# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import numpy as np from ..fixes import rng_uniform from ..label import Label from ..source_estimate import SourceEstimate, VolSourceEstimate from ..source_space._source_space import _ensure_src from ..surface import _compute_nearest from ..utils import ( _check_option, _ensure_events, _ensure_int, _validate_type, check_random_state, fill_doc, warn, ) @fill_doc def select_source_in_label( src, label, random_state=None, location="random", subject=None, subjects_dir=None, surf="sphere", ): """Select source positions using a label. Parameters ---------- src : list of dict The source space. label : Label The label. %(random_state)s location : str The label location to choose. Can be 'random' (default) or 'center' to use :func:`mne.Label.center_of_mass` (restricting to vertices both in the label and in the source space). Note that for 'center' mode the label values are used as weights. .. versionadded:: 0.13 subject : str | None The subject the label is defined for. Only used with ``location='center'``. .. versionadded:: 0.13 %(subjects_dir)s .. versionadded:: 0.13 surf : str The surface to use for Euclidean distance center of mass finding. The default here is "sphere", which finds the center of mass on the spherical surface to help avoid potential issues with cortical folding. .. versionadded:: 0.13 Returns ------- lh_vertno : list Selected source coefficients on the left hemisphere. rh_vertno : list Selected source coefficients on the right hemisphere. """ lh_vertno = list() rh_vertno = list() _check_option("location", location, ["random", "center"]) rng = check_random_state(random_state) if label.hemi == "lh": vertno = lh_vertno hemi_idx = 0 else: vertno = rh_vertno hemi_idx = 1 src_sel = np.intersect1d(src[hemi_idx]["vertno"], label.vertices) if location == "random": idx = src_sel[rng_uniform(rng)(0, len(src_sel), 1)[0]] else: # 'center' idx = label.center_of_mass( subject, restrict_vertices=src_sel, subjects_dir=subjects_dir, surf=surf ) vertno.append(idx) return lh_vertno, rh_vertno @fill_doc def simulate_sparse_stc( src, n_dipoles, times, data_fun=lambda t: 1e-7 * np.sin(20 * np.pi * t), labels=None, random_state=None, location="random", subject=None, subjects_dir=None, surf="sphere", ): """Generate sparse (n_dipoles) sources time courses from data_fun. This function randomly selects ``n_dipoles`` vertices in the whole cortex or one single vertex (randomly in or in the center of) each label if ``labels is not None``. It uses ``data_fun`` to generate waveforms for each vertex. Parameters ---------- src : instance of SourceSpaces The source space. n_dipoles : int Number of dipoles to simulate. times : array Time array. data_fun : callable Function to generate the waveforms. The default is a 100 nAm, 10 Hz sinusoid as ``1e-7 * np.sin(20 * pi * t)``. The function should take as input the array of time samples in seconds and return an array of the same length containing the time courses. labels : None | list of Label The labels. The default is None, otherwise its size must be n_dipoles. %(random_state)s location : str The label location to choose. Can be ``'random'`` (default) or ``'center'`` to use :func:`mne.Label.center_of_mass`. Note that for ``'center'`` mode the label values are used as weights. .. versionadded:: 0.13 subject : str | None The subject the label is defined for. Only used with ``location='center'``. .. versionadded:: 0.13 %(subjects_dir)s .. versionadded:: 0.13 surf : str The surface to use for Euclidean distance center of mass finding. The default here is "sphere", which finds the center of mass on the spherical surface to help avoid potential issues with cortical folding. .. versionadded:: 0.13 Returns ------- stc : SourceEstimate The generated source time courses. See Also -------- simulate_raw simulate_evoked simulate_stc Notes ----- .. versionadded:: 0.10.0 """ rng = check_random_state(random_state) src = _ensure_src(src, verbose=False) subject_src = src._subject if subject is None: subject = subject_src elif subject_src is not None and subject != subject_src: raise ValueError( f"subject argument ({subject}) did