#!/usr/bin/env python # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import numpy as np from scipy import ndimage, sparse from scipy.sparse.csgraph import connected_components from scipy.stats import f as fstat from scipy.stats import t as tstat from ..fixes import has_numba, jit from ..parallel import parallel_func from ..source_estimate import MixedSourceEstimate, SourceEstimate, VolSourceEstimate from ..source_space import SourceSpaces from ..utils import ( ProgressBar, _check_option, _pl, _validate_type, check_random_state, logger, split_list, verbose, warn, ) from .parametric import f_oneway, ttest_1samp_no_p def _get_buddies_fallback(r, s, neighbors, indices=None): if indices is None: buddies = np.where(r)[0] else: buddies = indices[r[indices]] buddies = buddies[np.isin(s[buddies], neighbors, assume_unique=True)] r[buddies] = False return buddies.tolist() def _get_selves_fallback(r, s, ind, inds, t, t_border, max_step): start = t_border[max(t[ind] - max_step, 0)] stop = t_border[min(t[ind] + max_step + 1, len(t_border) - 1)] indices = inds[start:stop] selves = indices[r[indices]] selves = selves[s[ind] == s[selves]] r[selves] = False return selves.tolist() def _where_first_fallback(x): # this is equivalent to np.where(r)[0] for these purposes, but it's # a little bit faster. Unfortunately there's no way to tell numpy # just to find the first instance (to save checking every one): next_ind = int(np.argmax(x)) if next_ind == 0: next_ind = -1 return next_ind if has_numba: # pragma: no cover @jit() def _get_buddies(r, s, neighbors, indices=None): buddies = list() # At some point we might be able to use the sorted-ness of s or # neighbors to further speed this up if indices is None: n_check = len(r) else: n_check = len(indices) for ii in range(n_check): if indices is None: this_idx = ii else: this_idx = indices[ii] if r[this_idx]: this_s = s[this_idx] for ni in range(len(neighbors)): if this_s == neighbors[ni]: buddies.append(this_idx) r[this_idx] = False break return buddies @jit() def _get_selves(r, s, ind, inds, t, t_border, max_step): selves = list() start = t_border[max(t[ind] - max_step, 0)] stop = t_border[min(t[ind] + max_step + 1, len(t_border) - 1)] for ii in range(start, stop): this_idx = inds[ii] if r[this_idx] and s[ind] == s[this_idx]: selves.append(this_idx) r[this_idx] = False return selves @jit() def _where_first(x): for ii in range(len(x)): if x[ii]: return ii return -1 else: # pragma: no cover # fastest ways we've found with NumPy _get_buddies = _get_buddies_fallback _get_selves = _get_selves_fallback _where_first = _where_first_fallback @jit() def _masked_sum(x, c): return np.sum(x[c]) @jit() def _masked_sum_power(x, c, t_power): return np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power) @jit() def _sum_cluster_data(data, tstep): return np.sign(data) * np.logical_not(data == 0) * tstep def _get_clusters_spatial(s, neighbors): """Form spatial clusters using neighbor lists. This is equivalent to _get_components with n_times = 1, with a properly reconfigured adjacency matrix (formed as "neighbors" list) """ # s is a vector of spatial indices that are significant, like: # s = np.where(x_in)[0] # for x_in representing a single time-instant r = np.ones(s.shape, bool) clusters = list() next_ind = 0 if s.size > 0 else -1 while next_ind >= 0: # put first point in a cluster, adjust remaining t_inds = [next_ind] r[next_ind] = 0 icount = 1 # count of nodes in the current cluster while icount <= len(t_inds): ind = t_inds[icount - 1] # look across other vertices buddies = _get_buddies(r, s, neighbors[s[ind]]) t_inds.extend(buddies) icount += 1 next_ind = _where_first(r) clusters.append(s[t_inds]) return clusters def _reassign(check, clusters, base, num): """Reassign cluster numbers.""" # reconfigure check matrix check[check == num] = base # concatenate new values into clusters array clusters[base - 1] = np.concatenate((clusters[base - 1], clusters[num - 1])) clusters[num - 1] = np.array([], dtype=int) def _get_clusters_st_1step(keepers, neighbors): """Directly calculate clusters. This uses knowledge that time points are only adjacent to immediate neighbors for data organized as time x space. This algorithm time increases linearly with the number of time points, compared to with the square for the standard (graph) algorithm. This algorithm creates clusters for each time point using a method more efficient than the standard graph method (but otherwise equivalent), then combines these clusters across time points in a reasonable way. """ n_src = len(neighbors) n_times = len(keepers) # start cluster numbering at 1 for diffing convenience enum_offset = 1 check = np.zeros((n_times, n_src), dtype=int) clusters = list() for ii, k in enumerate(keepers): c = _get_clusters_spatial(k, neighbors) for ci, cl in enumerate(c): check[ii, cl] = ci + enum_offset enum_offset += len(c) # give them the correct offsets c = [cl + ii * n_src for cl in c] clusters += c # now that each cluster has been assigned a unique number, combine them # by going through each time point for check1, check2, k in zip(check[:-1], check[1:], keepers[:-1]): # go through each one that needs reassignment inds = k[check2[k] - check1[k] > 0] check1_d = check1[inds] n = check2[inds] nexts = np.unique(n) for num in nexts: prevs = check1_d[n == num] base = np.min(prevs) for pr in np.unique(prevs[prevs != base]): _reassign(check1, clusters, base, pr) # reassign values _reassign(check2, clusters, base, num) # clean up clusters clusters = [cl for cl in clusters if len(cl) > 0] return clusters def _get_clusters_st_multistep(keepers, neighbors, max_step=1): """Directly calculate clusters. This uses knowledge that time points are only adjacent to immediate neighbors for data organized as time x space. This algorithm time increases linearly with the number of time points, compared to with the square for the standard (graph) algorithm. """ n_src = len(neighbors) n_times = len(keepers) t_border = list() t_border.append(0) for ki, k in enumerate(keepers): keepers[ki] = k + ki * n_src t_border.append(t_border[ki] + len(k)) t_border = np.array(t_border) keepers = np.concatenate(keepers) v = keepers t, s = divmod(v, n_src) r = np.ones(t.shape, dtype=bool) clusters = list() inds = np.arange(t_border[0], t_border[n_times]) next_ind = 0 if s.size > 0 else -1 while next_ind >= 0: # put first point in a cluster, adjust remaining t_inds = [next_ind] r[next_ind] = False icount = 1 # count of nodes in the current cluster # look for significant values at the next time point, # same sensor, not placed yet, and add those while icount <= len(t_inds): ind = t_inds[icount - 1] selves = _get_selves(r, s, ind, inds, t, t_border, max_step) # look at current time point across other vertices these_inds = inds[t_border[t[ind]] : t_border[t[ind] + 1]] buddies = _get_buddies(r, s, neighbors[s[ind]], these_inds) t_inds += buddies + selves icount += 1 next_ind = _where_first(r) clusters.append(v[t_inds]) return clusters def _get_clusters_st(x_in, neighbors, max_step=1): """Choose the most efficient version.""" n_src = len(neighbors) n_times = x_in.size // n_src cl_goods = np.where(x_in)[0] if len(cl_goods) > 0: keepers = [np.array([], dtype=int)] * n_times row, col = np.unravel_index(cl_goods, (n_times, n_src)) lims = [0] if isinstance(row, int): row = [row] col = [col] else: order = np.argsort(row) row = row[order] col = col[order] lims += (np.where(np.diff(row) > 0)[0] + 1).tolist() lims.append(len(row)) for start, end in zip(lims[:-1], lims[1:]): keepers[row[start]] = np.sort(col[start:end]) if max_step == 1: return _get_clusters_st_1step(keepers, neighbors) else: return _get_clusters_st_multistep(keepers, neighbors, max_step) else: return [] def _get_components(x_in, adjacency, return_list=True): """Get connected components from a mask and a adjacency matrix.""" if adjacency is False: components = np.arange(len(x_in)) else: mask = np.logical_and(x_in[adjacency.row], x_in[adjacency.col]) data = adjacency.data[mask] row = adjacency.row[mask] col = adjacency.col[mask] shape = adjacency.shape idx = np.where(x_in)[0] row = np.concatenate((row, idx)) col = np.concatenate((col, idx)) data = np.concatenate((data, np.ones(len(idx), dtype=data.dtype))) adjacency = sparse.coo_array((data, (row, col)), shape=shape) _, components = connected_components(adjacency) if return_list: start = np.min(components) stop = np.max(components) comp_list = [list() for i in range(start, stop + 1, 1)] mask = np.zeros(len(comp_list), dtype=bool) for ii, comp in enumerate(components): comp_list[comp].append(ii) mask[comp] += x_in[ii] clusters = [np.array(k) for k, m in zip(comp_list, mask) if m] return clusters else: return components def _find_clusters( x, threshold, tail=0, adjacency=None, max_step=1, include=None, partitions=None, t_power=1, show_info=False, ): """Find all clusters which are above/below a certain threshold. When doing a two-tailed test (tail == 0), only points with the same sign will be clustered together. Parameters ---------- x : 1D array Data threshold : float | dict Where to threshold the statistic. Should be negative for tail == -1, and positive for tail == 0 or 1. Can also be an dict for threshold-free cluster enhancement. tail : -1 | 0 | 1 Type of comparison adjacency : scipy.sparse.coo_array, None, or list Defines adjacency between features. The matrix is assumed to be symmetric and only the upper triangular half is used. If adjacency is a list, it is assumed that each entry stores the indices of the spatial neighbors in a spatio-temporal dataset x. Default is None, i.e, a regular lattice adjacency. False means no adjacency. max_step : int If adjacency is a list, this defines the maximal number of steps between vertices along the second dimension (typically time) to be considered adjacent. include : 1D bool array or None Mask to apply to the data of points to cluster. If None, all points are used. partitions : array of int or None An array (same size as X) of integers indicating which points belong to each partition. t_power : float Power to raise the statistical values (usually t-values) by before summing (sign will be retained). Note that t_power == 0 will give a count of nodes in each cluster, t_power == 1 will weight each node by its statistical score. show_info : bool If True, display information about thresholds used (for TFCE). Should only be done for the standard permutation. Returns ------- clusters : list of slices or list of arrays (boolean masks) We use slices for 1D signals and mask to multidimensional arrays. None is returned if threshold is a dict (TFCE) sums : array Sum of x values in clusters. """ _check_option("tail", tail, [-1, 0, 1]) x = np.asanyarray(x) if not np.isscalar(threshold): if not isinstance(threshold, dict): raise TypeError( "threshold must be a number, or a dict for " "threshold-free cluster enhancement" ) if not all(key in threshold for key in ["start", "step"]): raise KeyError('threshold, if dict, must have at least "start" and "step"') tfce = True use_x = x[np.isfinite(x)] if use_x.size == 0: raise RuntimeError( "No finite values found in the observed statistic values" ) if tail == -1: if threshold["start"] > 0: raise ValueError('threshold["start"] must be <= 0 for tail == -1') if threshold["step"] >= 0: raise ValueError('threshold["step"] must be < 0 for tail == -1') stop = np.min(use_x) elif tail == 1: stop = np.max(use_x) else: # tail == 0 stop = max(np.max(use_x), -np.min(use_x)) del use_x thresholds = np.arange(threshold["start"], stop, threshold["step"], float) h_power = threshold.get("h_power", 2) e_power = threshold.get("e_power", 0.5) if show_info is True: if len(thresholds) == 0: warn( f'threshold["start"] ({threshold["start"]}) is more extreme ' f"than data statistics with most extreme value {stop}" ) else: logger.info( "Using %d thresholds from %0.2f to %0.2f for TFCE " "computation (h_power=%0.2f, e_power=%0.2f)" % (len(thresholds), thresholds[0], thresholds[-1], h_power, e_power) ) scores = np.zeros(x.size) else: thresholds = [threshold] tfce = False # include all points by default if