# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import numpy as np from scipy.ndimage import distance_transform_edt, label from scipy.signal import find_peaks from scipy.stats import zscore from ..annotations import ( Annotations, _adjust_onset_meas_date, _annotations_starts_stops, annotations_from_events, ) from ..filter import filter_data from ..io.base import BaseRaw from ..transforms import ( Transform, _angle_between_quats, _average_quats, _quat_to_affine, apply_trans, quat_to_rot, ) from ..utils import ( _check_option, _mask_to_onsets_offsets, _pl, _validate_type, logger, verbose, warn, ) @verbose def annotate_muscle_zscore( raw, threshold=4, ch_type=None, min_length_good=0.1, filter_freq=(110, 140), n_jobs=None, verbose=None, ): """Create annotations for segments that likely contain muscle artifacts. Detects data segments containing activity in the frequency range given by ``filter_freq`` whose envelope magnitude exceeds the specified z-score threshold, when summed across channels and divided by ``sqrt(n_channels)``. False-positive transient peaks are prevented by low-pass filtering the resulting z-score time series at 4 Hz. Only operates on a single channel type, if ``ch_type`` is ``None`` it will select the first type in the list ``mag``, ``grad``, ``eeg``. See :footcite:`Muthukumaraswamy2013` for background on choosing ``filter_freq`` and ``threshold``. Parameters ---------- raw : instance of Raw Data to estimate segments with muscle artifacts. threshold : float The threshold in z-scores for marking segments as containing muscle activity artifacts. ch_type : 'mag' | 'grad' | 'eeg' | None The type of sensors to use. If ``None`` it will take the first type in ``mag``, ``grad``, ``eeg``. min_length_good : float | None The shortest allowed duration of "good data" (in seconds) between adjacent annotations; shorter segments will be incorporated into the surrounding annotations.``None`` is equivalent to ``0``. Default is ``0.1``. filter_freq : array-like, shape (2,) The lower and upper frequencies of the band-pass filter. Default is ``(110, 140)``. %(n_jobs)s %(verbose)s Returns ------- annot : mne.Annotations Periods with muscle artifacts annotated as BAD_muscle. scores_muscle : array Z-score values averaged across channels for each sample. References ---------- .. footbibliography:: """ raw_copy = raw.copy() if ch_type is None: raw_ch_type = raw_copy.get_channel_types() if "mag" in raw_ch_type: ch_type = "mag" elif "grad" in raw_ch_type: ch_type = "grad" elif "eeg" in raw_ch_type: ch_type = "eeg" else: raise ValueError( "No M/EEG channel types found, please specify a 'ch_type' or provide " "M/EEG sensor data." ) logger.info("Using %s sensors for muscle artifact detection", ch_type) else: _check_option("ch_type", ch_type, ["mag", "grad", "eeg"]) raw_copy.pick(ch_type) raw_copy.filter( filter_freq[0], filter_freq[1], fir_design="firwin", pad="reflect_limited", n_jobs=n_jobs, ) raw_copy.apply_hilbert(envelope=True, n_jobs=n_jobs) data = raw_copy.get_data(reject_by_annotation="NaN") nan_mask = ~np.isnan(data[0]) sfreq = raw_copy.info["sfreq"] art_scores = zscore(data[:, nan_mask], axis=1) art_scores = art_scores.sum(axis=0) / np.sqrt(art_scores.shape[0]) art_scores = filter_data(art_scores, sfreq, None, 4) scores_muscle = np.zeros(data.shape[1]) scores_muscle[nan_mask] = art_scores art_mask = scores_muscle > threshold # return muscle scores with NaNs scores_muscle[~nan_mask] = np.nan # remove artifact free periods shorter than min_length_good min_length_good = 0 if min_length_good is None else min_length_good min_samps = min_length_good * sfreq comps, num_comps = label(art_mask == 0) for com in range(1, num_comps + 1): l_idx = np.nonzero(comps == com)[0] if len(l_idx) < min_samps: art_mask[l_idx] = True annot = _annotations_from_mask( raw_copy.times, art_mask, "BAD_muscle", orig_time=raw.info["meas_date"] ) _adjust_onset_meas_date(annot, raw) return