not match the source " f"space subject_his_id ({subject_src})" ) data = np.zeros((n_dipoles, len(times))) for i_dip in range(n_dipoles): data[i_dip, :] = data_fun(times) if labels is None: # can be vol or surface source space offsets = np.linspace(0, n_dipoles, len(src) + 1).astype(int) n_dipoles_ss = np.diff(offsets) # don't use .choice b/c not on old numpy vs = [ s["vertno"][np.sort(rng.permutation(np.arange(s["nuse"]))[:n])] for n, s in zip(n_dipoles_ss, src) ] datas = data elif n_dipoles > len(labels): raise ValueError( f"Number of labels ({len(labels)}) smaller than n_dipoles ({n_dipoles:d}) " "is not allowed." ) else: if n_dipoles != len(labels): warn( "The number of labels is different from the number of " f"dipoles. {min(n_dipoles, len(labels))} dipole(s) will be generated." ) labels = labels[:n_dipoles] if n_dipoles < len(labels) else labels vertno = [[], []] lh_data = [np.empty((0, data.shape[1]))] rh_data = [np.empty((0, data.shape[1]))] for i, label in enumerate(labels): lh_vertno, rh_vertno = select_source_in_label( src, label, rng, location, subject, subjects_dir, surf ) vertno[0] += lh_vertno vertno[1] += rh_vertno if len(lh_vertno) != 0: lh_data.append(data[i][np.newaxis]) elif len(rh_vertno) != 0: rh_data.append(data[i][np.newaxis]) else: raise ValueError("No vertno found.") vs = [np.array(v) for v in vertno] datas = [np.concatenate(d) for d in [lh_data, rh_data]] # need to sort each hemi by vertex number for ii in range(2): order = np.argsort(vs[ii]) vs[ii] = vs[ii][order] if len(order) > 0: # fix for old numpy datas[ii] = datas[ii][order] datas = np.concatenate(datas) tmin, tstep = times[0], np.diff(times[:2])[0] assert datas.shape == data.shape cls = SourceEstimate if len(vs) == 2 else VolSourceEstimate stc = cls(datas, vertices=vs, tmin=tmin, tstep=tstep, subject=subject) return stc def simulate_stc( src, labels, stc_data, tmin, tstep, value_fun=None, allow_overlap=False ): """Simulate sources time courses from waveforms and labels. This function generates a source estimate with extended sources by filling the labels with the waveforms given in stc_data. Parameters ---------- src : instance of SourceSpaces The source space. labels : list of Label The labels. stc_data : array, shape (n_labels, n_times) The waveforms. tmin : float The beginning of the timeseries. tstep : float The time step (1 / sampling frequency). value_fun : callable | None Function to apply to the label values to obtain the waveform scaling for each vertex in the label. If None (default), uniform scaling is used. allow_overlap : bool Allow overlapping labels or not. Default value is False. .. versionadded:: 0.18 Returns ------- stc : SourceEstimate The generated source time courses. See Also -------- simulate_raw simulate_evoked simulate_sparse_stc """ if len(labels) != len(stc_data): raise ValueError("labels and stc_data must have the same length") vertno = [[], []] stc_data_extended = [[], []] hemi_to_ind = {"lh": 0, "rh": 1} for i, label in enumerate(labels): hemi_ind = hemi_to_ind[label.hemi] src_sel = np.intersect1d(src[hemi_ind]["vertno"], label.vertices) if len(src_sel) == 0: idx = src[hemi_ind]["inuse"].astype("bool") xhs = src[hemi_ind]["rr"][idx] rr = src[hemi_ind]["rr"][label.vertices] closest_src = _compute_nearest(xhs, rr) src_sel = src[hemi_ind]["vertno"][np.unique(closest_src)] if value_fun is not None: idx_sel = np.searchsorted(label.vertices, src_sel) values_sel = np.array([value_fun(v) for v in label.values[idx_sel]]) data = np.outer(values_sel, stc_data[i]) else: data = np.tile(stc_data[i], (len(src_sel), 1)) # If overlaps are allowed, deal with them if allow_overlap: # Search for duplicate vertex indices # in the existing vertex matrix vertex. duplicates = [] for src_ind, vertex_ind in enumerate(src_sel): ind = np.where(vertex_ind == vertno[hemi_ind])[0] if len(ind) > 0: assert len(ind) == 1 # Add the new data to the existing one stc_data_extended[hemi_ind][ind[0]] += data[src_ind] duplicates.append(src_ind) # Remove the duplicates from both data and selected vertices data = np.delete(data, duplicates, axis=0) src_sel = list(np.delete(np.array(src_sel), duplicates)) # Extend