include is None: include = np.ones(x.shape, dtype=bool) if tail in [0, 1] and not np.all(np.diff(thresholds) > 0): raise ValueError("Thresholds must be monotonically increasing") if tail == -1 and not np.all(np.diff(thresholds) < 0): raise ValueError("Thresholds must be monotonically decreasing") # set these here just in case thresholds == [] clusters = list() sums = list() for ti, thresh in enumerate(thresholds): # these need to be reset on each run clusters = list() if tail == 0: x_ins = [ np.logical_and(x > thresh, include), np.logical_and(x < -thresh, include), ] elif tail == -1: x_ins = [np.logical_and(x < thresh, include)] else: # tail == 1 x_ins = [np.logical_and(x > thresh, include)] # loop over tails for x_in in x_ins: if np.any(x_in): out = _find_clusters_1dir_parts( x, x_in, adjacency, max_step, partitions, t_power, ndimage ) clusters += out[0] sums.append(out[1]) if tfce: # the score of each point is the sum of the h^H * e^E for each # supporting section "rectangle" h x e. if ti == 0: h = abs(thresh) else: h = abs(thresh - thresholds[ti - 1]) h = h**h_power for c in clusters: # triage based on cluster storage type if isinstance(c, slice): len_c = c.stop - c.start elif isinstance(c, tuple): len_c = len(c) elif c.dtype == np.dtype(bool): len_c = np.sum(c) else: len_c = len(c) scores[c] += h * (len_c**e_power) # turn sums into array sums = np.concatenate(sums) if sums else np.array([]) if tfce: sums = scores clusters = None # clusters construction is made in _permutation_cluster_test return clusters, sums def _find_clusters_1dir_parts( x, x_in, adjacency, max_step, partitions, t_power, ndimage ): """Deal with partitions, and pass the work to _find_clusters_1dir.""" if partitions is None: clusters, sums = _find_clusters_1dir( x, x_in, adjacency, max_step, t_power, ndimage ) else: # cluster each partition separately clusters = list() sums = list() for p in range(np.max(partitions) + 1): x_i = np.logical_and(x_in, partitions == p) out = _find_clusters_1dir(x, x_i, adjacency, max_step, t_power, ndimage) clusters += out[0] sums.append(out[1]) sums = np.concatenate(sums) return clusters, sums def _find_clusters_1dir(x, x_in, adjacency, max_step, t_power, ndimage): """Actually call the clustering algorithm.""" if adjacency is None: labels, n_labels = ndimage.label(x_in) if x.ndim == 1: # slices clusters = ndimage.find_objects(labels, n_labels) # equivalent to if len(clusters) == 0 but faster if not clusters: sums = list() else: index = list(range(1, n_labels + 1)) if t_power == 1: sums = ndimage.sum(x, labels, index=index) else: sums = ndimage.sum( np.sign(x) * np.abs(x) ** t_power, labels, index=index ) else: # boolean masks (raveled) clusters = list() sums = np.empty(n_labels) for label in range(n_labels): c = labels == label + 1 clusters.append(c.ravel()) if t_power == 1: sums[label] = np.sum(x[c]) else: sums[label] = np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power) else: if x.ndim > 1: raise Exception( "Data should be 1D when using a adjacency to define clusters." ) if isinstance(adjacency, sparse.spmatrix): adjacency = sparse.coo_array(adjacency) if sparse.issparse(adjacency) or adjacency is False: clusters = _get_components(x_in, adjacency) elif isinstance(adjacency, list): # use temporal adjacency clusters = _get_clusters_st(x_in, adjacency, max_step) else: raise TypeError( f"adjacency must be a sparse array or list, got {type(adjacency)}" ) if t_power == 1: sums = [_masked_sum(x, c) for c in clusters] else: sums = [_masked_sum_power(x, c, t_power) for c in clusters] return clusters, np.atleast_1d(sums) def _cluster_indices_to_mask(components, n_tot, slice_out): """Convert to the old format of clusters, which were bool arrays (or slices in 1D).""" # noqa: E501 for ci, c in enumerate(components): if not slice_out: # boolean array components[ci] = np.zeros((n_tot), dtype=bool) components[ci][c] = True else: # slice (similar as ndimage.find_object output) components[ci] = (slice(c.min(), c.max() + 1),) return components def _cluster_mask_to_indices(components, shape): """Convert to the old format of clusters, which were bool arrays.""" for ci, c in enumerate(components): if isinstance(c, np.ndarray): # mask components[ci] = np.where(c.reshape(shape)) elif isinstance(c, slice): components[ci] = np.arange(c.start, c.stop) else: assert isinstance(c, tuple), type(c) c = list(c) # tuple->list for ii, cc in enumerate(c): if isinstance(cc, slice): c[ii] = np.arange(cc.start, cc.stop) else: c[ii] = np.where(cc)[0] components[ci] = tuple(c) return components def _pval_from_histogram(T, H0, tail): """Get p-values from stats values given an H0 distribution. For each stat compute a p-value as percentile of its statistics within all statistics in surrogate data """ # from pct to fraction if tail == -1: # up tail pval = np.array([np.mean(H0 <= t) for t in T]) elif tail == 1: # low tail pval = np.array([np.mean(H0 >= t) for t in T]) else: # both tails pval = np.array([np.mean(abs(H0) >= abs(t)) for t in T]) return pval def _setup_adjacency(adjacency, n_tests, n_times): if not sparse.issparse(adjacency): raise ValueError( "If adjacency matrix is given, it must be a SciPy sparse matrix." ) if adjacency.shape[0] == n_tests: # use global algorithm adjacency = adjacency.tocoo() else: # use temporal adjacency algorithm got_times, mod = divmod(n_tests, adjacency.shape[0]) if got_times != n_times or mod != 0: raise ValueError( "adjacency (len %d) must be of the correct size, i.e. be " "equal to or evenly divide the number of tests (%d).