normalize(scale_pts[0], scale_pts[2]) ) cax = inset_axes(ax, width="80%", height="5%", loc=8, borderpad=3.0) plt.setp(plt.getp(cax, "xticklabels"), color="w") sm.set_array(np.linspace(scale_pts[0], scale_pts[2], 256)) if colorbar: cb = plt.colorbar(sm, cax=cax, orientation="horizontal") cb_yticks = plt.getp(cax, "yticklabels") plt.setp(cb_yticks, color="w") cax.tick_params(labelsize=16) cb.ax.set_facecolor("0.5") cax.set(xlim=(scale_pts[0], scale_pts[2])) plt_show(True) return fig def link_brains(brains, time=True, camera=False, colorbar=True, picking=False): """Plot multiple SourceEstimate objects with PyVista. Parameters ---------- brains : list, tuple or np.ndarray The collection of brains to plot. time : bool If True, link the time controllers. Defaults to True. camera : bool If True, link the camera controls. Defaults to False. colorbar : bool If True, link the colorbar controllers. Defaults to True. picking : bool If True, link the vertices picked with the mouse. Defaults to False. """ from .backends.renderer import _get_3d_backend if _get_3d_backend() != "pyvistaqt": raise NotImplementedError( f"Expected 3d backend is pyvistaqt but {_get_3d_backend()} was given." ) from ._brain import Brain, _LinkViewer if not isinstance(brains, Iterable): brains = [brains] if len(brains) == 0: raise ValueError("The collection of brains is empty.") for brain in brains: if not isinstance(brain, Brain): raise TypeError(f"Expected type is Brain but {type(brain)} was given.") # enable time viewer if necessary brain.setup_time_viewer() subjects = [brain._subject for brain in brains] if subjects.count(subjects[0]) != len(subjects): raise RuntimeError("Cannot link brains from different subjects.") # link brains properties _LinkViewer( brains=brains, time=time, camera=camera, colorbar=colorbar, picking=picking, ) def _check_volume(stc, src, surface, backend_name): from ..source_estimate import _BaseMixedSourceEstimate, _BaseSurfaceSourceEstimate from ..source_space import SourceSpaces if isinstance(stc, _BaseSurfaceSourceEstimate): return False else: _validate_type( src, SourceSpaces, "src", "src when stc is a mixed or volume source estimate", ) if isinstance(stc, _BaseMixedSourceEstimate): # When showing subvolumes, surfaces that preserve geometry must # be used (i.e., no inflated) _check_option( "surface", surface, ("white", "pial"), extra="when plotting a mixed source estimate", ) return True @verbose def plot_source_estimates( stc, subject=None, surface="inflated", hemi="lh", colormap="auto", time_label="auto", smoothing_steps=10, transparent=True, alpha=1.0, time_viewer="auto", subjects_dir=None, figure=None, views="auto", colorbar=True, clim="auto", cortex="classic", size=800, background="black", foreground=None, initial_time=None, time_unit="s", backend="auto", spacing="oct6", title=None, show_traces="auto", src=None, volume_options=1.0, view_layout="vertical", add_data_kwargs=None, brain_kwargs=None, verbose=None, ): """Plot SourceEstimate. Parameters ---------- stc : SourceEstimate The source estimates to plot. %(subject_none)s If ``None``, ``stc.subject`` will be used. surface : str The type of surface (inflated, white etc.). hemi : str Hemisphere id (ie ``'lh'``, ``'rh'``, ``'both'``, or ``'split'``). In the case of ``'both'``, both hemispheres are shown in the same window. In the case of ``'split'`` hemispheres are displayed side-by-side in different viewing panes. %(colormap)s The default ('auto') uses ``'hot'`` for one-sided data and 'mne' for two-sided data. %(time_label)s smoothing_steps : int The amount of smoothing. %(transparent)s alpha : float Alpha value to apply globally to the overlay. Has no effect with mpl backend. time_viewer : bool | str Display time viewer GUI. Can also be 'auto', which will mean True for the PyVista backend and False otherwise. .. versionchanged:: 0.20.0 "auto" mode added. %(subjects_dir)s figure : instance of Figure3D | instance of matplotlib.figure.Figure | list | int | None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the PyVista figure by it's id or create a new figure with the given id. If an instance of matplotlib figure, mpl backend is used for plotting. %(views)s When plotting a standard SourceEstimate (not volume, mixed, or vector) and using the PyVista backend, ``views='flat'`` is also supported to plot cortex as a flatmap. Using multiple views (list) is not supported by the matplotlib backend. .. versionchanged:: 0.21.0 Support for flatmaps. colorbar : bool If True, display colorbar on scene. %(clim)s cortex : str | tuple Specifies how binarized curvature values are rendered. Either the name of a preset Brain cortex colorscheme (one of ``'classic'``, ``'bone'``, ``'low_contrast'``, or ``'high_contrast'``), or the name of a colormap, or a tuple with values ``(colormap, min, max, reverse)`` to fully specify the curvature colors. Has no effect with the matplotlib backend. size : float or tuple of float The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. Has no effect with mpl backend. background : matplotlib color Color of the background of the display window. foreground : matplotlib color | None Color of the foreground of the display window. Has no effect with mpl backend. None will choose white or black based on the background color. initial_time : float | None The time to display on the plot initially. ``None`` to display the first time sample (default). time_unit : ``'s'`` | ``'ms'`` Whether time is represented in seconds ("s", default) or milliseconds ("ms"). backend : ``'auto'`` | ``'pyvistaqt'`` | ``'matplotlib'`` Which backend to use. If ``'auto'`` (default), tries to plot with pyvistaqt, but resorts to matplotlib if no 3d backend is available. .. versionadded:: 0.15.0 spacing : str Only affects the matplotlib backend. The spacing to use for the source space. Can be ``'ico#'`` for a recursively subdivided icosahedron, ``'oct#'`` for a recursively subdivided octahedron, or ``'all'`` for all points. In general, you can speed up the plotting by selecting a sparser source space. Defaults to 'oct6'. .. versionadded:: 0.15.0 title : str | None Title for the figure. If None, the subject name will be used. .. versionadded:: 0.17.0 %(show_traces)s %(src_volume_options)s %(view_layout)s %(add_data_kwargs)s %(brain_kwargs)s %(verbose)s Returns ------- figure : instance of mne.viz.Brain | matplotlib.figure.Figure An instance of :class:`mne.viz.Brain` or matplotlib figure. Notes ----- Flatmaps are available by default for ``fsaverage`` but not for other subjects reconstructed by FreeSurfer. We recommend using :func:`mne.compute_source_morph` to morph source estimates to ``fsaverage`` for flatmap plotting. If you want to construct your own flatmap for a given subject, these links might help: - https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferOccipitalFlattenedPatch - https://openwetware.org/wiki/Beauchamp:FreeSurfer """ # noqa: E501 from ..source_estimate import _BaseSourceEstimate, _check_stc_src from .backends.renderer import _get_3d_backend, use_3d_backend _check_stc_src(stc, src) _validate_type(stc, _BaseSourceEstimate, "stc", "source estimate") subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) subject = _check_subject(stc.subject, subject) _check_option("backend", backend, ["auto", "matplotlib", "pyvistaqt", "notebook"]) plot_mpl = backend == "matplotlib" if not plot_mpl: if backend == "auto": try: backend = _get_3d_backend() except (ImportError, ModuleNotFoundError): warn("No 3D backend found. Resorting to matplotlib 3d.") plot_mpl = True kwargs = dict( subject=subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, subjects_dir=subjects_dir, views=views, clim=clim, figure=figure, initial_time=initial_time, time_unit=time_unit, background=background, time_viewer=time_viewer, colorbar=colorbar, transparent=transparent, ) if plot_mpl: return _plot_mpl_stc(stc, spacing=spacing, **kwargs) else: with use_3d_backend(backend): return _plot_stc( stc, overlay_alpha=alpha, brain_alpha=alpha, vector_alpha=alpha, cortex=cortex, foreground=foreground, size=size, scale_factor=None, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, brain_kwargs=brain_kwargs, **kwargs, ) def _plot_stc( stc, subject, surface, hemi, colormap, time_label, smoothing_steps, subjects_dir, views, clim, figure, initial_time, time_unit, background, time_viewer, colorbar, transparent, brain_alpha, overlay_alpha, vector_alpha, cortex, foreground, size, scale_factor, show_traces, src, volume_options, view_layout, add_data_kwargs, brain_kwargs, ): from ..source_estimate import _BaseVolSourceEstimate from .backends.renderer import _get_3d_backend, get_brain_class vec = stc._data_ndim == 3 subjects_dir = str(get_subjects_dir(subjects_dir=subjects_dir, raise_error=True)) subject = _check_subject(stc.subject, subject) backend = _get_3d_backend() del _get_3d_backend Brain = get_brain_class() views = _check_views(surface, views, hemi, stc, backend) _check_option("hemi", hemi, ["lh", "rh", "split", "both"]) _check_option("view_layout", view_layout, ("vertical", "horizontal")) time_label, times = _handle_time(time_label, time_unit, stc.times) show_traces, time_viewer = _check_st_tv(show_traces, time_viewer, times) # convert control points to locations in colormap use = stc.magnitude().data if vec else stc.data mapdata = _process_clim(clim, colormap, transparent, use, allow_pos_lims=not vec) volume = _check_volume(stc, src, surface, backend) # XXX we should not need to do this for PyVista, the plotter should be # smart enough to do this separation in the cmap-to-ctab conversion _separate_map(mapdata) colormap = mapdata["colormap"] diverging = "pos_lims" in mapdata["clim"] scale_pts = mapdata["clim"]["pos_lims" if diverging else "lims"] transparent = mapdata["transparent"] del mapdata if hemi in ["both", "split"]: hemis = ["lh", "rh"] else: hemis = [hemi] if overlay_alpha is None: overlay_alpha = brain_alpha if overlay_alpha == 0: smoothing_steps = 1 # Disable smoothing to save time. title = subject if len(hemis) > 1 else f"{subject} - {hemis[0]}" kwargs = { "subject": subject, "hemi": hemi, "surf": surface, "title": title, "cortex": cortex, "size": size, "background": background, "foreground": foreground, "figure": figure, "subjects_dir": subjects_dir, "views": views, "alpha": brain_alpha, } if brain_kwargs is not None: kwargs.update(brain_kwargs) kwargs["show"] = False kwargs["view_layout"] = view_layout with warnings.catch_warnings(record=True): # traits warnings brain = Brain(**kwargs) del kwargs if scale_factor is None: # Configure the glyphs scale directly width = np.mean( [ np.ptp(brain.geo[hemi].coords[:, 1]) for hemi in hemis if hemi in brain.geo ] ) scale_factor = 0.025 * width / scale_pts[-1] if transparent is None: transparent = True center = 0.0 if diverging else None kwargs = { "array": stc, "colormap": colormap, "smoothing_steps": smoothing_steps, "time": times, "time_label": time_label, "alpha": overlay_alpha, "colorbar": colorbar, "vector_alpha": vector_alpha, "scale_factor": scale_factor, "initial_time": initial_time, "transparent": transparent, "center": center, "fmin": scale_pts[0], "fmid": scale_pts[1], "fmax": scale_pts[2], "clim": clim, "src": src, "volume_options": volume_options, "verbose": None, } if add_data_kwargs is not None: kwargs.update(add_data_kwargs) for hemi in hemis: if isinstance(stc, _BaseVolSourceEstimate): # no surf data break vertices = stc.vertices[0 if hemi == "lh" else 1] if len(vertices) == 0: # no surf data for the given hemi continue # no data use_kwargs = kwargs.copy() use_kwargs.update(hemi=hemi) with warnings.catch_warnings(record=True): # traits warnings brain.add_data(**use_kwargs) if volume: use_kwargs = kwargs.copy() use_kwargs.update(hemi="vol") brain.add_data(**use_kwargs) del kwargs if time_viewer: brain.setup_time_viewer(time_viewer=time_viewer, show_traces=show_traces) else: brain.show() return brain def _check_st_tv(show_traces, time_viewer, times): # time_viewer and show_traces _check_option("time_viewer", time_viewer, (True, False, "auto")) _validate_type(show_traces, (str, bool, "numeric"), "show_traces") if isinstance(show_traces, str): _check_option( "show_traces", show_traces, ("auto", "separate", "vertex", "label"), extra="when a string", ) if time_viewer == "auto": time_viewer = True if show_traces == "auto": show_traces = time_viewer and times is not None and len(times) > 1 if show_traces and not time_viewer: raise ValueError("show_traces cannot be used when time_viewer=False") return show_traces, time_viewer def _glass_brain_crosshairs(params, x, y, z): for ax, a, b in ( (params["ax_y"], x, z), (params["ax_x"], y, z), (params["ax_z"], x, y), ): ax.axvline(a, color="0.75") ax.axhline(b, color="0.75") def _cut_coords_to_ijk(cut_coords, img): ijk = apply_trans(np.linalg.inv(img.affine), cut_coords) ijk = np.round(ijk).astype(int) logger.debug(f"{cut_coords} -> {ijk}") np.clip(ijk, 0, np.array(img.shape[:3]) - 1, out=ijk) return ijk def _ijk_to_cut_coords(ijk, img): return apply_trans(img.affine, ijk) def _load_subject_mri(mri, stc, subject, subjects_dir, name): import nibabel as nib from nibabel.spatialimages import SpatialImage _validate_type(mri, ("path-like", SpatialImage), name) if isinstance(mri, str): subject = _check_subject(stc.subject, subject) mri = nib.load(_check_mri(mri, subject, subjects_dir)) return mri _AX_NAME = dict(x="X (sagittal)", y="Y (coronal)", z="Z (axial)") def _click_to_cut_coords(event, params): """Get voxel coordinates from mouse click.""" import nibabel as nib if event.inaxes is params["ax_x"]: ax = "x" x = params["ax_z"].lines[0].get_xdata()[0] y, z = event.xdata, event.ydata elif event.inaxes is params["ax_y"]: ax = "y" y = params["ax_x"].lines[0].get_xdata()[0] x, z = event.xdata, event.ydata elif event.inaxes is params["ax_z"]: ax = "z" x, y = event.xdata, event.ydata z = params["ax_x"].lines[1].get_ydata()[0] else: logger.debug(" Click outside axes") return None cut_coords = np.array((x, y, z)) logger.debug("") if params["mode"] == "glass_brain": # find idx for MIP # Figure out what XYZ in world