annot, scores_muscle def annotate_movement( raw, pos, rotation_velocity_limit=None, translation_velocity_limit=None, mean_distance_limit=None, use_dev_head_trans="average", ): """Detect segments with movement. Detects segments periods further from rotation_velocity_limit, translation_velocity_limit and mean_distance_limit. It returns an annotation with the bad segments. Parameters ---------- raw : instance of Raw Data to compute head position. pos : array, shape (N, 10) The position and quaternion parameters from cHPI fitting. Obtained with `mne.chpi` functions. rotation_velocity_limit : float Head rotation velocity limit in degrees per second. translation_velocity_limit : float Head translation velocity limit in meters per second. mean_distance_limit : float Head position limit from mean recording in meters. use_dev_head_trans : 'average' (default) | 'info' Identify the device to head transform used to define the fixed HPI locations for computing moving distances. If ``average`` the average device to head transform is computed using ``compute_average_dev_head_t``. If ``info``, ``raw.info['dev_head_t']`` is used. Returns ------- annot : mne.Annotations Periods with head motion. hpi_disp : array Head position over time with respect to the mean head pos. See Also -------- compute_average_dev_head_t """ sfreq = raw.info["sfreq"] hp_ts = pos[:, 0].copy() - raw.first_time dt = np.diff(hp_ts) hp_ts = np.concatenate([hp_ts, [hp_ts[-1] + 1.0 / sfreq]]) orig_time = raw.info["meas_date"] annot = Annotations([], [], [], orig_time=orig_time) # Annotate based on rotational velocity t_tot = raw.times[-1] if rotation_velocity_limit is not None: assert rotation_velocity_limit > 0 # Rotational velocity (radians / s) r = _angle_between_quats(pos[:-1, 1:4], pos[1:, 1:4]) r /= dt bad_mask = r >= np.deg2rad(rotation_velocity_limit) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info( "Omitting %5.1f%% (%3d segments): " "ω >= %5.1f°/s (max: %0.1f°/s)" % (bad_pct, len(onsets), rotation_velocity_limit, np.rad2deg(r.max())) ) annot += _annotations_from_mask( hp_ts, bad_mask, "BAD_mov_rotat_vel", orig_time=orig_time ) # Annotate based on translational velocity limit if translation_velocity_limit is not None: assert translation_velocity_limit > 0 v = np.linalg.norm(np.diff(pos[:, 4:7], axis=0), axis=-1) v /= dt bad_mask = v >= translation_velocity_limit onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info( "Omitting %5.1f%% (%3d segments): " "v >= %5.4fm/s (max: %5.4fm/s)" % (bad_pct, len(onsets), translation_velocity_limit, v.max()) ) annot += _annotations_from_mask( hp_ts, bad_mask, "BAD_mov_trans_vel", orig_time=orig_time ) # Annotate based on displacement from mean head position disp = [] if mean_distance_limit is not None: assert mean_distance_limit > 0 # compute dev to head transform for fixed points use_dev_head_trans = use_dev_head_trans.lower() if use_dev_head_trans not in ["average", "info"]: raise ValueError( "use_dev_head_trans must be either" f" 'average' or 'info': got '{use_dev_head_trans}'" ) if use_dev_head_trans == "average": fixed_dev_head_t = compute_average_dev_head_t(raw, pos) elif use_dev_head_trans == "info": fixed_dev_head_t = raw.info["dev_head_t"] # Get static head pos from file, used to convert quat to cartesian chpi_pos = sorted( [d for d in raw.info["hpi_results"][-1]["dig_points"]], key=lambda x: x["ident"], ) chpi_pos = np.array([d["r"] for d in chpi_pos]) # Get head pos changes during recording chpi_pos_mov = np.array( [apply_trans(_quat_to_affine(quat), chpi_pos) for quat in pos[:, 1:7]] ) # get fixed position chpi_pos_fix = apply_trans(fixed_dev_head_t, chpi_pos) # get movement displacement from mean pos hpi_disp = chpi_pos_mov - np.tile(chpi_pos_fix, (pos.shape[0], 1, 1)) # get positions above threshold distance disp = np.sqrt((hpi_disp**2).sum(axis=2)) bad_mask = np.any(disp > mean_distance_limit, axis=1) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info( "Omitting %5.1f%% (%3d segments): " "disp >= %5.4fm (max: %5.4fm)" % (bad_pct, len(onsets), mean_distance_limit, disp.max()) ) annot += _annotations_from_mask( hp_ts, bad_mask, "BAD_mov_dist", orig_time=orig_time ) _adjust_onset_meas_date(annot, raw) return annot, disp @verbose def compute_average_dev_head_t(raw, pos, *, verbose=None): """Get new device to head transform based on good segments. Segments starting with "BAD" annotations are not included for calculating the mean head position. Parameters ---------- raw : instance of Raw | list of Raw Data to compute head position. Can be a list containing multiple raw instances. pos : array, shape (N, 10) | list of ndarray The position and quaternion parameters from cHPI fitting. Can be a list containing multiple position arrays, one per raw instance passed. %(verbose)s Returns ------- dev_head_t : instance of Transform New ``dev_head_t`` transformation using the averaged good head positions. Notes ----- .. versionchanged:: 1.7 Support for multiple raw instances and position arrays was added. """ # Get weighted head pos trans and rot if not isinstance(raw, (list, tuple)): raw = [raw] if not isinstance(pos, (list, tuple)): pos = [pos] if len(pos) != len(raw): raise ValueError( f"Number of head positions ({len(pos)}) must match the number of raw " f"instances ({len(raw)})" ) hp = list() dt = list() for ri, (r, p) in enumerate(zip(raw, pos)): _validate_type(r, BaseRaw, f"raw[{ri}]") _validate_type(p, np.ndarray, f"pos[{ri}]") hp_, dt_ = _raw_hp_weights(r, p) hp.append(hp_) dt.append(dt_) hp = np.concatenate(hp, axis=0) dt = np.concatenate(dt, axis=0) dt /= dt.sum() best_q = _average_quats(hp[:, 1:4], weights=dt) trans = np.eye(4) trans[:3, :3] = quat_to_rot(best_q) trans[:3, 3] = dt @ hp[:, 4:7] dist = np.linalg.norm(trans[:3, 3]) if dist > 1: # less than 1 meter is sane warn(f"Implausible head position detected: {dist} meters from device origin") dev_head_t = Transform("meg", "head", trans) return dev_head_t def _raw_hp_weights(raw, pos): sfreq = raw.info["sfreq"] seg_good = np.ones(len(raw.times)) hp = pos.copy() hp_ts = hp[:, 0] - raw._first_time # Check rounding issues at 0 time if hp_ts[0] < 0: hp_ts[0] = 0 assert hp_ts[1] > 1.0 / sfreq # Mask out segments if beyond scan time mask = hp_ts <= raw.times[-1] if not mask.all(): logger.info( " Removing %d samples > raw.times[-1] (%s)" % (np.sum(~mask), raw.times[-1]) ) hp = hp[mask] del mask, hp_ts # Get time indices ts = np.concatenate((hp[:, 0], [(raw.last_samp + 1) / sfreq])) assert (np.diff(ts) > 0).all() ts -= raw.first_samp / sfreq idx = raw.time_as_index(ts, use_rounding=True) del ts if idx[0] == -1: # annoying rounding errors idx[0] = 0 assert idx[1] > 0 assert (idx >= 0).all() assert idx[-1] == len(seg_good) assert (np.diff(idx) > 0).all() # Mark times bad that are bad according to annotations onsets, ends = _annotations_starts_stops(raw, "bad") for onset, end in zip(onsets, ends): seg_good[onset:end] = 0 dt = np.diff(np.cumsum(np.concatenate([[0], seg_good]))[idx]) assert (dt >= 0).all() dt = dt / sfreq del seg_good, idx return hp, dt def _annotations_from_mask(times, mask, annot_name, orig_time=None): """Construct annotations from boolean mask of the data.""" mask_tf = distance_transform_edt(mask) # Overcome the shortcoming of find_peaks # in finding a marginal peak, by # inserting 0s at the front and the # rear, then subtracting in index ins_mask_tf = np.concatenate((np.zeros(1), mask_tf, np.zeros(1))) left_midpt_index = find_peaks(ins_mask_tf)[0] - 1 right_midpt_index = ( np.flip(len(ins_mask_tf) - 1 - find_peaks(ins_mask_tf[::-1])[0]) - 1 ) onsets_index = left_midpt_index - mask_tf[left_midpt_index].astype(int) + 1 ends_index = right_midpt_index + mask_tf[right_midpt_index].astype(int) # Ensure onsets_index >= 0, # otherwise the duration starts from the beginning onsets_index[onsets_index < 0] = 0 # Ensure ends_index < len(times), # otherwise