# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import copy as cp import numbers import numpy as np from scipy.fft import rfftfreq from .._fiff.pick import _picks_to_idx, pick_channels from ..parallel import parallel_func from ..time_frequency.multitaper import ( _compute_mt_params, _csd_from_mt, _mt_spectra, _psd_from_mt_adaptive, ) from ..utils import ( ProgressBar, _check_fname, _import_h5io_funcs, _validate_type, copy_function_doc_to_method_doc, logger, verbose, warn, ) from ..viz.misc import plot_csd from .tfr import EpochsTFR, _cwt_array, _get_nfft, morlet @verbose def pick_channels_csd( csd, include=(), exclude=(), ordered=True, copy=True, *, verbose=None ): """Pick channels from cross-spectral density matrix. Parameters ---------- csd : instance of CrossSpectralDensity The CSD object to select the channels from. include : list of str List of channels to include (if empty, include all available). exclude : list of str Channels to exclude (if empty, do not exclude any). %(ordered)s copy : bool If True (the default), return a copy of the CSD matrix with the modified channels. If False, channels are modified in-place. .. versionadded:: 0.20.0 %(verbose)s Returns ------- res : instance of CrossSpectralDensity Cross-spectral density restricted to selected channels. """ if copy: csd = csd.copy() sel = pick_channels(csd.ch_names, include=include, exclude=exclude, ordered=ordered) data = [] for vec in csd._data.T: mat = _vector_to_sym_mat(vec) mat = mat[sel, :][:, sel] data.append(_sym_mat_to_vector(mat)) ch_names = [csd.ch_names[i] for i in sel] csd._data = np.array(data).T csd.ch_names = ch_names return csd class CrossSpectralDensity: """Cross-spectral density. Given a list of time series, the CSD matrix denotes for each pair of time series, the cross-spectral density. This matrix is symmetric and internally stored as a vector. This object can store multiple CSD matrices: one for each frequency. Use ``.get_data(freq)`` to obtain an CSD matrix as an ndarray. Parameters ---------- data : ndarray, shape ((n_channels**2 + n_channels) // 2, n_frequencies) For each frequency, the cross-spectral density matrix in vector format. ch_names : list of str List of string names for each channel. frequencies : float | list of float | list of list of float Frequency or frequencies for which the CSD matrix was calculated. When averaging across frequencies (see the :func:`CrossSpectralDensity.mean` function), this will be a list of lists that contains for each frequency bin, the frequencies that were averaged. Frequencies should always be sorted. n_fft : int The number of FFT points or samples that have been used in the computation of this CSD. tmin : float | None Start of the time window for which CSD was calculated in seconds. Can be ``None`` (the default) to indicate no timing information is available. tmax : float | None End of the time window for which CSD was calculated in seconds. Can be ``None`` (the default) to indicate no timing information is available. projs : list of Projection | None List of projectors to apply to timeseries data when using this CSD object to compute a DICS beamformer. Defaults to ``None``, which means no projectors will be applied. See Also -------- csd_fourier csd_multitaper csd_morlet csd_array_fourier csd_array_multitaper csd_array_morlet """ def __init__( self, data, ch_names, frequencies, n_fft, tmin=None, tmax=None, projs=None ): data = np.asarray(data) if data.ndim == 1: data = data[:, np.newaxis] elif data.ndim > 2: raise ValueError("`data` should be either a 1D or 2D array.") self._data = data if len(ch_names) != _n_dims_from_triu(len(data)): raise ValueError( "Number of ch_names does not match the number of " "time series in the CSD matrix." ) self.ch_names = list(ch_names) self.tmin = tmin self.tmax = tmax if isinstance(frequencies, numbers.Number): frequencies = [frequencies] if len(frequencies) != data.shape[1]: raise ValueError( "Number of frequencies does not match the number of CSD matrices in " f"the data array ({len(frequencies)} != {data.shape[1]})." ) self.frequencies = frequencies self.n_fft = n_fft if projs is None: self.projs = [] else: self.projs = cp.deepcopy(projs) @property def n_channels(self): """Number of time series defined in this CSD object.""" return len(self.ch_names) @property def _is_sum(self): """Whether the CSD matrix represents a sum (or average) of freqs.""" # If the CSD is an average, the frequencies will be stored as a list # of lists (or like-like objects) instead of plain numbers. return not isinstance(self.frequencies[0], numbers.Number) def __len__(self): # noqa: D105 """Return number of frequencies. Returns ------- n_freqs : int The number of frequencies. """ return len(self.frequencies) def __repr__(self): # noqa: D105 # Make a pretty string representation of the frequencies freq_strs = [] for f in self.frequencies: if