coordinates is in our voxel data codes = "".join(nib.aff2axcodes(params["img_idx"].affine)) assert len(codes) == 3 # We don't care about directionality, just which is which dim codes = codes.replace("L", "R").replace("P", "A").replace("I", "S") idx = codes.index(dict(x="R", y="A", z="S")[ax]) img_data = np.abs(_get_img_fdata(params["img_idx"])) ijk = _cut_coords_to_ijk(cut_coords, params["img_idx"]) if idx == 0: ijk[0] = np.argmax(img_data[:, ijk[1], ijk[2]]) logger.debug(f" MIP: i = {ijk[0]:d} idx") elif idx == 1: ijk[1] = np.argmax(img_data[ijk[0], :, ijk[2]]) logger.debug(f" MIP: j = {ijk[1]:d} idx") else: ijk[2] = np.argmax(img_data[ijk[0], ijk[1], :]) logger.debug(f" MIP: k = {ijk[2]} idx") cut_coords = _ijk_to_cut_coords(ijk, params["img_idx"]) logger.debug(f" Cut coords for {_AX_NAME[ax]}: {_str_ras(cut_coords)}") return cut_coords def _str_ras(xyz): x, y, z = xyz return f"({x:0.1f}, {y:0.1f}, {z:0.1f}) mm" def _str_vox(ijk): i, j, k = ijk return f"[{i:d}, {j:d}, {k:d}] vox" def _press(event, params): """Manage keypress on the plot.""" pos = params["lx"].get_xdata() idx = params["stc"].time_as_index(pos)[0] if event.key == "left": idx = max(0, idx - 2) elif event.key == "shift+left": idx = max(0, idx - 10) elif event.key == "right": idx = min(params["stc"].shape[1] - 1, idx + 2) elif event.key == "shift+right": idx = min(params["stc"].shape[1] - 1, idx + 10) _update_timeslice(idx, params) params["fig"].canvas.draw() def _update_timeslice(idx, params): from nilearn.image import index_img params["lx"].set_xdata([idx / params["stc"].sfreq + params["stc"].tmin]) ax_x, ax_y, ax_z = params["ax_x"], params["ax_y"], params["ax_z"] # Crosshairs are the first thing plotted in stat_map, and the last # in glass_brain idxs = [0, 0, 1] if params["mode"] == "stat_map" else [-2, -2, -1] cut_coords = ( ax_y.lines[idxs[0]].get_xdata()[0], ax_x.lines[idxs[1]].get_xdata()[0], ax_x.lines[idxs[2]].get_ydata()[0], ) ax_x.clear() ax_y.clear() ax_z.clear() params.update({"img_idx": index_img(params["img"], idx)}) params.update({"title": f"Activation (t={params['stc'].times[idx]:.3f} s.)"}) _plot_and_correct(params=params, cut_coords=cut_coords) def _update_vertlabel(loc_idx, params): params["vert_legend"].get_texts()[0].set_text(f"{params['vertices'][loc_idx]}") @verbose_dec def _onclick(event, params, verbose=None): """Manage clicks on the plot.""" ax_x, ax_y, ax_z = params["ax_x"], params["ax_y"], params["ax_z"] if event.inaxes is params["ax_time"]: idx = params["stc"].time_as_index(event.xdata, use_rounding=True)[0] _update_timeslice(idx, params) cut_coords = _click_to_cut_coords(event, params) if cut_coords is None: return # not in any axes ax_x.clear() ax_y.clear() ax_z.clear() _plot_and_correct(params=params, cut_coords=cut_coords) loc_idx = _cut_coords_to_idx(cut_coords, params["dist_to_verts"]) ydata = params["stc"].data[loc_idx] if loc_idx is not None: params["ax_time"].lines[0].set_ydata(ydata) else: params["ax_time"].lines[0].set_ydata([0.0]) _update_vertlabel(loc_idx, params) params["fig"].canvas.draw() def _cut_coords_to_idx(cut_coords, dist_to_verts): """Convert voxel coordinates to index in stc.data.""" logger.debug(f" Starting coords: {cut_coords}") cut_coords = list(cut_coords) (dist,), (loc_idx,) = dist_to_verts.query([cut_coords]) logger.debug(f"Mapped {cut_coords=} to vertices[{loc_idx}] {dist:0.1f} mm away") return loc_idx def _plot_and_correct(*, params, cut_coords): # black_bg = True is needed because of some matplotlib # peculiarity. See: https://stackoverflow.com/a/34730204 # Otherwise, event.inaxes does not work for ax_x and ax_z from nilearn.plotting import plot_glass_brain, plot_stat_map mode = params["mode"] nil_func = dict(stat_map=plot_stat_map, glass_brain=plot_glass_brain)[mode] plot_kwargs = dict( threshold=None, axes=params["axes"], resampling_interpolation="nearest", vmax=params["vmax"], figure=params["fig"], colorbar=params["colorbar"], bg_img=params["bg_img"], cmap=params["colormap"], black_bg=True, symmetric_cbar=True, title="", ) params["axes"].clear() if params.get("fig_anat") is not None and plot_kwargs["colorbar"]: params["fig_anat"]._cbar.ax.clear() with warnings.catch_warnings(record=True): # nilearn bug; ax recreated warnings.simplefilter("ignore", DeprecationWarning) params["fig_anat"] = nil_func( params["img_idx"], cut_coords=cut_coords, **plot_kwargs ) params["fig_anat"]._cbar.outline.set_visible(False) for key in "xyz": params.update({"ax_" + key: params["fig_anat"].axes[key].ax}) # Fix nilearn bug w/cbar background being white if plot_kwargs["colorbar"]: params["fig_anat"]._cbar.ax.set_facecolor("0.5") # adjust one-sided colorbars if not params["diverging"]: _crop_colorbar(params["fig_anat"]._cbar, *params["scale_pts"][[0, -1]]) params["fig_anat"]._cbar.set_ticks(params["cbar_ticks"]) if params["mode"] == "glass_brain": _glass_brain_crosshairs(params, *cut_coords) @verbose def plot_volume_source_estimates( stc, src, subject=None, subjects_dir=None, mode="stat_map", bg_img="T1.mgz", colorbar=True, colormap="auto", clim="auto", transparent=None, show=True, initial_time=None, initial_pos=None, verbose=None, ): """Plot Nutmeg style volumetric source estimates using nilearn. Parameters ---------- stc : VectorSourceEstimate The vector source estimate to plot. src : instance of SourceSpaces | instance of SourceMorph The source space. Can also be a SourceMorph to morph the STC to a new subject (see Examples). .. versionchanged:: 0.18 Support for :class:`~nibabel.spatialimages.SpatialImage`. %(subject_none)s If ``None``, ``stc.subject`` will be used. %(subjects_dir)s mode : ``'stat_map'`` | ``'glass_brain'`` The plotting mode to use. For ``'glass_brain'``, activation absolute values are displayed after being transformed to a standard MNI brain. bg_img : instance of SpatialImage | str The background image used in the nilearn plotting function. Can also be a string to use the ``bg_img`` file in the subject's MRI directory (default is ``'T1.mgz'``). Not used in "glass brain" plotting. colorbar : bool If True, display a colorbar on the right of the plots. %(colormap)s %(clim)s %(transparent)s show : bool Show figures if True. Defaults to True. initial_time : float | None The initial time to plot. Can be None (default) to use the time point with the maximal absolute value activation across all voxels or the ``initial_pos`` voxel (if ``initial_pos is None`` or not, respectively). .. versionadded:: 0.19 initial_pos : ndarray, shape (3,) | None The initial position to use (in m). Can be None (default) to use the voxel with the maximum absolute value activation across all time points or at ``initial_time`` (if ``initial_time is None`` or not, respectively). .. versionadded:: 0.19 %(verbose)s Returns ------- fig : instance of Figure The figure. Notes ----- Click on any of the anatomical slices to explore the time series. Clicking on any time point will bring up the corresponding anatomical map. The left and right arrow keys can be used to navigate in time. To move in time by larger steps, use shift+left