\n\n" "If adjacency was computed for a source space, try using " 'the fwd["src"] or inv["src"] as some original source space ' "vertices can be excluded during forward computation" % (adjacency.shape[0], n_tests) ) # we claim to only use upper triangular part... not true here adjacency = (adjacency + adjacency.transpose()).tocsr() adjacency = [ adjacency.indices[adjacency.indptr[i] : adjacency.indptr[i + 1]] for i in range(len(adjacency.indptr) - 1) ] return adjacency def _do_permutations( X_full, slices, threshold, tail, adjacency, stat_fun, max_step, include, partitions, t_power, orders, sample_shape, buffer_size, progress_bar, ): n_samp, n_vars = X_full.shape if buffer_size is not None and n_vars <= buffer_size: buffer_size = None # don't use buffer for few variables # allocate space for output max_cluster_sums = np.empty(len(orders), dtype=np.double) if buffer_size is not None: # allocate buffer, so we don't need to allocate memory during loop X_buffer = [ np.empty((len(X_full[s]), buffer_size), dtype=X_full.dtype) for s in slices ] for seed_idx, order in enumerate(orders): # shuffle sample indices assert order is not None idx_shuffle_list = [order[s] for s in slices] if buffer_size is None: # shuffle all data at once X_shuffle_list = [X_full[idx, :] for idx in idx_shuffle_list] t_obs_surr = stat_fun(*X_shuffle_list) else: # only shuffle a small data buffer, so we need less memory t_obs_surr = np.empty(n_vars, dtype=X_full.dtype) for pos in range(0, n_vars, buffer_size): # number of variables for this loop n_var_loop = min(pos + buffer_size, n_vars) - pos # fill buffer for i, idx in enumerate(idx_shuffle_list): X_buffer[i][:, :n_var_loop] = X_full[idx, pos : pos + n_var_loop] # apply stat_fun and store result tmp = stat_fun(*X_buffer) t_obs_surr[pos : pos + n_var_loop] = tmp[:n_var_loop] # The stat should have the same shape as the samples for no adj. if adjacency is None: t_obs_surr.shape = sample_shape # Find cluster on randomized stats out = _find_clusters( t_obs_surr, threshold=threshold, tail=tail, max_step=max_step, adjacency=adjacency, partitions=partitions, include=include, t_power=t_power, ) perm_clusters_sums = out[1] if len(perm_clusters_sums) > 0: max_cluster_sums[seed_idx] = np.max(perm_clusters_sums) else: max_cluster_sums[seed_idx] = 0 progress_bar.update(seed_idx + 1) return max_cluster_sums def _do_1samp_permutations( X, slices, threshold, tail, adjacency, stat_fun, max_step, include, partitions, t_power, orders, sample_shape, buffer_size, progress_bar, ): n_samp, n_vars = X.shape assert slices is None # should be None for the 1 sample case if buffer_size is not None and n_vars <= buffer_size: buffer_size = None # don't use buffer for few variables # allocate space for output max_cluster_sums = np.empty(len(orders), dtype=np.double) if buffer_size is not None: # allocate a buffer so we don't need to allocate memory in loop X_flip_buffer = np.empty((n_samp, buffer_size), dtype=X.dtype) for seed_idx, order in enumerate(orders): assert isinstance(order, np.ndarray) # new surrogate data with specified sign flip assert order.size == n_samp # should be guaranteed by parent signs = 2 * order[:, None].astype(int) - 1 if not np.all(np.equal(np.abs(signs), 1)): raise ValueError("signs from rng must be +/- 1") if buffer_size is None: # be careful about non-writable memmap (GH#1507) if X.flags.writeable: X *= signs # Recompute statistic on randomized data t_obs_surr = stat_fun(X) # Set X back to previous state (trade memory eff. for CPU use) X *= signs else: t_obs_surr = stat_fun(X * signs) else: # only sign-flip a small data buffer, so we need less memory t_obs_surr = np.empty(n_vars, dtype=X.dtype) for pos in range(0, n_vars, buffer_size): # number of variables for this loop n_var_loop = min(pos + buffer_size, n_vars) - pos X_flip_buffer[:, :n_var_loop] = signs * X[:, pos : pos + n_var_loop] # apply stat_fun and store result tmp = stat_fun(X_flip_buffer) t_obs_surr[pos : pos + n_var_loop] = tmp[:n_var_loop] # The stat should have the same shape as the samples for no adj. if adjacency is None: t_obs_surr.shape = sample_shape # Find cluster on randomized stats out = _find_clusters( t_obs_surr, threshold=threshold, tail=tail, max_step=max_step, adjacency=adjacency, partitions=partitions, include=include, t_power=t_power, ) perm_clusters_sums = out[1] if len(perm_clusters_sums) > 0: # get max with sign info idx_max = np.argmax(np.abs(perm_clusters_sums)) max_cluster_sums[seed_idx] = perm_clusters_sums[idx_max] else: max_cluster_sums[seed_idx] = 0 progress_bar.update(seed_idx + 1) return max_cluster_sums def bin_perm_rep(ndim, a=0, b=1): """Ndim permutations with repetitions of (a,b). Returns an array with all the possible permutations with repetitions of (0,1) in ndim dimensions. The array is shaped as (2**ndim,ndim), and is ordered with the last index changing fastest. For examble, for ndim=3: Examples -------- >>> bin_perm_rep(3) array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]) """ # Create the leftmost column as 0,0,...,1,1,... nperms = 2**ndim perms = np.empty((nperms, ndim), type(a)) perms.fill(a) half_point = nperms // 2 perms[half_point:, 0] = b # Fill the rest of the table by sampling the previous column every 2 items for j in range(1, ndim): half_col = perms[::2, j - 1] perms[:half_point, j] = half_col perms[half_point:, j] = half_col # This is equivalent to something like: # orders = [np.fromiter(np.binary_repr(s + 1, ndim), dtype=int) # for s in np.arange(2 ** ndim)] return perms def _get_1samp_orders(n_samples, n_permutations, tail, rng): """Get the 1samp orders.""" max_perms = 2 ** (n_samples - (tail == 0)) - 1 extra = "" if isinstance(n_permutations, str): if n_permutations != "all": raise ValueError('n_permutations as a string must be "all"') n_permutations = max_perms n_permutations = int(n_permutations) if max_perms < n_permutations: # omit first perm b/c accounted for in H0.append() later; # convert to binary array representation extra = " (exact test)" orders = bin_perm_rep(n_samples)[1 : max_perms + 1] elif n_samples <= 20: # fast way to do it for small(ish) n_samples orders = rng.choice(max_perms, n_permutations - 1, replace=False) orders = [ np.fromiter(np.binary_repr(s + 1, n_samples), dtype=int) for s in orders ] else: # n_samples >= 64 # Here we can just use the hash-table (w/collision detection) # functionality of a dict to ensure uniqueness orders = np.zeros((n_permutations - 1, n_samples), int) hashes = {} ii = 0 # in the symmetric case, we should never flip one of the subjects # to prevent