isinstance(f, numbers.Number): freq_strs.append(str(f)) elif len(f) == 1: freq_strs.append(str(f[0])) else: freq_strs.append(f"{np.min(f)}-{np.max(f)}") freq_str = ", ".join(freq_strs) + " Hz." if self.tmin is not None and self.tmax is not None: time_str = f"{self.tmin} to {self.tmax} s" else: time_str = "unknown" return ( "" ) def sum(self, fmin=None, fmax=None): """Calculate the sum CSD in the given frequency range(s). If the exact given frequencies are not available, the nearest frequencies will be chosen. Parameters ---------- fmin : float | list of float | None Lower bound of the frequency range in Hertz. Defaults to the lowest frequency available. When a list of frequencies is given, these are used as the lower bounds (inclusive) of frequency bins and the sum is taken for each bin. fmax : float | list of float | None Upper bound of the frequency range in Hertz. Defaults to the highest frequency available. When a list of frequencies is given, these are used as the upper bounds (inclusive) of frequency bins and the sum is taken for each bin. Returns ------- csd : instance of CrossSpectralDensity The CSD matrix, summed across the given frequency range(s). """ if self._is_sum: raise RuntimeError( "This CSD matrix already represents a mean or " "sum across frequencies." ) # Deal with the various ways in which fmin and fmax can be specified if fmin is None and fmax is None: fmin = [self.frequencies[0]] fmax = [self.frequencies[-1]] else: if isinstance(fmin, numbers.Number): fmin = [fmin] if isinstance(fmax, numbers.Number): fmax = [fmax] if fmin is None: fmin = [self.frequencies[0]] * len(fmax) if fmax is None: fmax = [self.frequencies[-1]] * len(fmin) if any(fmin_ > fmax_ for fmin_, fmax_ in zip(fmin, fmax)): raise ValueError( "Some lower bounds are higher than the corresponding upper bounds." ) # Find the index of the lower bound of each frequency bin fmin_inds = [self._get_frequency_index(f) for f in fmin] fmax_inds = [self._get_frequency_index(f) + 1 for f in fmax] if len(fmin_inds) != len(fmax_inds): raise ValueError("The length of fmin does not match the length of fmax.") # Sum across each frequency bin n_bins = len(fmin_inds) new_data = np.zeros((self._data.shape[0], n_bins), dtype=self._data.dtype) new_frequencies = [] for i, (min_ind, max_ind) in enumerate(zip(fmin_inds, fmax_inds)): new_data[:, i] = self._data[:, min_ind:max_ind].sum(axis=1) new_frequencies.append(self.frequencies[min_ind:max_ind]) csd_out = CrossSpectralDensity( data=new_data, ch_names=self.ch_names, tmin=self.tmin, tmax=self.tmax, frequencies=new_frequencies, n_fft=self.n_fft, projs=self.projs, ) return csd_out def mean(self, fmin=None, fmax=None): """Calculate the mean CSD in the given frequency range(s). Parameters ---------- fmin : float | list of float | None Lower bound of the frequency range in Hertz. Defaults to the lowest frequency available. When a list of frequencies is given, these are used as the lower bounds (inclusive) of frequency bins and the mean is taken for each bin. fmax : float | list of float | None Upper bound of the frequency range in Hertz. Defaults to the highest frequency available. When a list of frequencies is given, these are used as the upper bounds (inclusive) of frequency bins and the mean is taken for each bin. Returns ------- csd : instance of CrossSpectralDensity The CSD matrix, averaged across the given frequency range(s). """ csd = self.sum(fmin, fmax) for i, f in enumerate(csd.frequencies): csd._data[:, i] /= len(f) return csd def _get_frequency_index(self, freq): """Find the index of the given frequency in ``self.frequencies``. If the exact given frequency is not available, the nearest frequencies will be chosen, up to a difference of 1 Hertz. Parameters ---------- freq : float The frequency to find the index for Returns ------- index : int The index of the frequency nearest to the requested frequency. """ if self._is_sum: raise ValueError( "This CSD object represents a mean across " "frequencies. Cannot select a specific " "frequency." ) distance = np.abs(np.asarray(self.frequencies) - freq) index = np.argmin(distance) min_dist = distance[index] if min_dist > 1: raise IndexError(f"Frequency {freq:f} is not available.") return index def pick_frequency(self, freq=None, index=None): """Get a CrossSpectralDensity object with only the given frequency. Parameters ---------- freq : float | None Return the CSD matrix for a specific frequency. Only available when no averaging across frequencies has been done. index : int | None Return the CSD matrix for the frequency or frequency-bin with the given index. Returns ------- csd : instance of CrossSpectralDensity A CSD object containing a single CSD matrix that corresponds to the requested frequency or frequency-bin. See Also -------- get_data """ if freq is None and index is None: raise ValueError( 'Use either the "freq" or "index" parameter