and shift+right. In ``'glass_brain'`` mode, values are transformed to the standard MNI brain using the FreeSurfer Talairach transformation ``$SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm``. .. versionadded:: 0.17 .. versionchanged:: 0.19 MRI volumes are automatically transformed to MNI space in ``'glass_brain'`` mode. Examples -------- Passing a :class:`mne.SourceMorph` as the ``src`` parameter can be useful for plotting in a different subject's space (here, a ``'sample'`` STC in ``'fsaverage'``'s space):: >>> morph = mne.compute_source_morph(src_sample, subject_to='fsaverage') # doctest: +SKIP >>> fig = stc_vol_sample.plot(morph) # doctest: +SKIP """ # noqa: E501 import nibabel as nib from matplotlib import colors from matplotlib import pyplot as plt from ..morph import SourceMorph from ..source_estimate import VolSourceEstimate from ..source_space._source_space import _ensure_src if not check_version("nilearn", "0.4"): raise RuntimeError("This function requires nilearn >= 0.4") from nilearn.image import index_img _check_option("mode", mode, ("stat_map", "glass_brain")) _validate_type(stc, VolSourceEstimate, "stc") if isinstance(src, SourceMorph): img = src.apply(stc, "nifti1", mri_resolution=False, mri_space=False) stc = src.apply(stc, mri_resolution=False, mri_space=False) kind, src_subject = "morph.subject_to", src.subject_to else: src = _ensure_src(src, kind="volume", extra=" or SourceMorph") img = stc.as_volume(src, mri_resolution=False) kind, src_subject = "src subject", src._subject del src _print_coord_trans( Transform("mri_voxel", "ras", img.affine), prefix="Image affine ", units="mm", level="debug", ) subject = _check_subject(src_subject, subject, first_kind=kind) if mode == "glass_brain": subject = _check_subject(stc.subject, subject) ras_mni_t = read_ras_mni_t(subject, subjects_dir) if not np.allclose(ras_mni_t["trans"], np.eye(4)): _print_coord_trans(ras_mni_t, prefix="Transforming subject ", units="mm") logger.info("") # To get from voxel coords to world coords (i.e., define affine) # we would apply img.affine, then also apply ras_mni_t, which # transforms from the subject's RAS to MNI RAS. So we left-multiply # these. img = nib.Nifti1Image(img.dataobj, np.dot(ras_mni_t["trans"], img.affine)) bg_img = None # not used else: # stat_map if bg_img is None: bg_img = "T1.mgz" bg_img = _load_subject_mri(bg_img, stc, subject, subjects_dir, "bg_img") params = dict( stc=stc, mode=mode, img=img, bg_img=bg_img, colorbar=colorbar, ) vertices = np.hstack(stc.vertices) stc_ijk = np.array(np.unravel_index(vertices, img.shape[:3], order="F")).T assert stc_ijk.shape == (vertices.size, 3) params["dist_to_verts"] = _DistanceQuery(apply_trans(img.affine, stc_ijk)) params["vertices"] = vertices del kind, stc_ijk if initial_time is None: time_sl = slice(0, None) else: initial_time = float(initial_time) logger.info(f"Fixing initial time: {initial_time} s") initial_time = np.argmin(np.abs(stc.times - initial_time)) time_sl = slice(initial_time, initial_time + 1) if initial_pos is None: # find max pos and (maybe) time loc_idx, time_idx = np.unravel_index( np.abs(stc.data[:, time_sl]).argmax(), stc.data[:, time_sl].shape ) time_idx += time_sl.start else: # position specified initial_pos = np.array(initial_pos, float) if initial_pos.shape != (3,): raise ValueError( "initial_pos must be float ndarray with shape " f"(3,), got shape {initial_pos.shape}" ) initial_pos *= 1000 logger.info(f"Fixing initial position: {initial_pos.tolist()} mm") loc_idx = _cut_coords_to_idx(initial_pos, params["dist_to_verts"]) if initial_time is not None: # time also specified time_idx = time_sl.start else: # find the max time_idx = np.argmax(np.abs(stc.data[loc_idx])) img_idx = params["img_idx"] = index_img(img, time_idx) assert img_idx.shape == img.shape[:3] del initial_time, initial_pos ijk = np.unravel_index(vertices[loc_idx], img.shape[:3], order="F") cut_coords = _ijk_to_cut_coords(ijk, img_idx) np.testing.assert_allclose(_cut_coords_to_ijk(cut_coords, img_idx), ijk) logger.info( f"Showing: t = {stc.times[time_idx]:0.3f} s, " f"{_str_ras(cut_coords)}, " f"{_str_vox(ijk)}, " f"{vertices[loc_idx]:d} vertex" ) del ijk # Plot initial figure fig, (axes, ax_time) = plt.subplots(2, layout="constrained") axes.set(xticks=[], yticks=[]) marker = "o" if len(stc.times) == 1 else None ydata = stc.data[loc_idx] h = ax_time.plot(stc.times, ydata, color="k", marker=marker)[0] if len(stc.times) > 1: ax_time.set(xlim=stc.times[[0, -1]]) ax_time.set(xlabel="Time (s)", ylabel="Activation") params["vert_legend"] = ax_time.legend([h], [""], title="Vertex") _update_vertlabel(loc_idx, params) lx = ax_time.axvline(stc.times[time_idx], color="g") params.update(fig=fig, ax_time=ax_time, lx=lx, axes=axes) allow_pos_lims = mode != "glass_brain" mapdata = _process_clim(clim, colormap, transparent, stc.data, allow_pos_lims) _separate_map(mapdata) diverging = "pos_lims" in mapdata["clim"] ticks = _get_map_ticks(mapdata) params.update(cbar_ticks=ticks, diverging=diverging) colormap, scale_pts = _linearize_map(mapdata) del mapdata ylim = [min((scale_pts[0], ydata.min())), max((scale_pts[-1], ydata.max()))] ylim = np.array(ylim) + np.array([-1, 1]) * 0.05 * np.diff(ylim)[0] dup_neg = False if stc.data.min() < 0: ax_time.axhline(0.0, color="0.5", ls="-", lw=0.5, zorder=2) dup_neg = not diverging # glass brain with signed data yticks = list(ticks) if dup_neg: yticks += [0] + list(-np.array(ticks)) yticks = np.unique(yticks) ax_time.set(yticks=yticks) ax_time.set(ylim=ylim) del yticks if not diverging: # set eq above iff one-sided # there is a bug in nilearn where this messes w/transparency # Need to double the colormap if (scale_pts < 0).any(): # XXX We should fix this, but it's hard to get nilearn to # use arbitrary bounds :( # Should get them to support non-mirrored colorbars, or # at least a proper `vmin` for one-sided things. # Hopefully this is a sufficiently rare use case! raise ValueError( "Negative colormap limits for sequential " 'control points clim["lims"] not supported ' "currently, consider shifting or flipping the " "sign of your data for visualization purposes" ) # due to nilearn plotting weirdness, extend this to go # -scale_pts[2]->scale_pts[2] instead of scale_pts[0]->scale_pts[2] colormap = _get_cmap(colormap) colormap = colormap( np.interp(np.linspace(-1, 1, 256), scale_pts / scale_pts[2], [0, 0.5, 1]) ) colormap = colors.ListedColormap(colormap) params.update(vmax=scale_pts[-1], scale_pts=scale_pts, colormap=colormap) _plot_and_correct(params=params, cut_coords=cut_coords) plt_show(show) fig.canvas.mpl_connect( "button_press_event", partial(_onclick, params=params, verbose=verbose) ) fig.canvas.mpl_connect("key_press_event", partial(_press, params=params)) return fig def _check_views(surf, views, hemi, stc=None, backend=None): from ..source_estimate import SourceEstimate from ._brain.view import views_dicts _validate_type(views, (list, tuple, str), "views") views = [views] if isinstance(views, str) else list(views) if surf == "flat": _check_option("views", views, (["auto"], ["flat"])) views = ["flat"] elif len(views) == 1 and views[0] == "auto": views = ["lateral"] if views == ["flat"]: if stc is not None: _validate_type( stc, SourceEstimate, "stc", "SourceEstimate when a flatmap is used" ) if backend is not None: if backend not in ("pyvistaqt", "notebook"): raise RuntimeError( "The PyVista 3D backend must be used to plot a flatmap" ) if (views == ["flat"]) ^ (surf == "flat"): # exactly only one of the two raise ValueError( 'surface="flat" must be used with views="flat", got ' f"surface={repr(surf)} and views={repr(views)}" ) _check_option("hemi", hemi, ("split", "both", "lh", "rh", "vol", None)) use_hemi = "lh" if hemi == "split" or hemi is None else hemi for vi, v in enumerate(views): _check_option(f"views[{vi}]", v, sorted(views_dicts[use_hemi])) return views @verbose def plot_vector_source_estimates( stc, subject=None, hemi="lh", colormap="hot", time_label="auto", smoothing_steps=10, transparent=None, brain_alpha=0.4, overlay_alpha=None, vector_alpha=1.0, scale_factor=None, time_viewer="auto", subjects_dir=None, figure=None, views="lateral", colorbar=True, clim="auto", cortex="classic", size=800, background="black", foreground=None, initial_time=None, time_unit="s", show_traces="auto", src=None, volume_options=1.0, view_layout="vertical", add_data_kwargs=None, brain_kwargs=None, verbose=None, ): """Plot VectorSourceEstimate with PyVista. A "glass brain" is drawn and all dipoles defined in the source estimate are shown using arrows, depicting the direction and magnitude of the current moment at the dipole. Additionally, an overlay is plotted on top of the cortex with the magnitude of the current. Parameters ---------- stc : VectorSourceEstimate | MixedVectorSourceEstimate The vector source estimate to plot. %(subject_none)s If ``None``, ``stc.subject`` will be used. hemi : str, 'lh' | 'rh' | 'split' | 'both' The hemisphere to display. %(colormap)s This should be a sequential colormap. %(time_label)s smoothing_steps : int The amount of smoothing. %(transparent)s brain_alpha : float Alpha value to apply globally to the surface meshes. Defaults to 0.4. overlay_alpha : float Alpha value to apply globally to the overlay. Defaults to ``brain_alpha``. vector_alpha : float Alpha value to apply globally to the vector glyphs. Defaults to 1. scale_factor : float | None Scaling factor for the vector glyphs. By default, an attempt is made to automatically determine a sane value. time_viewer : bool | str Display time viewer GUI. Can be "auto", which is True for the PyVista backend and False otherwise. .. versionchanged:: 0.20 Added "auto" option and default. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. figure : instance of Figure3D | list | int | None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the PyVista figure by it's id or create a new figure with the given id. %(views)s colorbar : bool If True, display colorbar on scene. %(clim_onesided)s cortex : str or tuple Specifies how binarized curvature values are rendered. either the name of a preset Brain cortex colorscheme (one of 'classic', 'bone', 'low_contrast', or 'high_contrast'), or the name of a colormap, or a tuple with values (colormap, min, max, reverse) to fully specify the curvature colors. size : float or tuple of float The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. background : matplotlib color Color of the background of the display window. foreground : matplotlib color | None Color of the foreground of the display window. None will choose black or white based on the background color. initial_time : float | None The time to display on the plot initially. ``None`` to display the first time sample (default). time_unit : 's' | 'ms' Whether time is represented in seconds ("s", default) or milliseconds ("ms"). %(show_traces)s %(src_volume_options)s %(view_layout)s %(add_data_kwargs)s %(brain_kwargs)s %(verbose)s Returns ------- brain : mne.viz.Brain A instance of :class:`mne.viz.Brain`. Notes ----- .. versionadded:: 0.15 If the current magnitude overlay is not desired, set ``overlay_alpha=0`` and ``smoothing_steps=1``. """ from ..source_estimate import _BaseVectorSourceEstimate _validate_type(stc, _BaseVectorSourceEstimate, "stc", "vector source estimate") return _plot_stc( stc, subject=subject, surface="white", hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, subjects_dir=subjects_dir, views=views, clim=clim, figure=figure, initial_time=initial_time, time_unit=time_unit, background=background, time_viewer=time_viewer, colorbar=colorbar, transparent=transparent, brain_alpha=brain_alpha, overlay_alpha=overlay_alpha, vector_alpha=vector_alpha, cortex=cortex, foreground=foreground, size=size, scale_factor=scale_factor, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, brain_kwargs=brain_kwargs, ) @verbose def plot_sparse_source_estimates( src, stcs, colors=None, linewidth=2, fontsize=18, bgcolor=(0.05, 0, 0.1), opacity=0.2, brain_color=(0.7,) * 3, show=True, high_resolution=False, fig_name=None, fig_number=None, labels=None, modes=("cone", "sphere"), scale_factors=(1, 0.6), verbose=None, **kwargs, ): """Plot source estimates obtained with sparse solver. Active dipoles are represented in a "Glass" brain. If the same source is active in multiple source estimates it is displayed with a sphere otherwise with a cone in 3D. Parameters ---------- src : dict The source space. stcs : instance of SourceEstimate or list of instances of SourceEstimate The source estimates. colors : list List of colors. linewidth : int Line width in 2D plot. fontsize : int Font size. bgcolor : tuple of length 3 Background color in 3D. opacity : float in [0, 1] Opacity of brain mesh. brain_color : tuple of length 3 Brain color. show : bool Show figures if True. high_resolution : bool If True, plot on the original (non-downsampled) cortical mesh. fig_name : str PyVista figure name. fig_number : int Matplotlib figure number. labels : ndarray or list of ndarray Labels to show sources in clusters. Sources with the same label and the waveforms within each cluster are presented in the same color. labels should be a list of ndarrays when stcs is a list ie. one label for each stc. modes : list Should be a list, with each entry being ``'cone'`` or ``'sphere'`` to specify how the dipoles should be shown. The pivot for the glyphs in ``'cone'`` mode is always the tail whereas the pivot in ``'sphere'`` mode is the center. scale_factors : list List of floating point scale factors for the markers. %(verbose)s **kwargs : kwargs Keyword arguments to pass to renderer.mesh. Returns ------- surface : instance of Figure3D The 3D figure containing the triangular mesh surface. """ import matplotlib.pyplot as plt # Update the backend from .backends.renderer import _get_renderer linestyles = [ ("solid", "solid"), # noqa: E241 ("dashed", "dashed"), # noqa: E241 ("dotted", "dotted"), # noqa: E241 ("dashdot", "dashdot"), # noqa: E241 ("loosely dotted", (0, (1, 10))), # noqa: E241 ("dotted", (0, (1, 1))), # noqa: E241 ("densely