the duration is to the end of times if len(times) == len(mask): ends_index[ends_index >= len(times)] = len(times) - 1 # To be consistent with the original code, # possibly a bug in tests code else: ends_index[ends_index >= len(mask)] = len(mask) onsets = times[onsets_index] ends = times[ends_index] durations = ends - onsets desc = [annot_name] * len(durations) return Annotations(onsets, durations, desc, orig_time=orig_time) @verbose def annotate_break( raw, events=None, min_break_duration=15.0, t_start_after_previous=5.0, t_stop_before_next=5.0, ignore=("bad", "edge"), *, verbose=None, ): """Create `~mne.Annotations` for breaks in an ongoing recording. This function first searches for segments in the data that are not annotated or do not contain any events and are at least ``min_break_duration`` seconds long, and then proceeds to creating annotations for those break periods. Parameters ---------- raw : instance of Raw The continuous data to analyze. events : None | array, shape (n_events, 3) If ``None`` (default), operate based solely on the annotations present in ``raw``. If an events array, ignore any annotations in the raw data, and operate based on these events only. min_break_duration : float The minimum time span in seconds between the offset of one and the onset of the subsequent annotation (if ``events`` is ``None``) or between two consecutive events (if ``events`` is an array) to consider this period a "break". Defaults to 15 seconds. .. note:: This value defines the minimum duration of a break period in the data, **not** the minimum duration of the generated annotations! See also ``t_start_after_previous`` and ``t_stop_before_next`` for details. t_start_after_previous, t_stop_before_next : float Specifies how far the to-be-created "break" annotation extends towards the two annotations or events spanning the break. This can be used to ensure e.g. that the break annotation doesn't start and end immediately with a stimulation event. If, for example, your data contains a break of 30 seconds between two stimuli, and ``t_start_after_previous`` is set to ``5`` and ``t_stop_before_next`` is set to ``3``, the break annotation will start 5 seconds after the first stimulus, and end 3 seconds before the second stimulus, yielding an annotated break of ``30 - 5 - 3 = 22`` seconds. Both default to 5 seconds. .. note:: The beginning and the end of the recording will be annotated as breaks, too, if the period from recording start until the first annotation or event (or from last annotation or event until recording end) is at least ``min_break_duration`` seconds long. ignore : iterable of str Annotation descriptions starting with these strings will be ignored by the break-finding algorithm. The string comparison is case-insensitive, i.e., ``('bad',)`` and ``('BAD',)`` are equivalent. By default, all annotation descriptions starting with "bad" and annotations indicating "edges" (produced by data concatenation) will be ignored. Pass an empty list or tuple to take all existing annotations into account. If ``events`` is passed, this parameter has no effect. %(verbose)s Returns ------- break_annotations : instance of Annotations The break annotations, each with the description ``'BAD_break'``. If no breaks could be found given the provided function parameters, an empty `~mne.Annotations` object will be returned. Notes ----- .. versionadded:: 0.24 """ _validate_type(item=raw, item_name="raw", types=BaseRaw, type_name="Raw") _validate_type(item=events, item_name="events", types=(None, np.ndarray)) if min_break_duration - t_start_after_previous - t_stop_before_next <= 0: annot_dur = min_break_duration - t_start_after_previous - t_stop_before_next raise ValueError( f"The result of " f"min_break_duration - t_start_after_previous - " f"t_stop_before_next must be greater than 0, but it is: " f"{annot_dur}" ) if events is not None and events.size == 0: raise ValueError("The events