positive/negative equivalent collisions use_samples = n_samples - (tail == 0) while ii < n_permutations - 1: signs = tuple((rng.uniform(size=use_samples) < 0.5).astype(int)) if signs not in hashes: orders[ii, :use_samples] = signs if tail == 0 and rng.uniform() < 0.5: # To undo the non-flipping of the last subject in the # tail == 0 case, half the time we use the positive # last subject, half the time negative last subject orders[ii] = 1 - orders[ii] hashes[signs] = None ii += 1 return orders, n_permutations, extra def _permutation_cluster_test( X, threshold, n_permutations, tail, stat_fun, adjacency, n_jobs, seed, max_step, exclude, step_down_p, t_power, out_type, check_disjoint, buffer_size, ): """Aux Function. Note. X is required to be a list. Depending on the length of X either a 1 sample t-test or an F test / more sample permutation scheme is elicited. """ _check_option("out_type", out_type, ["mask", "indices"]) _check_option("tail", tail, [-1, 0, 1]) if not isinstance(threshold, dict): threshold = float(threshold) if ( tail < 0 and threshold > 0 or tail > 0 and threshold < 0 or tail == 0 and threshold < 0 ): raise ValueError( f"incompatible tail and threshold signs, got {tail} and {threshold}" ) # check dimensions for each group in X (a list at this stage). X = [x[:, np.newaxis] if x.ndim == 1 else x for x in X] n_samples = X[0].shape[0] n_times = X[0].shape[1] sample_shape = X[0].shape[1:] for x in X: if x.shape[1:] != sample_shape: raise ValueError("All samples mush have the same size") # flatten the last dimensions in case the data is high dimensional X = [np.reshape(x, (x.shape[0], -1)) for x in X] n_tests = X[0].shape[1] if adjacency is not None and adjacency is not False: adjacency = _setup_adjacency(adjacency, n_tests, n_times) if (exclude is not None) and not exclude.size == n_tests: raise ValueError("exclude must be the same shape as X[0]") # Step 1: Calculate t-stat for original data # ------------------------------------------------------------- t_obs = stat_fun(*X) _validate_type(t_obs, np.ndarray, "return value of stat_fun") logger.info(f"stat_fun(H1): min={np.min(t_obs)} max={np.max(t_obs)}") # test if stat_fun treats variables independently if buffer_size is not None: t_obs_buffer = np.zeros_like(t_obs) for pos in range(0, n_tests, buffer_size): t_obs_buffer[pos : pos + buffer_size] = stat_fun( *[x[:, pos : pos + buffer_size] for x in X] ) if not np.all(t_obs == t_obs_buffer): warn( "Provided stat_fun does not treat variables independently. " "Setting buffer_size to None." ) buffer_size = None # The stat should have the same shape as the samples for no adj. if t_obs.size != np.prod(sample_shape): raise ValueError( f"t_obs.shape {t_obs.shape} provided by stat_fun {stat_fun} is not " f"compatible with the sample shape {sample_shape}" ) if adjacency is None or adjacency is False: t_obs.shape = sample_shape if exclude is not None: include = np.logical_not(exclude) else: include = None # determine if adjacency itself can be separated into disjoint sets if check_disjoint is True and (adjacency is not None and adjacency is not False): partitions = _get_partitions_from_adjacency(adjacency, n_times) else: partitions = None logger.info("Running initial clustering …") out = _find_clusters( t_obs, threshold, tail, adjacency, max_step=max_step, include=include, partitions=partitions, t_power=t_power, show_info=True, ) clusters, cluster_stats = out # The stat should have the same shape as the samples t_obs.shape = sample_shape # For TFCE, return the "adjusted" statistic instead of raw scores # and for clusters, each point gets treated independently tfce = isinstance(threshold, dict) if tfce: t_obs = cluster_stats.reshape(t_obs.shape) * np.sign(t_obs) clusters = [np.array([c]) for c in range(t_obs.size)] logger.info(f"Found {len(clusters)} cluster{_pl(clusters)}") # convert clusters to old format if (adjacency is not None and adjacency is not False) or tfce: # our algorithms output lists of indices by default if out_type == "mask": slice_out = (adjacency is None) & (len(sample_shape) == 1) clusters = _cluster_indices_to_mask(clusters, n_tests, slice_out) else: # ndimage outputs slices or boolean masks by default, if out_type == "indices": clusters = _cluster_mask_to_indices(clusters, t_obs.shape) # convert our seed to orders # check to see if we can do an exact test # (for a two-tailed test, we can exploit symmetry to just do half) extra = "" rng = check_random_state(seed) del seed if len(X) == 1: # 1-sample test do_perm_func = _do_1samp_permutations X_full = X[0] slices = None orders, n_permutations, extra = _get_1samp_orders( n_samples, n_permutations, tail, rng ) else: n_permutations = int(n_permutations) do_perm_func = _do_permutations X_full = np.concatenate(X, axis=0) n_samples_per_condition = [x.shape[0] for x in X] splits_idx = np.append([0], np.cumsum(n_samples_per_condition)) slices = [slice(splits_idx[k], splits_idx[k + 1]) for k in range(len(X))] orders = [rng.permutation(len(X_full)) for _ in range(n_permutations - 1)] del rng parallel, my_do_perm_func, n_jobs = parallel_func( do_perm_func, n_jobs, verbose=False ) if len(clusters) == 0: warn("No clusters found, returning empty H0, clusters, and cluster_pv") return t_obs, np.array([]), np.array([]), np.array([]) # Step 2: If we have some clusters, repeat process on permuted data # ------------------------------------------------------------------- # Step 3: repeat permutations for step-down-in-jumps procedure n_removed = 1 # number of new clusters added total_removed = 0 step_down_include = None # start out including all points n_step_downs = 0 while n_removed > 0: # actually do the clustering for each partition if include is not None: if step_down_include is not None: this_include = np.logical_and(include, step_down_include) else: this_include = include else: this_include = step_down_include with ProgressBar( iterable=range(len(orders)), mesg=f"Permuting{extra}" ) as progress_bar: H0 = parallel( my_do_perm_func( X_full, slices, threshold, tail, adjacency, stat_fun, max_step, this_include, partitions, t_power, order, sample_shape, buffer_size, progress_bar.subset(idx), ) for idx, order in split_list(orders, n_jobs, idx=True) ) # include original (true) ordering if tail == -1: # up tail orig = cluster_stats.min() elif tail == 1: orig = cluster_stats.max() else: orig = abs(cluster_stats).max() H0.insert(0, [orig]) H0 = np.concatenate(H0) logger.debug("Computing cluster p-values") cluster_pv = _pval_from_histogram(cluster_stats, H0, tail) # figure out how many new ones will be removed for step-down to_remove = np.where(cluster_pv < step_down_p)[0] n_removed = to_remove.size - total_removed total_removed = to_remove.size step_down_include = np.ones(n_tests, dtype=bool) for ti in to_remove: step_down_include[clusters[ti]] = False if adjacency is None and adjacency is not False: step_down_include.shape = sample_shape n_step_downs += 1 if step_down_p > 0: a_text = "additional " if n_step_downs > 1 else "" logger.info( "Step-down-in-jumps iteration #%i found %i %s" "cluster%s to exclude from subsequent iterations" % (n_step_downs, n_removed, a_text, _pl(n_removed)) ) # The clusters should have the same shape as the samples clusters = _reshape_clusters(clusters, sample_shape) return t_obs, clusters, cluster_pv, H0 def _check_fun(X, stat_fun, threshold, tail=0, kind="within"): """Check the stat_fun and threshold values.""" if kind == "within": if threshold is None: if stat_fun is not None and stat_fun is not ttest_1samp_no_p: warn( "Automatic threshold is only valid for stat_fun=None " f"(or ttest_1samp_no_p), got {stat_fun}" ) p_thresh = 0.05 / (1 + (tail == 0)) n_samples = len(X) threshold = -tstat.ppf(p_thresh, n_samples - 1) if np.sign(tail) < 0: threshold = -threshold logger.info(f"Using a threshold of {threshold:.6f}") stat_fun = ttest_1samp_no_p if stat_fun is None else stat_fun else: assert kind == "between" if threshold is None: if stat_fun is not None and stat_fun is not f_oneway: warn( "Automatic threshold is only valid for stat_fun=None " f"(or f_oneway), got {stat_fun}" ) elif tail != 1: warn('Ignoring argument "tail", performing 1-tailed F-test') p_thresh = 0.05 dfn = len(X) - 1 dfd = np.sum([len(x) for x in X]) - len(X) threshold = fstat.ppf(1.0 - p_thresh, dfn, dfd) logger.info(f"Using a threshold of {threshold:.6f}") stat_fun = f_oneway if stat_fun is None else stat_fun return stat_fun, threshold @verbose def permutation_cluster_test( X, threshold=None, n_permutations=1024, tail=0, stat_fun=None, adjacency=None, n_jobs=None, seed=None, max_step=1, exclude=None, step_down_p=0, t_power=1, out_type="indices", check_disjoint=False, buffer_size=1000, verbose=None, ): """Cluster-level statistical permutation test. For a list of :class:`NumPy arrays ` of data, calculate some statistics corrected for multiple comparisons using permutations and cluster-level correction. Each element of the list ``X`` should contain the data for one group of observations (e.g., 2D arrays for time series, 3D arrays for time-frequency power values). Permutations are generated with random partitions of the data. For details, see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`. Parameters ---------- X : list of array, shape (n_observations, p[, q][, r]) The data to be clustered. Each array in ``X`` should contain the observations for one group. The first dimension of each array is the number of observations from that group; remaining dimensions comprise the size of a single observation. For example if ``X = [X1, X2]`` with ``X1.shape = (20, 50, 4)`` and ``X2.shape = (17, 50, 4)``, then ``X`` has 2 groups with respectively 20 and 17 observations in each, and each data point is of shape ``(50, 4)``. Note: that the *last dimension* of each element of ``X`` should correspond to the dimension represented in the ``adjacency`` parameter (e.g., spectral data should be provided as ``(observations, frequencies, channels/vertices)``). %(threshold_clust_f)s %(n_permutations_clust_int)s %(tail_clust)s %(stat_fun_clust_f)s %(adjacency_clust_n)s %(n_jobs)s %(seed)s %(max_step_clust)s %(exclude_clust)s %(step_down_p_clust)s %(f_power_clust)s %(out_type_clust)s %(check_disjoint_clust)s %(buffer_size_clust)s %(verbose)s Returns ------- F_obs : array, shape (p[, q][, r]) Statistic (F by default) observed for all variables. clusters : list List type defined by out_type above. cluster_pv : array P-value for each cluster. H0 : array, shape (n_permutations,) Max cluster level stats observed under permutation. Notes ----- %(threshold_clust_f_notes)s References ---------- .. footbibliography:: """ stat_fun, threshold = _check_fun(X, stat_fun, threshold, tail, "between") return _permutation_cluster_test( X=X, threshold=threshold, n_permutations=n_permutations, tail=tail, stat_fun=stat_fun, adjacency=adjacency, n_jobs=n_jobs, seed=seed, max_step=max_step, exclude=exclude, step_down_p=step_down_p, t_power=t_power, out_type=out_type, check_disjoint=check_disjoint, buffer_size=buffer_size, ) @verbose def permutation_cluster_1samp_test( X, threshold=None, n_permutations=1024, tail=0, stat_fun=None, adjacency=None, n_jobs=None, seed=None, max_step=1, exclude=None, step_down_p=0, t_power=1, out_type="indices", check_disjoint=False, buffer_size=1000, verbose=None, ): """Non-parametric cluster-level paired t-test. For details, see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`. Parameters ---------- X : array, shape (n_observations, p[, q][, r]) The data to be clustered. The first dimension should correspond to the difference between paired samples (observations) in two conditions. The subarrays ``X[k]`` can be 1D (e.g., time series), 2D (e.g., time series over channels), or 3D (e.g., time-frequencies over channels) associated with the kth observation. For spatiotemporal data, see also :func:`mne.stats.spatio_temporal_cluster_1samp_test`. %(threshold_clust_t)s %(n_permutations_clust_all)s %(tail_clust)s %(stat_fun_clust_t)s %(adjacency_clust_1)s %(n_jobs)s %(seed)s %(max_step_clust)s %(exclude_clust)s %(step_down_p_clust)s %(t_power_clust)s %(out_type_clust)s %(check_disjoint_clust)s %(buffer_size_clust)s %(verbose)s Returns ------- t_obs : array, shape (p[, q][, r]) T-statistic observed for all variables. clusters : list List type defined by out_type above. cluster_pv : array P-value for each cluster. H0 : array, shape (n_permutations,) Max cluster level stats observed under permutation. Notes ----- From an array of paired observations, e.g. a difference in signal amplitudes or power spectra in two conditions, calculate if the data distributions in the two conditions are significantly different. The procedure uses a cluster analysis with permutation test for calculating corrected p-values. Randomized data are generated with random sign flips. See :footcite:`MarisOostenveld2007` for more information. Because a 1-sample t-test on the difference in observations is mathematically equivalent to a paired t-test, internally this function computes a 1-sample t-test (by default) and uses sign flipping (always) to perform permutations. This might not be suitable for the case where there is truly a single observation under test; see :ref:`disc-stats`. %(threshold_clust_t_notes)s If ``n_permutations`` exceeds the maximum number of possible permutations given the number of observations, then ``n_permutations`` and ``seed`` will be ignored since an exact test (full permutation test) will be performed (this is the case when ``n_permutations >= 2 ** (n_observations - (tail == 0))``). If no initial clusters are found because all points in the true distribution are below the threshold, then ``clusters``, ``cluster_pv``, and ``H0`` will all be empty arrays. References ---------- .. footbibliography:: """ stat_fun, threshold = _check_fun(X, stat_fun, threshold, tail) return _permutation_cluster_test( X=[X], threshold=threshold, n_permutations=n_permutations, tail=tail, stat_fun=stat_fun, adjacency=adjacency, n_jobs=n_jobs, seed=seed, max_step=max_step, exclude=exclude, step_down_p=step_down_p, t_power=t_power, out_type=out_type, check_disjoint=check_disjoint, buffer_size=buffer_size, ) @verbose def spatio_temporal_cluster_1samp_test( X, threshold=None, n_permutations=1024, tail=0, stat_fun=None, adjacency=None, n_jobs=None, seed=None, max_step=1, spatial_exclude=None, step_down_p=0, t_power=1, out_type="indices", check_disjoint=False, buffer_size=1000, verbose=None, ): """Non-parametric cluster-level paired t-test for spatio-temporal data. This function provides a convenient wrapper for :func:`mne.stats.permutation_cluster_1samp_test`, for use with data organized in the form (observations × time × space), (observations × frequencies × space), or optionally (observations × time × frequencies × space). For details, see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`. Parameters ---------- X : array, shape (n_observations, p[, q], n_vertices) The data to be clustered. The first dimension should correspond to the difference between paired samples (observations) in two conditions. The second, and optionally third, dimensions correspond to the time or time-frequency data. And, the last dimension should be spatial. %(threshold_clust_t)s %(n_permutations_clust_all)s %(tail_clust)s %(stat_fun_clust_t)s %(adjacency_clust_st1)s %(n_jobs)s %(seed)s %(max_step_clust)s spatial_exclude : list of int or None List of spatial indices to exclude from clustering. %(step_down_p_clust)s %(t_power_clust)s %(out_type_clust)s %(check_disjoint_clust)s %(buffer_size_clust)s %(verbose)s Returns ------- t_obs : array, shape (p[, q], n_vertices) T-statistic observed for all variables. clusters : list List type defined by out_type above. cluster_pv : array P-value for each cluster. H0 : array, shape (n_permutations,) Max cluster level stats observed under permutation. Notes ----- %(threshold_clust_t_notes)s References ---------- .. footbibliography:: """ # convert spatial_exclude before passing on if necessary if spatial_exclude is not None: exclude = _st_mask_from_s_inds( np.prod(X.shape[1:-1]), X.shape[-1], spatial_exclude, True ) else: exclude = None return permutation_cluster_1samp_test( X, threshold=threshold, stat_fun=stat_fun, tail=tail, n_permutations=n_permutations, adjacency=adjacency, n_jobs=n_jobs, seed=seed, max_step=max_step, exclude=exclude, step_down_p=step_down_p, t_power=t_power, out_type=out_type, check_disjoint=check_disjoint, buffer_size=buffer_size, ) @verbose def spatio_temporal_cluster_test( X, threshold=None, n_permutations=1024, tail=0, stat_fun=None, adjacency=None, n_jobs=None, seed=None, max_step=1, spatial_exclude=None, step_down_p=0, t_power=1, out_type="indices", check_disjoint=False, buffer_size=1000, verbose=None, ): """Non-parametric cluster-level test for spatio-temporal data. This function provides a convenient wrapper for :func:`mne.stats.permutation_cluster_test`, for use with data organized in the form (observations × time × space), (observations × time × space), or optionally (observations × time × frequencies × space). For more information, see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`. Parameters ---------- X : list of array, shape (n_observations, p[, q], n_vertices) The data to be clustered. Each array in ``X`` should contain the observations for one group. The first dimension of each array is the number of observations from that group (and may vary between groups). The second, and optionally third, dimensions correspond to the time or time-frequency data. And, the last dimension should be spatial. All dimensions except the first should match across all groups. %(threshold_clust_f)s %(n_permutations_clust_int)s %(tail_clust)s %(stat_fun_clust_f)s %(adjacency_clust_stn)s %(n_jobs)s %(seed)s %(max_step_clust)s spatial_exclude : list of int or None List of spatial indices to exclude from clustering. %(step_down_p_clust)s %(f_power_clust)s %(out_type_clust)s %(check_disjoint_clust)s %(buffer_size_clust)s %(verbose)s Returns ------- F_obs : array, shape (p[, q], n_vertices) Statistic (F by default) observed for all variables. clusters : list List type defined by out_type above. cluster_pv: array P-value for each cluster. H0 : array, shape (n_permutations,) Max cluster level stats observed under permutation. Notes ----- %(threshold_clust_f_notes)s References ---------- .. footbibliography:: """ # convert spatial_exclude before passing on if necessary if spatial_exclude is not None: exclude = _st_mask_from_s_inds( np.prod(X[0].shape[1:-1]), X[0].shape[-1], spatial_exclude, True ) else: exclude = None return permutation_cluster_test( X, threshold=threshold, stat_fun=stat_fun, tail=tail, n_permutations=n_permutations, adjacency=adjacency, n_jobs=n_jobs, seed=seed, max_step=max_step, exclude=exclude, step_down_p=step_down_p, t_power=t_power, out_type=out_type, check_disjoint=check_disjoint, buffer_size=buffer_size, ) def _st_mask_from_s_inds(n_times, n_vertices, vertices, set_as=True): """Compute mask to apply to a spatio-temporal adjacency matrix. This can be used to include (or exclude) certain spatial coordinates. This is useful for excluding certain regions from analysis (e.g., medial wall vertices). Parameters ---------- n_times : int Number of time points. n_vertices : int Number of spatial points. vertices : list or array of int Vertex numbers to set. set_as : bool If True, all points except "vertices" are set to False (inclusion). If False, all points except "vertices" are set to True (exclusion). Returns ------- mask : array of bool A (n_times * n_vertices) array of boolean values for masking """ mask = np.zeros((n_times, n_vertices), dtype=bool) mask[:, vertices] = True mask = mask.ravel() if set_as is False: mask = np.logical_not(mask) return mask @verbose def _get_partitions_from_adjacency(adjacency, n_times, verbose=None): """Specify disjoint subsets (e.g., hemispheres) based on adjacency.""" if isinstance(adjacency, list): test = np.ones(len(adjacency)) test_adj = np.zeros((len(adjacency), len(adjacency)), dtype="bool") for vi in range(len(adjacency)): test_adj[adjacency[vi], vi] = True test_adj = sparse.coo_array(test_adj, dtype="float") else: test = np.ones(adjacency.shape[0]) test_adj = adjacency part_clusts = _find_clusters(test, 0, 1, test_adj)[0] if len(part_clusts) > 1: logger.info(f"{len(part_clusts)} disjoint adjacency sets found") partitions = np.zeros(len(test), dtype="int") for ii, pc in enumerate(part_clusts): partitions[pc] = ii if isinstance(adjacency, list): partitions = np.tile(partitions, n_times) else: logger.info("No disjoint adjacency sets found") partitions = None return partitions def _reshape_clusters(clusters, sample_shape): """Reshape cluster masks or indices to be of the correct shape.""" # format of the bool mask and indices are ndarrays if len(clusters) > 0 and isinstance(clusters[0], np.ndarray): if clusters[0].dtype == np.dtype(bool): # format of mask clusters = [c.reshape(sample_shape) for c in clusters] else: # format of indices clusters = [np.unravel_index(c, sample_shape) for c in clusters] return clusters def summarize_clusters_stc( clu, p_thresh=0.05, tstep=1.0, tmin=0, subject="fsaverage", vertices=None ): """Assemble summary SourceEstimate from spatiotemporal cluster results. This helps visualizing results from spatio-temporal-clustering permutation tests. Parameters ---------- clu : tuple The output from clustering permutation tests. p_thresh : float The significance threshold for inclusion of clusters. tstep : float The time step between samples of the original :class:`STC `, in seconds (i.e., ``1 / stc.sfreq``). Defaults to ``1``, which will yield a colormap indicating cluster duration measured in *samples* rather than *seconds*. tmin : float | int The time of the first sample. subject : str The name of the subject. vertices : list of array | instance of SourceSpaces | None The vertex numbers associated with the source space locations. Defaults to None. If None, equals ``[np.arange(10242), np.arange(10242)]``. Can also be an instance of SourceSpaces to get vertex numbers from. .. versionchanged:: 0.21 Added support for SourceSpaces. Returns ------- out : instance of SourceEstimate A summary of the clusters. The first time point in this SourceEstimate object is the summation of all the clusters. Subsequent time points contain each individual cluster. The magnitude of the activity corresponds to the duration spanned by the cluster (duration units are determined by ``tstep``). .. versionchanged:: 0.21 Added support for volume and mixed source estimates. """ _validate_type(vertices, (None, list, SourceSpaces), "vertices") if vertices is None: vertices = [np.arange(10242), np.arange(10242)] klass = SourceEstimate elif isinstance(vertices, SourceSpaces): klass = dict( surface=SourceEstimate, volume=VolSourceEstimate, mixed=MixedSourceEstimate )[vertices.kind] vertices = [s["vertno"] for s in vertices] else: klass = {1: VolSourceEstimate, 2: SourceEstimate}.get( len(vertices), MixedSourceEstimate ) n_vertices_need = sum(len(v) for v in vertices) t_obs, clusters, clu_pvals, _ = clu n_times, n_vertices = t_obs.shape if n_vertices != n_vertices_need: raise ValueError( f"Number of cluster vertices ({n_vertices}) did not match the " f"provided vertices ({n_vertices_need})" ) good_cluster_inds = np.where(clu_pvals < p_thresh)[0] # Build a convenient representation of each cluster, where each # cluster becomes a "time point" in the SourceEstimate if len(good_cluster_inds) == 0: raise RuntimeError( "No significant clusters available. Please adjust " "your threshold or check your statistical " "analysis." ) data = np.zeros((n_vertices, n_times)) data_summary = np.zeros((n_vertices, len(good_cluster_inds) + 1)) for ii, cluster_ind in enumerate(good_cluster_inds): data.fill(0) t_inds, v_inds = clusters[cluster_ind] data[v_inds, t_inds] = t_obs[t_inds, v_inds] # Store a nice visualization of the cluster by summing across time data_summary[:, ii + 1] = np.sum(_sum_cluster_data(data, tstep), axis=1) # Make the first "time point" a sum across all clusters for easy # visualization data_summary[:, 0] = np.sum(data_summary, axis=1) return klass(data_summary, vertices, tmin, tstep, subject)