dotted", (0, (1, 1))), # noqa: E241 ("loosely dashed", (0, (5, 10))), # noqa: E241 ("dashed", (0, (5, 5))), # noqa: E241 ("densely dashed", (0, (5, 1))), # noqa: E241 ("loosely dashdotted", (0, (3, 10, 1, 10))), # noqa: E241 ("dashdotted", (0, (3, 5, 1, 5))), # noqa: E241 ("densely dashdotted", (0, (3, 1, 1, 1))), # noqa: E241 ("dashdotdotted", (0, (3, 5, 1, 5, 1, 5))), # noqa: E241 ("loosely dashdotdotted", (0, (3, 10, 1, 10, 1, 10))), # noqa: E241 ("densely dashdotdotted", (0, (3, 1, 1, 1, 1, 1))), # noqa: E241 ] known_modes = ["cone", "sphere"] if not isinstance(modes, (list, tuple)) or not all( mode in known_modes for mode in modes ): raise ValueError('mode must be a list containing only "cone" or "sphere"') if not isinstance(stcs, list): stcs = [stcs] if labels is not None and not isinstance(labels, list): labels = [labels] if colors is None: colors = _get_color_list() linestyles = cycle(linestyles) linestyles = [next(linestyles)[1] for _ in range(len(stcs))] # Show 3D lh_points = src[0]["rr"] rh_points = src[1]["rr"] points = np.r_[lh_points, rh_points] lh_normals = src[0]["nn"] rh_normals = src[1]["nn"] normals = np.r_[lh_normals, rh_normals] if high_resolution: use_lh_faces = src[0]["tris"] use_rh_faces = src[1]["tris"] else: use_lh_faces = src[0]["use_tris"] use_rh_faces = src[1]["use_tris"] use_faces = np.r_[use_lh_faces, lh_points.shape[0] + use_rh_faces] points *= 170 vertnos = [np.r_[stc.lh_vertno, lh_points.shape[0] + stc.rh_vertno] for stc in stcs] unique_vertnos = np.unique(np.concatenate(vertnos).ravel()) renderer = _get_renderer(bgcolor=bgcolor, size=(600, 600), name=fig_name) renderer.mesh( x=points[:, 0], y=points[:, 1], z=points[:, 2], triangles=use_faces, color=brain_color, opacity=opacity, backface_culling=True, normals=normals, **kwargs, ) # Show time courses fig = plt.figure(fig_number, layout="constrained") fig.clf() ax = fig.add_subplot(111) colors = cycle(colors) logger.info(f"Total number of active sources: {unique_vertnos}") if labels is not None: colors = [ next(colors) for _ in range(np.unique(np.concatenate(labels).ravel()).size) ] for idx, v in enumerate(unique_vertnos): # get indices of stcs it belongs to ind = [k for k, vertno in enumerate(vertnos) if v in vertno] is_common = len(ind) > 1 if labels is None: c = next(colors) else: # if vertex is in different stcs than take label from first one c = colors[labels[ind[0]][vertnos[ind[0]] == v]] mode = modes[1] if is_common else modes[0] scale_factor = scale_factors[1] if is_common else scale_factors[0] if isinstance(scale_factor, (np.ndarray, list, tuple)) and len( unique_vertnos ) == len(scale_factor): scale_factor = scale_factor[idx] x, y, z = points[v] nx, ny, nz = normals[v] renderer.quiver3d( x=x, y=y, z=z, u=nx, v=ny, w=nz, color=_to_rgb(c), mode=mode, scale=scale_factor, ) for k in ind: vertno = vertnos[k] mask = vertno == v assert np.sum(mask) == 1 linestyle = linestyles[k] ax.plot( 1e3 * stcs[k].times, 1e9 * stcs[k].data[mask].ravel(), c=c, linewidth=linewidth, linestyle=linestyle, ) ax.set_xlabel("Time (ms)", fontsize=fontsize) ax.set_ylabel("Source amplitude (nAm)", fontsize=fontsize) if fig_name is not None: ax.set_title(fig_name) plt_show(show) renderer.show() renderer.set_camera(distance="auto", focalpoint="auto") return renderer.scene() @verbose def plot_dipole_locations( dipoles, trans=None, subject=None, subjects_dir=None, mode="orthoview", coord_frame="mri", idx="gof", show_all=True, ax=None, block=False, show=True, scale=None, color=None, *, highlight_color="r", fig=None, title=None, head_source="seghead", surf="pial", width=None, verbose=None, ): """Plot dipole locations. If mode is set to 'arrow' or 'sphere', only the location of the first time point of each dipole is shown else use the show_all parameter. Parameters ---------- dipoles : list of instances of Dipole | Dipole The dipoles to plot. trans : dict | None The mri to head trans. Can be None with mode set to '3d'. subject : str | None The FreeSurfer subject name (will be used to set the FreeSurfer environment variable ``SUBJECT``). Can be ``None`` with mode set to ``'3d'``. %(subjects_dir)s mode : str Can be: ``'arrow'`` or ``'sphere'`` Plot in 3D mode using PyVista with the given glyph type. ``'orthoview'`` Plot in matplotlib ``Axes3D`` using matplotlib with MRI slices shown on the sides of a cube, with the dipole(s) shown as arrows extending outward from a dot (i.e., the arrows pivot on the tail). ``'outlines'`` Plot in matplotlib ``Axes`` using a quiver of arrows for the dipoles in three axes (axial, coronal, and sagittal views), with the arrow pivoting in the middle of the arrow. .. versionchanged:: 1.1 Added support for ``'outlines'``. coord_frame : str Coordinate frame to use: 'head' or 'mri'. Can also be 'mri_rotated' when mode equals ``'outlines'``. Defaults to 'mri'. .. versionadded:: 0.14.0 .. versionchanged:: 1.1 Added support for ``'mri_rotated'``. idx : int | 'gof' | 'amplitude' Index of the initially plotted dipole. Can also be 'gof' to plot the dipole with highest goodness of fit value or 'amplitude' to plot the dipole with the highest amplitude. The dipoles can also be browsed through using up/down arrow keys or mouse scroll. Defaults to 'gof'. Only used if mode equals 'orthoview'. .. versionadded:: 0.14.0 show_all : bool Whether to always plot all the dipoles. If ``True`` (default), the active dipole is plotted as a red dot and its location determines the shown MRI slices. The non-active dipoles are plotted as small blue dots. If ``False``, only the active dipole is plotted. Only used if ``mode='orthoview'``. .. versionadded:: 0.14.0 ax : instance of matplotlib Axes3D | list of matplotlib Axes | None Axes to plot into. If None (default), axes will be created. If mode equals ``'orthoview'``, must be a single ``Axes3D``. If mode equals ``'outlines'``, must be a list of three ``Axes``. .. versionadded:: 0.14.0 block : bool Whether to halt program execution until the figure is closed. Defaults to False. Only used if mode equals 'orthoview'. .. versionadded:: 0.14.0 show : bool Show figure if True. Defaults to True. Only used if mode equals 'orthoview'. scale : float The scale (size in meters) of the dipoles if ``mode`` is not ``'orthoview'``. The default is 0.03 when mode is ``'outlines'`` and 0.005 otherwise. color : tuple The color of the dipoles. The default (None) will use ``'y'`` if mode is ``'orthoview'`` and ``show_all`` is True, else 'r'. Can also be a list of colors to use when mode is ``'outlines'``. .. versionchanged:: 0.19.0 Color is now passed in orthoview mode. highlight_color : color The highlight color. Only used in orthoview mode with ``show_all=True``. .. versionadded:: 0.19.0 fig : instance of Figure3D | None 3D figure in which to plot the alignment. If ``None``, creates a new 600x600 pixel figure with black background. Only used when mode is ``'arrow'`` or ``'sphere'``. .. versionadded:: 0.19.0 title : str | None The title of the figure if ``mode='orthoview'`` (ignored for all other modes). If ``None``, dipole number