to ' "select the desired frequency." ) elif freq is not None: if index is not None: raise ValueError("Cannot specify both a frequency and index.") index = self._get_frequency_index(freq) return self[index] def get_data(self, frequency=None, index=None, as_cov=False): """Get the CSD matrix for a given frequency as NumPy array. If there is only one matrix defined in the CSD object, calling this method without any parameters will return it. If multiple matrices are defined, use either the ``frequency`` or ``index`` parameter to select one. Parameters ---------- frequency : float | None Return the CSD matrix for a specific frequency. Only available when no averaging across frequencies has been done. index : int | None Return the CSD matrix for the frequency or frequency-bin with the given index. as_cov : bool Whether to return the data as a numpy array (`False`, the default), or pack it in a :class:`mne.Covariance` object (`True`). .. versionadded:: 0.20 Returns ------- csd : ndarray, shape (n_channels, n_channels) | instance of Covariance The CSD matrix corresponding to the requested frequency. See Also -------- pick_frequency """ if frequency is None and index is None: if self._data.shape[1] > 1: raise ValueError( "Specify either the frequency or index of " "the frequency bin for which to obtain the " "CSD matrix." ) index = 0 elif frequency is not None: if index is not None: raise ValueError("Cannot specify both a frequency and index.") index = self._get_frequency_index(frequency) data = _vector_to_sym_mat(self._data[:, index]) if as_cov: # Pack the data into a Covariance object from ..cov import Covariance # to avoid circular import return Covariance( data, self.ch_names, bads=[], projs=self.projs, nfree=self.n_fft ) else: return data @copy_function_doc_to_method_doc(plot_csd) def plot( self, info=None, mode="csd", colorbar=True, cmap="viridis", n_cols=None, show=True, ): return plot_csd( self, info=info, mode=mode, colorbar=colorbar, cmap=cmap, n_cols=n_cols, show=show, ) def __setstate__(self, state): # noqa: D105 # Avoid circular import from ..proj import Projection self._data = state["data"] self.tmin = state["tmin"] self.tmax = state["tmax"] self.ch_names = state["ch_names"] self.frequencies = state["frequencies"] self.n_fft = state["n_fft"] self.projs = [Projection(**proj) for proj in state["projs"]] def __getstate__(self): # noqa: D105 return dict( data=self._data, tmin=self.tmin, tmax=self.tmax, ch_names=self.ch_names, frequencies=self.frequencies, n_fft=self.n_fft, projs=self.projs, ) def __getitem__(self, sel): # noqa: D105 """Subselect frequencies. Parameters ---------- sel : ndarray Array of frequency indices to subselect. Returns ------- csd : instance of CrossSpectralDensity A new CSD instance with the subset of frequencies. """ return CrossSpectralDensity( data=self._data[:, sel], ch_names=self.ch_names, tmin=self.tmin, tmax=self.tmax, frequencies=np.atleast_1d(self.frequencies)[sel].tolist(), n_fft=self.n_fft, projs=self.projs, ) @verbose def save(self, fname, *, overwrite=False, verbose=None): """Save the CSD to an HDF5 file. Parameters ---------- fname : path-like The name of the file to save the CSD to. The extension ``'.h5'`` will be appended if the given filename doesn't have it already. %(overwrite)s .. versionadded:: 1.0 %(verbose)s .. versionadded:: 1.0 See Also -------- read_csd : For reading CSD objects from a file. """ _, write_hdf5 = _import_h5io_funcs() fname = _check_fname(fname, overwrite=True) if fname.suffix != ".h5": fname = fname.with_name(f"{fname.name}.h5") fname = _check_fname(fname, overwrite=overwrite) write_hdf5(fname, self.__getstate__(), overwrite=True, title="conpy") def copy(self): """Return copy of the CrossSpectralDensity object. Returns ------- copy : instance of CrossSpectralDensity A copy of the object. """ return cp.deepcopy(self) def pick_channels(self, ch_names, ordered=False): """Pick channels from this cross-spectral density matrix. Parameters ---------- ch_names : list of str List of channels to keep. All other channels are dropped. ordered : bool If True (default False), ensure that the order of the channels matches the order of ``ch_names``. Returns ------- csd : instance of CrossSpectralDensity. The modified cross-spectral density object. Notes ----- Operates in-place. .. versionadded:: 0.20.0 """ return pick_channels_csd( self, include=ch_names, exclude=[], ordered=ordered, copy=False ) def _n_dims_from_triu(n): """Compute matrix dims from number of elements in the upper triangle. Parameters ---------- n : int Number of elements in the upper triangle of the symmetric matrix. Returns ------- dim : int The dimensions of the symmetric matrix. """ return int(np.ceil(np.sqrt(n * 2))) - 1 def _vector_to_sym_mat(vec): """Convert vector to a symmetric matrix. The upper triangle of the matrix (including the diagonal) will be filled with the