the existing list instead of appending it so that we can # index its elements vertno[hemi_ind].extend(src_sel) stc_data_extended[hemi_ind].extend(np.atleast_2d(data)) vertno = [np.array(v) for v in vertno] if not allow_overlap: for v, hemi in zip(vertno, ("left", "right")): d = len(v) - len(np.unique(v)) if d > 0: raise RuntimeError( f"Labels had {d} overlaps in the {hemi} " "hemisphere, they must be non-overlapping" ) # the data is in the order left, right data = list() for i in range(2): if len(stc_data_extended[i]) != 0: stc_data_extended[i] = np.vstack(stc_data_extended[i]) # Order the indices of each hemisphere idx = np.argsort(vertno[i]) data.append(stc_data_extended[i][idx]) vertno[i] = vertno[i][idx] stc = SourceEstimate( np.concatenate(data), vertices=vertno, tmin=tmin, tstep=tstep, subject=src._subject, ) return stc class SourceSimulator: """Class to generate simulated Source Estimates. Parameters ---------- src : instance of SourceSpaces Source space. tstep : float Time step between successive samples in data. Default is 0.001 s. duration : float | None Time interval during which the simulation takes place in seconds. If None, it is computed using existing events and waveform lengths. first_samp : int First sample from which the simulation takes place, as an integer. Comparable to the :term:`first_samp` property of `~mne.io.Raw` objects. Default is 0. Attributes ---------- duration : float The duration of the simulation in seconds. n_times : int The number of time samples of the simulation. """ def __init__(self, src, tstep=1e-3, duration=None, first_samp=0): if duration is not None and duration < tstep: raise ValueError("duration must be None or >= tstep.") self.first_samp = _ensure_int(first_samp, "first_samp") self._src = src self._tstep = tstep self._labels = [] self._waveforms = [] self._events = np.empty((0, 3), dtype=int) self._duration = duration # if not None, sets # samples self._last_samples = [] self._chk_duration = 1000 @property def duration(self): """Duration of the simulation in same units as tstep.""" if self._duration is not None: return self._duration return self.n_times * self._tstep @property def n_times(self): """Number of time samples in the simulation.""" if self._duration is not None: return int(self._duration / self._tstep) ls = self.first_samp if len(self._last_samples) > 0: ls = np.max(self._last_samples) return ls - self.first_samp + 1 # >= 1 @property def last_samp(self): return self.first_samp + self.n_times - 1 def add_data(self, label, waveform, events): """Add data to the simulation. Data should be added in the form of a triplet of Label (Where) - Waveform(s) (What) - Event(s) (When) Parameters ---------- label : instance of Label The label (as created for example by mne.read_label). If the label does not match any sources in the SourceEstimate, a ValueError is raised. waveform : array, shape (n_times,) or (n_events, n_times) | list The waveform(s) describing the activity on the label vertices. If list, it must have the same length as events. events : array of int, shape (n_events, 3) Events associated to the waveform(s) to specify when the activity should occur. """ _validate_type(label, Label, "label") # If it is not a list then make it one if not isinstance(waveform, list) and np.ndim(waveform) == 2: waveform = list(waveform) if not isinstance(waveform, list) and np.ndim(waveform) == 1: waveform = [waveform] if len(waveform) == 1: waveform = waveform * len(events) # The length is either equal to the length of events, or 1 if len(waveform) != len(events): raise ValueError( "Number of waveforms and events should match or " "there should be a single waveform (%d != %d)." % (len(waveform), len(events)) ) events = _ensure_events(events).astype(np.int64) # Update the last sample possible based on events + waveforms self._labels.extend([label] * len(events)) self._waveforms.extend(waveform) self._events = np.concatenate([self._events, events]) assert self._events.dtype == np.int64 # First sample per waveform is the first column of events # Last is computed below self._last_samples = np.array( [self._events[i, 0] + len(w) - 1 for i, w in