and its properties (amplitude, orientation etc.) will be shown. Defaults to ``None``. .. versionadded:: 0.21.0 %(head_source)s Only used when mode equals ``'outlines'``. .. versionadded:: 1.1 surf : str | None Brain surface to show outlines for, can be ``'white'``, ``'pial'``, or ``None``. Only used when mode is ``'outlines'``. .. versionadded:: 1.1 width : float | None Width of the matplotlib quiver arrow, see :meth:`matplotlib:matplotlib.axes.Axes.quiver`. If None (default), when mode is ``'outlines'`` 0.015 will be used, and when mode is ``'orthoview'`` the matplotlib default is used. %(verbose)s Returns ------- fig : instance of Figure3D or matplotlib.figure.Figure The PyVista figure or matplotlib Figure. Notes ----- .. versionadded:: 0.9.0 """ _validate_type(mode, str, "mode") _validate_type(coord_frame, str, "coord_frame") _check_option("mode", mode, ("orthoview", "outlines", "arrow", "sphere")) if mode in ("orthoview", "outlines"): subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True)) kwargs = dict( trans=trans, subject=subject, subjects_dir=subjects_dir, coord_frame=coord_frame, ax=ax, block=block, show=show, color=color, title=title, width=width, ) dipoles = _check_concat_dipoles(dipoles) if mode == "orthoview": fig = _plot_dipole_mri_orthoview( dipoles, idx=idx, show_all=show_all, highlight_color=highlight_color, **kwargs, ) elif mode == "outlines": fig = _plot_dipole_mri_outlines( dipoles, head_source=head_source, surf=surf, scale=scale, **kwargs ) else: assert mode in ("arrow", "sphere"), mode fig = _plot_dipole_3d( dipoles, trans=trans, coord_frame=coord_frame, color=color, fig=fig, scale=scale, mode=mode, ) return fig def snapshot_brain_montage(fig, montage, hide_sensors=True): """Take a snapshot of a PyVista Scene and project channels onto 2d coords. Note that this will take the raw values for 3d coordinates of each channel, without applying any transforms. If brain images are flipped up/dn upon using `~matplotlib.pyplot.imshow`, check your matplotlib backend as this behavior changes. Parameters ---------- fig : instance of Figure3D The figure on which you've plotted electrodes using :func:`mne.viz.plot_alignment`. montage : instance of DigMontage or Info | dict The digital montage for the electrodes plotted in the scene. If :class:`~mne.Info`, channel positions will be pulled from the ``loc`` field of ``chs``. dict should have ch:xyz mappings. hide_sensors : bool Whether to remove the spheres in the scene before taking a snapshot. The sensors will always be shown in the final figure. If you want an image of just the brain, use :class:`mne.viz.Brain` instead. Returns ------- xy : array, shape (n_channels, 2) The 2d location of each channel on the image of the current scene view. im : array, shape (m, n, 3) The screenshot of the current scene view. """ from ..channels import DigMontage # Update the backend from .backends.renderer import _get_renderer if fig is None: raise ValueError("The figure must have a scene") if isinstance(montage, DigMontage): chs = montage._get_ch_pos() ch_names, xyz = zip(*[(ich, ixyz) for ich, ixyz in chs.items()]) elif isinstance(montage, Info): xyz = [ich["loc"][:3] for ich in montage["chs"]] ch_names = [ich["ch_name"] for ich in montage["chs"]] elif isinstance(montage, dict): if not all(len(ii) == 3 for ii in montage.values()): raise ValueError("All electrode positions must be length 3") ch_names, xyz = zip(*[(ich, ixyz) for ich, ixyz in montage.items()]) else: raise TypeError( "montage must be an instance of `DigMontage`, `Info`, or `dict`" ) # initialize figure renderer = _get_renderer(fig, show=True) xyz = np.vstack(xyz) proj = renderer.project(xyz=xyz, ch_names=ch_names) if hide_sensors is True: proj.visible(False) im = renderer.screenshot() proj.visible(True) return proj.xy, im def _plot_dipole_mri_orthoview( dipole, trans, subject, subjects_dir=None, coord_frame="head", idx="gof", show_all=True, ax=None, block=False, show=True, color=None, highlight_color="r", title=None, width=None, ): """Plot dipoles on top of MRI slices in 3-D.""" import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D _import_nibabel("plotting MRI slices") _check_option("coord_frame", coord_frame, ["head", "mri"]) if idx == "gof": idx = np.argmax(dipole.gof) elif idx == "amplitude": idx = np.argmax(np.abs(dipole.amplitude)) else: idx = _ensure_int(idx, "idx", 'an int or one of ["gof", "amplitude"]') vox, ori, pos, data = _get_dipole_loc( dipole, trans, subject, subjects_dir, coord_frame ) dims = len(data) # Symmetric size assumed. dd = dims // 2 if ax is None: fig, ax = plt.subplots( 1, subplot_kw=dict(projection="3d"), layout="constrained" ) else: _validate_type(ax, Axes3D, "ax", "Axes3D", extra='when mode is "orthoview"') fig = ax.get_figure() gridx, gridy = np.meshgrid( np.linspace(-dd, dd, dims), np.linspace(-dd, dd, dims), indexing="ij" ) params = { "ax": ax, "data": data, "idx": idx, "dipole": dipole, "vox": vox, "gridx": gridx, "gridy": gridy, "ori": ori, "coord_frame": coord_frame, "show_all": show_all, "pos": pos, "color": color, "highlight_color": highlight_color, "title": title, "width": width, } _plot_dipole(**params) ax.view_init(elev=30, azim=-140) callback_func = partial(_dipole_changed, params=params) fig.canvas.mpl_connect("scroll_event", callback_func) fig.canvas.mpl_connect("key_press_event", callback_func) plt_show(show, block=block) return fig RAS_AFFINE = np.eye(4) RAS_AFFINE[:3, 3] = [-128] * 3 RAS_SHAPE = (256, 256, 256) def _get_dipole_loc(dipole, trans, subject, subjects_dir, coord_frame): """Get the dipole locations and orientations.""" import nibabel as nib from nibabel.processing import resample_from_to _check_option("coord_frame", coord_frame, ["head", "mri"]) subjects_dir = str(get_subjects_dir(subjects_dir=subjects_dir, raise_error=True)) t1_fname = op.join(subjects_dir, subject, "mri", "T1.mgz") t1 = nib.load(t1_fname) # Do everything in mm here to make life slightly easier vox_ras_t, _, mri_ras_t, _, _ = _read_mri_info(t1_fname, units="mm") head_mri_t = _get_trans(trans, fro="head", to="mri")[0].copy() head_mri_t["trans"][:3, 3] *= 1000 # m→mm del trans pos = dipole.pos * 1e3 # m→mm ori = dipole.ori # Figure out how to always resample to an identity, 256x256x256 RAS: # # 1. Resample to head or MRI surface RAS (the conditional), but also # 2. Resample to what will work for the standard 1mm** RAS_AFFINE (resamp) # # We could do this with two resample_from_to calls, but it's cleaner, # faster, and we get fewer boundary artifacts if we do it in one shot. # So first olve usamp s.t. ``upsamp @ vox_ras_t == RAS_AFFINE`` (2): upsamp = np.linalg.solve(vox_ras_t["trans"].T, RAS_AFFINE.T).T # Now figure out how we would resample from RAS to head or MRI coords: if coord_frame == "head": dest_ras_t = combine_transforms(head_mri_t, mri_ras_t, "head", "ras")["trans"] else: pos = apply_trans(head_mri_t, pos) ori = apply_trans(head_mri_t, dipole.ori, move=False) dest_ras_t = mri_ras_t["trans"] # The order here is wacky because we need `resample_from_to` to operate # in a reverse order affine = np.dot(np.dot(dest_ras_t, upsamp), vox_ras_t["trans"]) t1 = resample_from_to(t1, (RAS_SHAPE, affine), order=0) # Now we could do: # # t1 = SpatialImage(t1.dataobj, RAS_AFFINE) # # And t1 would be in our destination (mri or head) space. But we don't # need to construct the image -- let's just get our voxel coords and data: vox = apply_trans(np.linalg.inv(RAS_AFFINE), pos) t1_data = _get_img_fdata(t1) return vox, ori, pos, t1_data def _plot_dipole( ax, data, vox, idx, dipole, gridx, gridy, ori, coord_frame, show_all, pos, color, highlight_color, title, width, ): """Plot dipoles.""" import matplotlib.pyplot as plt xidx, yidx, zidx = np.round(vox[idx]).astype(int) xslice = data[xidx] yslice = data[:, yidx] zslice = data[:, :, zidx] ori = ori[idx] if color is None: color = "y" if show_all else "r" color = np.array(_to_rgb(color, alpha=True)) highlight_color = np.array( _to_rgb(highlight_color, name="highlight_color", alpha=True) ) if show_all: colors = np.repeat(color[np.newaxis], len(vox), axis=0) colors[idx] = highlight_color size = np.repeat(5, len(vox)) size[idx] = 20 visible = np.arange(len(vox)) else: colors = color size = 20 visible = idx offset = np.min(gridx) xyz = pos ax.scatter( xs=xyz[visible, 0], ys=xyz[visible, 1], zs=xyz[visible, 2], zorder=2, s=size, facecolor=colors, ) xx = np.linspace(offset, xyz[idx, 0], xidx) yy = np.linspace(offset, xyz[idx, 1], yidx) zz = np.linspace(offset, xyz[idx, 2], zidx) ax.plot( xx, np.repeat(xyz[idx, 1], len(xx)), zs=xyz[idx, 2], zorder=1, linestyle="-", color=highlight_color, ) ax.plot( np.repeat(xyz[idx, 0], len(yy)), yy, zs=xyz[idx, 2], zorder=1, linestyle="-", color=highlight_color, ) ax.plot( np.repeat(xyz[idx, 0], len(zz)), np.repeat(xyz[idx, 1], len(zz)), zs=zz, zorder=1, linestyle="-", color=highlight_color, ) q_kwargs = dict(length=50, color=highlight_color, pivot="tail") if width is not None: q_kwargs["width"] = width ax.quiver(xyz[idx, 0], xyz[idx, 1], xyz[idx, 2], ori[0], ori[1], ori[2], **q_kwargs) dims = np.array([(len(data) / -2.0), (len(data) / 2.0)]) ax.set(xlim=-dims, ylim=-dims, zlim=dims) # Plot slices ax.contourf( xslice, gridx, gridy, offset=offset, zdir="x", cmap="gray", zorder=0, alpha=0.5 ) ax.contourf( gridx, yslice, gridy, offset=offset, zdir="y", cmap="gray", zorder=0, alpha=0.5 ) ax.contourf( gridx, gridy, zslice, offset=offset, zdir="z", cmap="gray", zorder=0, alpha=0.5 ) # Plot orientations args = np.array([list(xyz[idx]) + list(ori)] * 3) for ii in range(3): args[ii, [ii, ii + 3]] = [offset + 0.5, 0] # half a mm inward (z ord) ax.quiver(*args.T, alpha=0.75, **q_kwargs) # These are the only two options coord_frame_name = "Head" if coord_frame == "head" else "MRI" if title is None: title = ( f"Dipole #{idx + 1} / {len(dipole.times)} @ {dipole.times[idx]:.3f}s, " f"GOF: {dipole.gof[idx]:.1f}%, {dipole.amplitude[idx] * 1e9:.1f}nAm\n" f"{coord_frame_name}: {_str_ras(xyz[idx])}" ) ax.get_figure().suptitle(title) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") plt.draw() def _dipole_changed(event, params): """Handle dipole plotter scroll/key event.""" if event.key is not None: if event.key == "up": params["idx"] += 1 elif event.key == "down": params["idx"] -= 1 else: # some other key return elif event.step > 0: # scroll event params["idx"] += 1 else: params["idx"] -= 1 params["idx"] = min(max(0, params["idx"]), len(params["dipole"].pos) - 1) params["ax"].clear() _plot_dipole(**params) @fill_doc def plot_brain_colorbar( ax, clim, colormap="auto", transparent=True, orientation="vertical", label="Activation", bgcolor="0.5", ): """Plot a colorbar that corresponds to a brain activation map. Parameters ---------- ax : instance of Axes The Axes to plot into. %(clim)s %(colormap)s %(transparent)s orientation : str Orientation of the colorbar, can be "vertical" or "horizontal". label : str The colorbar label. bgcolor : color The color behind the colorbar (for alpha blending). Returns ------- cbar : instance of ColorbarBase The colorbar. Notes ----- .. versionadded:: 0.19 """ from matplotlib.colorbar import ColorbarBase from matplotlib.colors import Normalize mapdata = _process_clim(clim, colormap, transparent) ticks = _get_map_ticks(mapdata) colormap, lims = _linearize_map(mapdata) del mapdata norm = Normalize(vmin=lims[0], vmax=lims[2]) cbar = ColorbarBase( ax, cmap=colormap, norm=norm, ticks=ticks, label=label, orientation=orientation ) # make the colorbar background match the brain color cbar.ax.set(facecolor=bgcolor) # remove the colorbar frame except for the line containing the ticks cbar.outline.set_visible(False) cbar.ax.set_frame_on(True) for key in ("left", "top", "bottom" if orientation == "vertical" else "right"): ax.spines[key].set_visible(False) return cbar @dataclass() class _3d_Options: antialias: bool | None depth_peeling: bool | None smooth_shading: bool | None multi_samples: int | None _3d_options = _3d_Options( antialias=None, depth_peeling=None, smooth_shading=None, multi_samples=None, ) _3d_default = _3d_Options( antialias="true", depth_peeling="true", smooth_shading="true", multi_samples="4", ) def set_3d_options( antialias=None, depth_peeling=None, smooth_shading=None, *, multi_samples=None ): """Set 3D rendering options. Parameters ---------- antialias : bool | None If bool, whether to enable or disable full-screen anti-aliasing. False is useful when renderers have problems (such as software MESA renderers). If None, use the default setting. This option can also be controlled using an environment variable, e.g., ``MNE_3D_OPTION_ANTIALIAS=false``. depth_peeling : bool | None If bool, whether to enable or disable accurate transparency. False is useful when renderers have problems (for instance while X forwarding on remote servers). If None, use the default setting. This option can also be controlled using an environment variable, e.g., ``MNE_3D_OPTION_DEPTH_PEELING=false``. smooth_shading : bool | None If bool, whether to enable or disable smooth color transitions between polygons. False is useful on certain configurations where this type of shading is not supported or for performance reasons. This option can also be controlled using an environment variable, e.g., ``MNE_3D_OPTION_SMOOTH_SHADING=false``. multi_samples : int Number of multi-samples. Should be 1 for MESA for volumetric rendering to work properly. .. versionadded:: 1.1 Notes ----- .. versionadded:: 0.21.0 """ if antialias is not None: _3d_options.antialias = bool(antialias) if depth_peeling is not None: _3d_options.depth_peeling = bool(depth_peeling) if smooth_shading is not None: _3d_options.smooth_shading = bool(smooth_shading) if multi_samples is not None: _3d_options.multi_samples = int(multi_samples) def _get_3d_option(key): _validate_type(key, "str", "key") opt = getattr(_3d_options, key) if opt is None: # parse get_config (and defaults) default_value = getattr(_3d_default, key) opt = get_config(f"MNE_3D_OPTION_{key.upper()}", default_value) if key == "multi_samples": opt = int(opt) else: opt = opt.lower() == "true" return opt