values of the vector. Parameters ---------- vec : list or 1d-array The vector to convert to a symmetric matrix. Returns ------- mat : 2d-array The symmetric matrix. See Also -------- _sym_mat_to_vector """ dim = _n_dims_from_triu(len(vec)) mat = np.zeros((dim, dim) + vec.shape[1:], dtype=vec.dtype) # Fill the upper triangle of the matrix mat[np.triu_indices(dim)] = vec # Fill out the lower tri (make conjugate to ensure matrix is hermitian) mat = mat + np.rollaxis(mat, 1).conj() # We counted the diagonal twice if np.issubdtype(mat.dtype, np.integer): mat[np.diag_indices(dim)] //= 2 else: mat[np.diag_indices(dim)] /= 2 return mat def _sym_mat_to_vector(mat): """Convert a symmetric matrix to a vector. The upper triangle of the matrix (including the diagonal) will be used as the values of the vector. Parameters ---------- mat : 2d-array The symmetric matrix to convert to a vector Returns ------- vec : 1d-array A vector consisting of the values of the upper triangle of the matrix. See Also -------- _vector_to_sym_mat """ return mat[np.triu_indices_from(mat)] def read_csd(fname): """Read a CrossSpectralDensity object from an HDF5 file. Parameters ---------- fname : path-like The name of the file to read the CSD from. The extension ``'.h5'`` will be appended if the given filename doesn't have it already. Returns ------- csd : instance of CrossSpectralDensity The CSD that was stored in the file. See Also -------- CrossSpectralDensity.save : For saving CSD objects. """ read_hdf5, _ = _import_h5io_funcs() if not fname.endswith(".h5"): fname += ".h5" csd_dict = read_hdf5(fname, title="conpy") if csd_dict["projs"] is not None: # Avoid circular import from ..proj import Projection csd_dict["projs"] = [Projection(**proj) for proj in csd_dict["projs"]] return CrossSpectralDensity(**csd_dict) @verbose def csd_fourier( epochs, fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None, n_fft=None, projs=None, n_jobs=None, *, verbose=None, ): """Estimate cross-spectral density from an array using short-time fourier. Parameters ---------- epochs : instance of Epochs The epochs to compute the CSD for. fmin : float Minimum frequency of interest, in Hertz. fmax : float | np.inf Maximum frequency of interest, in Hertz. tmin : float | None Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. %(picks_good_data_noref)s n_fft : int | None Length of the FFT. If ``None``, the exact number of samples between ``tmin`` and ``tmax`` will be used. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means the projectors defined in the Epochs object will be copied. %(n_jobs)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. See Also -------- csd_array_fourier csd_array_morlet csd_array_multitaper csd_morlet csd_multitaper """ epochs, projs = _prepare_csd(epochs, tmin, tmax, picks, projs) return csd_array_fourier( epochs.get_data(copy=False), sfreq=epochs.info["sfreq"], t0=epochs.tmin, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, ch_names=epochs.ch_names, n_fft=n_fft, projs=projs, n_jobs=n_jobs, verbose=verbose, ) @verbose def csd_array_fourier( X, sfreq, t0=0, fmin=0, fmax=np.inf, tmin=None, tmax=None, ch_names=None, n_fft=None, projs=None, n_jobs=None, *, verbose=None, ): """Estimate cross-spectral density from an array using short-time fourier. Parameters ---------- X : array-like, shape (n_epochs, n_channels, n_times) The time series data consisting of n_epochs separate observations of signals with n_channels time-series of length n_times. sfreq : float Sampling frequency of observations. t0 : float Time of the first sample relative to the onset of the epoch, in seconds. Defaults to 0. fmin : float Minimum frequency of interest, in Hertz. fmax : float | np.inf Maximum frequency of interest, in Hertz. tmin : float | None Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. ch_names : list of str | None A name for each time series. If ``None`` (the default), the series will be named 'SERIES###'. n_fft : int | None Length of the FFT. If ``None``, the exact number of samples between ``tmin`` and ``tmax`` will be used. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means no projectors are stored. %(n_jobs)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. See Also -------- csd_array_morlet csd_array_multitaper csd_fourier csd_morlet csd_multitaper """ X, times, tmin, tmax, fmin, fmax = _prepare_csd_array( X, sfreq, t0, tmin, tmax, fmin, fmax ) # Slice X to the requested time window tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10) tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10) X = X[:, :, tstart:tstop] times = times[tstart:tstop] n_times = len(times) n_fft = n_times if n_fft is None else n_fft # Preparing frequencies of interest orig_frequencies = rfftfreq(n_fft, 1.0 / sfreq) freq_mask = ( (orig_frequencies > 0) & (orig_frequencies >= fmin) & (orig_frequencies <= fmax) ) frequencies = orig_frequencies[freq_mask] if len(frequencies) == 0: raise ValueError( "No discrete fourier transform results within " "the given frequency window. Please widen either " "the frequency window or the time window" ) # Compute the CSD return _execute_csd_function( X, times, frequencies, _csd_fourier, params=[sfreq, n_times, freq_mask, n_fft], n_fft=n_fft, ch_names=ch_names, projs=projs, n_jobs=n_jobs, verbose=verbose, ) @verbose def csd_multitaper( epochs, fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None, n_fft=None, bandwidth=None, adaptive=False, low_bias=True, projs=None, n_jobs=None, *, verbose=None, ): """Estimate cross-spectral density from epochs using a multitaper method. Parameters ---------- epochs : instance of Epochs The epochs to compute the CSD for. fmin : float | None Minimum frequency of interest, in Hertz. fmax : float | np.inf Maximum frequency of interest, in Hertz. tmin : float Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. %(picks_good_data_noref)s n_fft : int | None Length of the FFT. If ``None``, the exact number of samples between ``tmin`` and ``tmax`` will be used. bandwidth : float | None The bandwidth of the multitaper windowing function in Hz. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD. low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means the projectors defined in the Epochs object will by copied. %(n_jobs)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. See Also -------- csd_array_fourier csd_array_morlet csd_array_multitaper csd_fourier csd_morlet """ epochs, projs = _prepare_csd(epochs, tmin, tmax, picks, projs) return csd_array_multitaper( epochs.get_data(copy=False), sfreq=epochs.info["sfreq"], t0=epochs.tmin, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, ch_names=epochs.ch_names, n_fft=n_fft, bandwidth=bandwidth, adaptive=adaptive, low_bias=low_bias, projs=projs, n_jobs=n_jobs, verbose=verbose, ) @verbose def csd_array_multitaper( X, sfreq, t0=0, fmin=0, fmax=np.inf, tmin=None, tmax=None, ch_names=None, n_fft=None, bandwidth=None, adaptive=False, low_bias=True, projs=None, n_jobs=None, max_iter=250, *, verbose=None, ): """Estimate cross-spectral density from an array using a multitaper method. Parameters ---------- X : array-like, shape (n_epochs, n_channels, n_times) The time series data consisting of n_epochs separate observations of signals with n_channels time-series of length n_times. sfreq : float Sampling frequency of observations. t0 : float Time of the first sample relative to the onset of the epoch, in seconds. Defaults to 0. fmin : float Minimum frequency of interest, in Hertz. fmax : float | np.inf Maximum frequency of interest, in Hertz. tmin : float | None Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. ch_names : list of str | None A name for each time series. If ``None`` (the default), the series will be named 'SERIES###'. n_fft : int | None Length of the FFT. If ``None``, the exact number of samples between ``tmin`` and ``tmax`` will be used. bandwidth : float | None The bandwidth of the multitaper windowing function in Hz. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD. low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means no projectors are stored. %(n_jobs)s %(max_iter_multitaper)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. See Also -------- csd_array_fourier csd_array_morlet csd_fourier csd_morlet csd_multitaper """ X, times, tmin, tmax, fmin, fmax = _prepare_csd_array( X, sfreq, t0, tmin, tmax, fmin, fmax ) # Slice X to the requested time window tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10) tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10) X = X[:, :, tstart:tstop] times = times[tstart:tstop] n_times = len(times) n_fft = n_times if n_fft is None else n_fft window_fun, eigvals, adaptive = _compute_mt_params( n_times, sfreq, bandwidth, low_bias, adaptive ) # Preparing frequencies of interest orig_frequencies = rfftfreq(n_fft, 1.0 / sfreq) freq_mask = ( (orig_frequencies > 0) & (orig_frequencies >= fmin) & (orig_frequencies <= fmax) ) frequencies = orig_frequencies[freq_mask] if len(frequencies) == 0: raise ValueError( "No discrete fourier transform results within " "the given frequency window. Please widen either " "the frequency window or the time window" ) # Compute the CSD return _execute_csd_function( X, times, frequencies, _csd_multitaper, params=[ sfreq, n_times, window_fun, eigvals, freq_mask, n_fft, adaptive, max_iter, ], n_fft=n_fft, ch_names=ch_names, projs=projs, n_jobs=n_jobs, verbose=verbose, ) @verbose def csd_morlet( epochs, frequencies, tmin=None, tmax=None, picks=None, n_cycles=7, use_fft=True, decim=1, projs=None, n_jobs=None, *, verbose=None, ): """Estimate cross-spectral density from epochs using Morlet wavelets. Parameters ---------- epochs : instance of Epochs The epochs to compute the CSD for. frequencies : list of float The frequencies of interest, in Hertz. tmin : float | None Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. %(picks_good_data_noref)s n_cycles : float | list of float | None Number of cycles to use when constructing Morlet wavelets. Fixed number or one per frequency. Defaults to 7. use_fft : bool Whether to use FFT-based convolution to compute the wavelet transform. Defaults to True. decim : int | slice To reduce memory usage, decimation factor during time-frequency decomposition. Defaults to 1 (no decimation). If `int`, uses tfr[..., ::decim]. If `slice`, uses tfr[..., decim]. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means the projectors defined in the Epochs object will be copied. %(n_jobs)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. See Also -------- csd_array_fourier csd_array_morlet csd_array_multitaper csd_fourier csd_multitaper """ epochs, projs = _prepare_csd(epochs, tmin, tmax, picks, projs) return csd_array_morlet( epochs.get_data(copy=False), sfreq=epochs.info["sfreq"], frequencies=frequencies, t0=epochs.tmin, tmin=tmin, tmax=tmax, ch_names=epochs.ch_names, n_cycles=n_cycles, use_fft=use_fft, decim=decim, projs=projs, n_jobs=n_jobs, verbose=verbose, ) @verbose def csd_array_morlet( X, sfreq, frequencies, t0=0, tmin=None, tmax=None, ch_names=None, n_cycles=7, use_fft=True, decim=1, projs=None, n_jobs=None, *, verbose=None, ): """Estimate cross-spectral density from an array using Morlet wavelets. Parameters ---------- X : array-like, shape (n_epochs, n_channels, n_times) The time series data consisting of n_epochs separate observations of signals with n_channels time-series of length n_times. sfreq : float Sampling frequency of observations. frequencies : list of float The frequencies of interest, in Hertz. t0 : float Time of the first sample relative to the onset of the epoch, in seconds. Defaults to 0. tmin : float | None Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. ch_names : list of str | None A name for each time series. If ``None`` (the default), the series will be named 'SERIES###'. n_cycles : float | list of float | None Number of cycles to use when constructing Morlet wavelets. Fixed number or one per frequency. Defaults to 7. use_fft : bool Whether to use FFT-based convolution to compute the wavelet transform. Defaults to True. decim : int | slice To reduce memory usage, decimation factor during time-frequency decomposition. Defaults to 1 (no decimation). If `int`, uses tfr[..., ::decim]. If `slice`, uses tfr[..., decim]. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means the projectors defined in the Epochs object will be copied. %(n_jobs)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. See Also -------- csd_array_fourier csd_array_multitaper csd_fourier csd_morlet csd_multitaper """ X, times, tmin, tmax, _, _ = _prepare_csd_array(X, sfreq, t0, tmin, tmax) n_times = len(times) # Construct the appropriate Morlet wavelets wavelets = morlet(sfreq, frequencies, n_cycles) # Slice X to the requested time window + half the length of the longest # wavelet. wave_length = len(wavelets[np.argmin(frequencies)]) // 2 tstart = tstop = None if tmin is not None: tstart = np.searchsorted(times, tmin) tstart = max(0, tstart - wave_length) if tmax is not None: tstop = np.searchsorted(times, tmax) tstop = min(n_times, tstop + wave_length) X = X[:, :, tstart:tstop] times = times[tstart:tstop] # After CSD computation, we slice again to the requested time window. csd_tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10) csd_tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10) csd_tslice = slice(csd_tstart, csd_tstop) times = times[csd_tslice] # Compute the CSD nfft = _get_nfft(wavelets, X, use_fft) return _execute_csd_function( X, times, frequencies, _csd_morlet, params=[sfreq, wavelets, nfft, csd_tslice, use_fft, decim], n_fft=1, ch_names=ch_names, projs=projs, n_jobs=n_jobs, verbose=verbose, ) def _prepare_csd(epochs, tmin=None, tmax=None, picks=None, projs=None): """Do some checking and preprocessing of common csd_* parameters. See the csd_* functions for documentation of the parameters. """ tstep = epochs.times[1] - epochs.times[0] if tmin is not None and tmin < epochs.times[0] - tstep: raise ValueError("tmin should be larger than the smallest data time point") if tmax is not None and tmax > epochs.times[-1] + tstep: raise ValueError("tmax should be smaller than the largest data time point") if tmax is not None and tmin is not None: if tmax < tmin: raise ValueError("tmax must be larger than tmin") if epochs.baseline is None and epochs.info["highpass"] < 0.1: warn( "Epochs are not baseline corrected or enough highpass filtered. " "Cross-spectral density may be inaccurate." ) picks = _picks_to_idx(epochs.info, picks, "data", with_ref_meg=False) epochs = epochs.copy().pick(picks) if projs is None: projs = epochs.info["projs"] return epochs, projs