array must not be empty.") if events is not None or not ignore: ignore = tuple() else: ignore = tuple(ignore) for item in ignore: _validate_type(item=item, types="str", item_name='All elements of "ignore"') if events is None: annotations = raw.annotations.copy() if ignore: logger.info( f"Ignoring annotations with descriptions starting " f'with: {", ".join(ignore)}' ) else: annotations = annotations_from_events( events=events, sfreq=raw.info["sfreq"], orig_time=raw.info["meas_date"] ) if not annotations: raise ValueError("Could not find (or generate) any annotations in your data.") # Only keep annotations of interest and extract annotated time periods # Ignore case ignore = tuple(i.lower() for i in ignore) keep_mask = [True] * len(annotations) for idx, description in enumerate(annotations.description): description = description.lower() if any(description.startswith(i) for i in ignore): keep_mask[idx] = False annotated_intervals = [ [onset, onset + duration] for onset, duration in zip( annotations.onset[keep_mask], annotations.duration[keep_mask] ) ] # Merge overlapping annotation intervals # Pre-load `merged_intervals` with the first interval to simplify # processing merged_intervals = [annotated_intervals[0]] for interval in annotated_intervals: merged_interval_stop = merged_intervals[-1][1] interval_start, interval_stop = interval if interval_stop < merged_interval_stop: # Current interval ends sooner than the merged one; skip it continue elif ( interval_start <= merged_interval_stop and interval_stop >= merged_interval_stop ): # Expand duration of the merged interval merged_intervals[-1][1] = interval_stop else: # No overlap between the current interval and the existing merged # time period; proceed to the next interval merged_intervals.append(interval) merged_intervals = np.array(merged_intervals) merged_intervals -= raw.first_time # work in zero-based time # Now extract the actual break periods break_onsets = [] break_durations = [] # Handle the time period up until the first annotation if 0 < merged_intervals[0][0] and merged_intervals[0][0] >= min_break_duration: onset = 0 # don't add t_start_after_previous here offset = merged_intervals[0][0] - t_stop_before_next duration = offset - onset break_onsets.append(onset) break_durations.append(duration) # Handle the time period between first and last annotation for idx, _ in enumerate(merged_intervals[1:, :], start=1): this_start = merged_intervals[idx, 0] previous_stop = merged_intervals[idx - 1, 1] if this_start - previous_stop < min_break_duration: continue onset = previous_stop + t_start_after_previous offset = this_start - t_stop_before_next duration = offset - onset break_onsets.append(onset) break_durations.append(duration) # Handle the time period after the last annotation if ( raw.times[-1] > merged_intervals[-1][1] and raw.times[-1] - merged_intervals[-1][1] >= min_break_duration ): onset = merged_intervals[-1][1] + t_start_after_previous offset = raw.times[-1] # don't subtract t_stop_before_next here duration = offset - onset break_onsets.append(onset) break_durations.append(duration) # Finally, create the break annotations break_annotations = Annotations( onset=break_onsets, duration=break_durations, description=["BAD_break"], orig_time=raw.info["meas_date"], ) # Log some info n_breaks = len(break_annotations) break_times = [ f"{o:.1f} – {o + d:.1f} s [{d:.1f} s]" for o, d in zip(break_annotations.onset, break_annotations.duration) ] break_times = "\n ".join(break_times) total_break_dur = sum(break_annotations.duration) fraction_breaks = total_break_dur / raw.times[-1] logger.info( f"\nDetected {n_breaks} break period{_pl(n_breaks)} of >= " f"{min_break_duration} s duration:\n {break_times}\n" f"In total, {round(100 * fraction_breaks, 1):.1f}% of the " f"data ({round(total_break_dur, 1):.1f} s) have been marked " f"as a break.\n" ) _adjust_onset_meas_date(break_annotations, raw) return break_annotations