enumerate(self._waveforms)] ) def get_stim_channel(self, start_sample=0, stop_sample=None): """Get the stim channel from the provided data. Returns the stim channel data according to the simulation parameters which should be added through the add_data method. If both start_sample and stop_sample are not specified, the entire duration is used. Parameters ---------- start_sample : int First sample in chunk. Default is the value of the ``first_samp`` attribute. stop_sample : int | None The final sample of the returned stc. If None, then all samples from start_sample onward are returned. Returns ------- stim_data : ndarray of int, shape (n_samples,) The stimulation channel data. """ if start_sample is None: start_sample = self.first_samp if stop_sample is None: stop_sample = start_sample + self.n_times - 1 elif stop_sample < start_sample: raise ValueError("Argument start_sample must be >= stop_sample.") n_samples = stop_sample - start_sample + 1 # Initialize the stim data array stim_data = np.zeros(n_samples, dtype=np.int64) # Select only events in the time chunk stim_ind = np.where( np.logical_and( self._events[:, 0] >= start_sample, self._events[:, 0] < stop_sample ) )[0] if len(stim_ind) > 0: relative_ind = self._events[stim_ind, 0] - start_sample stim_data[relative_ind] = self._events[stim_ind, 2] return stim_data def get_stc(self, start_sample=None, stop_sample=None): """Simulate a SourceEstimate from the provided data. Returns a SourceEstimate object constructed according to the simulation parameters which should be added through function add_data. If both start_sample and stop_sample are not specified, the entire duration is used. Parameters ---------- start_sample : int | None First sample in chunk. If ``None`` the value of the ``first_samp`` attribute is used. Defaults to ``None``. stop_sample : int | None The final sample of the returned STC. If ``None``, then all samples past ``start_sample`` are returned. Returns ------- stc : SourceEstimate object The generated source time courses. """ if len(self._labels) == 0: raise ValueError( "No simulation parameters were found. Please use " "function add_data to add simulation parameters." ) if start_sample is None: start_sample = self.first_samp if stop_sample is None: stop_sample = start_sample + self.n_times - 1 elif stop_sample < start_sample: raise ValueError("start_sample must be >= stop_sample.") n_samples = stop_sample - start_sample + 1 # Initialize the stc_data array to span all possible samples stc_data = np.zeros((len(self._labels), n_samples)) # Select only the events that fall within the span ind = np.where( np.logical_and( self._last_samples >= start_sample, self._events[:, 0] <= stop_sample ) )[0] # Loop only over the items that are in the time span subset_waveforms = [self._waveforms[i] for i in ind] for i, (waveform, event) in enumerate(zip(subset_waveforms, self._events[ind])): # We retrieve the first and last sample of each waveform # According to the corresponding event wf_start = event[0] wf_stop = self._last_samples[ind[i]] # Recover the indices of the event that should be in the chunk waveform_ind = np.isin( np.arange(wf_start, wf_stop + 1), np.arange(start_sample, stop_sample + 1), ) # Recover the indices that correspond to the overlap stc_ind = np.isin( np.arange(start_sample, stop_sample + 1), np.arange(wf_start, wf_stop + 1), ) # add the resulting waveform chunk to the corresponding label stc_data[ind[i]][stc_ind] += waveform[waveform_ind] start_sample -= self.first_samp # STC sample ref is 0 stc = simulate_stc( self._src, self._labels, stc_data, start_sample * self._tstep, self._tstep, allow_overlap=True, ) return stc def __iter__(self): """Iterate over 1 second STCs.""" # Arbitrary chunk size, can be modified later to something else. # Loop over chunks of 1 second - or, maximum sample size. # Can be modified to a different value. last_sample = self.last_samp for start_sample in range(self.first_samp, last_sample + 1, self._chk_duration): stop_sample = min(start_sample + self._chk_duration - 1, last_sample) yield ( self.get_stc(start_sample, stop_sample), self.get_stim_channel(start_sample, stop_sample), )