def _prepare_csd_array(X, sfreq, t0, tmin, tmax, fmin=None, fmax=None): """Do some checking and preprocessing of common csd_r=array_* parameters. See the csd_array_* functions for documentation of the parameters. """ X = np.asarray(X, dtype=float) if X.ndim != 3: raise ValueError("X must be n_epochs x n_channels x n_times.") n_times = X.shape[2] tstep = 1.0 / sfreq times = np.arange(n_times) * tstep + t0 # Check tmin and tmax if tmax is None: tmax = times.max() if tmin is None: tmin = times.min() if tmax <= tmin: raise ValueError("tmax must be larger than tmin") if tmin < times[0] - tstep: raise ValueError("tmin should be larger than the smallest data time point") if tmax > times[-1] + tstep: raise ValueError("tmax should be smaller than the largest data time point") # Check fmin and fmax if fmax is not None and fmin is not None and fmax <= fmin: raise ValueError("fmax must be larger than fmin") return X, times, tmin, tmax, fmin, fmax @verbose def _execute_csd_function( X, times, frequencies, csd_function, params, n_fft, ch_names=None, projs=None, n_jobs=None, *, verbose=None, ): """Estimate cross-spectral density with a given function. This function will apply the given CSD function in parallel across epochs. Parameters ---------- X : array-like, shape (n_epochs, n_channels, n_times) The time series data consisting of n_epochs separate observations of signals with n_channels time-series of length n_times. times : float Timestamps for each sample. frequencies : list of float The frequencies of interest for which the CSD is going to be computed. csd_function : function Function that performs the actual CSD computation params : list List of parameters to pass the CSD function. n_fft : int Number of FFT points. This is stored in the CSD object. ch_names : list of str | None A name for each time series. If ``None`` (the default), the series will be named 'SERIES###'. projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means the projectors defined in the Epochs object will be copied. %(n_jobs)s %(verbose)s Returns ------- csd : instance of CrossSpectralDensity The computed cross-spectral density. """ n_epochs, n_channels, _ = X.shape logger.info("Computing cross-spectral density from epochs...") n_freqs = len(frequencies) csds_mean = np.zeros( (n_channels * (n_channels + 1) // 2, n_freqs), dtype=np.complex128 ) # Prepare the function that does the actual CSD computation for parallel # execution. parallel, my_csd, n_jobs = parallel_func(csd_function, n_jobs, verbose=verbose) # Compute CSD for each trial n_blocks = int(np.ceil(n_epochs / float(n_jobs))) for i in ProgressBar(range(n_blocks), mesg="CSD epoch blocks"): epoch_block = X[i * n_jobs : (i + 1) * n_jobs] csds = parallel(my_csd(this_epoch, *params) for this_epoch in epoch_block) # Add CSD matrices in-place csds_mean += np.sum(csds, axis=0) csds_mean /= n_epochs logger.info("[done]") if ch_names is None: ch_names = [f"SERIES{i+1:03}" for i in range(n_channels)] return CrossSpectralDensity( csds_mean, ch_names=ch_names, tmin=times[0], tmax=times[-1], frequencies=frequencies, n_fft=n_fft, projs=projs, ) def _csd_fourier(X, sfreq, n_times, freq_mask, n_fft): """Compute cross spectral density (CSD) using short-time fourier transform. Computes the CSD for a single epoch of data. Parameters ---------- X : ndarray, shape (n_channels, n_times) The time series data consisting of n_channels time-series of length n_times. sfreq : float The sampling frequency of the data in Hertz. n_times : int Number of time samples freq_mask : ndarray Which frequencies to use. n_fft : int Length of the FFT. """ x_mt, _ = _mt_spectra(X, np.hanning(n_times), sfreq, n_fft) # Hack so we can sum over axis=-2 weights = np.array([1.0])[:, np.newaxis, np.newaxis, np.newaxis] x_mt = x_mt[:, :, freq_mask] # Calculating CSD # Tiling x_mt so that we can easily use _csd_from_mt() x_mt = x_mt[:, np.newaxis, :, :] x_mt = np.tile(x_mt, [1, x_mt.shape[0], 1, 1]) y_mt = np.transpose(x_mt, axes=[1, 0, 2, 3]) weights_y = np.transpose(weights, axes=[1, 0, 2, 3]) csds = _csd_from_mt(x_mt, y_mt, weights, weights_y) # FIXME: don't compute full matrix in the first place csds = np.array( [_sym_mat_to_vector(csds[:, :, i]) for i in range(csds.shape[-1])] ).T # Scaling by number of samples and compensating for loss of power # due to windowing (see section 11.5.2 in Bendat & Piersol). csds /= n_times csds *= 8 / 3.0 # Scaling by sampling frequency for compatibility with Matlab csds /= sfreq return csds def _csd_multitaper( X, sfreq, n_times, window_fun, eigvals, freq_mask, n_fft, adaptive, max_iter=250 ): """Compute cross spectral density (CSD) using multitaper module.""" x_mt, _ = _mt_spectra(X, window_fun, sfreq, n_fft) if adaptive: # Compute adaptive weights _, weights = _psd_from_mt_adaptive( x_mt, eigvals, freq_mask, max_iter, return_weights=True ) # Tiling weights so that we can easily use _csd_from_mt() weights = weights[:, np.newaxis, :, :] weights = np.tile(weights, [1, x_mt.shape[0], 1, 1]) else: # Do not use adaptive weights weights = np.sqrt(eigvals)[np.newaxis, np.newaxis, :, np.newaxis] x_mt = x_mt[:, :, freq_mask] # Calculating CSD # Tiling x_mt so that we can easily use _csd_from_mt() x_mt = x_mt[:, np.newaxis, :, :] x_mt = np.tile(x_mt, [1, x_mt.shape[0], 1, 1]) y_mt = np.transpose(x_mt, axes=[1, 0, 2, 3]) weights_y = np.transpose(weights, axes=[1, 0, 2, 3]) csds = _csd_from_mt(x_mt, y_mt, weights, weights_y) # FIXME: don't compute full matrix in the first place csds = np.array( [_sym_mat_to_vector(csds[:, :, i]) for i in range(csds.shape[-1])] ).T # Scaling by sampling frequency for compatibility with Matlab csds /= sfreq return csds def _csd_morlet(data, sfreq, wavelets, nfft, tslice=None, use_fft=True, decim=1): """Compute cross spectral density (CSD) using the given Morlet wavelets. Computes the CSD for a single epoch of data. Parameters ---------- data : ndarray, shape (n_channels, n_times) The time series data consisting of n_channels time-series of length n_times. sfreq : float The sampling frequency of the data in Hertz. wavelets : list of ndarray The Morlet wavelets for which to compute the CSD's. These have been created by the `mne.time_frequency.tfr.morlet` function. nfft : int The number of FFT points. tslice : slice | None The desired time samples to compute the CSD over. If None, defaults to including all time samples. use_fft : bool Whether to use FFT-based convolution to compute the wavelet transform. Defaults to True. decim : int | slice To reduce memory usage, decimation factor during time-frequency decomposition. Defaults to 1 (no decimation). Only used in 'cwt_morlet' mode. If `int`, uses tfr[..., ::decim]. If `slice`, uses tfr[..., decim]. Returns ------- csd : ndarray, shape ((n_channels**2 + n_channels) / 2 , n_wavelets) For each wavelet, the upper triangle of the cross spectral density matrix. See Also -------- _vector_to_sym_mat : For converting the CSD to a full matrix. """ # Compute PSD psds = _cwt_array(data, wavelets, nfft, mode="same", use_fft=use_fft, decim=decim) if tslice is not None: tstart = None if tslice.start is None else tslice.start // decim tstop = None if tslice.stop is None else tslice.stop // decim tstep = None if tslice.step is None else tslice.step // decim tslice = slice(tstart, tstop, tstep) psds = psds[:, :, tslice] psds_conj = np.conj(psds) # Compute the spectral density between all pairs of series n_channels = data.shape[0] csds = np.vstack( [np.mean(psds[[i]] * psds_conj[i:], axis=2) for i in range(n_channels)] ) # Scaling by sampling frequency for compatibility with Matlab csds /= sfreq return csds @verbose def csd_tfr(epochs_tfr, tmin=None, tmax=None, picks=None, projs=None, verbose=None): """Compute covariance matrices across frequencies for TFR epochs. Parameters ---------- epochs_tfr : EpochsTFR The time-frequency resolved epochs over which to compute the covariance. tmin : float | None Minimum time instant to consider, in seconds. If ``None`` start at first sample. tmax : float | None Maximum time instant to consider, in seconds. If ``None`` end at last sample. %(picks_good_data_noref)s projs : list of Projection | None List of projectors to store in the CSD object. Defaults to ``None``, which means the projectors defined in the EpochsTFR object will be copied. %(verbose)s Returns ------- res : instance of CrossSpectralDensity Cross-spectral density restricted to selected channels. """ _validate_type(epochs_tfr, EpochsTFR) epochs_tfr, projs = _prepare_csd(epochs_tfr, tmin, tmax, picks, projs) X = epochs_tfr.data times = epochs_tfr.times n_channels, n_freqs = len(epochs_tfr.ch_names), epochs_tfr.freqs.size data = np.zeros((n_channels * (n_channels + 1) // 2, n_freqs), dtype=np.complex128) # Slice X to the requested time window tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10) tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10) X = X[:, :, :, tstart:tstop] for idx, epochs_data in enumerate(X): # This is equivalent to: # csds = np.vstack([np.mean(epochs_data[[i]] * epochs_data_conj[i:], # axis=2) for i in range(n_channels)]) # There is a redundancy in the calculation here because we don't really # need the lower triangle of the matrix, but it should still be faster # than a loop (hopefully!). csds = np.einsum("xft,yft->xyf", epochs_data, np.conj(epochs_data)) csds = csds[np.triu_indices(n_channels) + (slice(None),)] csds /= epochs_data.shape[-1] # Scaling by sampling frequency for compatibility with Matlab csds /= epochs_tfr.info["sfreq"] data += csds # scale to compute mean data /= len(epochs_tfr) # TO DO: EpochTFR should store n_fft to be consistent return CrossSpectralDensity( data=data, ch_names=epochs_tfr.ch_names, tmin=tmin, tmax=tmax, frequencies=epochs_tfr.freqs, n_fft=None, projs=projs, )