# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. from collections import defaultdict from functools import partial import numpy as np from scipy.optimize import fmin_cobyla from .._fiff.pick import pick_info, pick_types from .._fiff.tag import _coil_trans_to_loc, _loc_to_coil_trans from ..bem import _check_origin from ..io import BaseRaw from ..transforms import _find_vector_rotation from ..utils import ( _check_fname, _check_option, _ensure_int, _pl, _reg_pinv, _validate_type, check_fname, logger, verbose, ) from .maxwell import ( _col_norm_pinv, _get_grad_point_coilsets, _prep_fine_cal, _prep_mf_coils, _read_cross_talk, _trans_sss_basis, ) @verbose def compute_fine_calibration( raw, n_imbalance=3, t_window=10.0, ext_order=2, origin=(0.0, 0.0, 0.0), cross_talk=None, calibration=None, verbose=None, ): """Compute fine calibration from empty-room data. Parameters ---------- raw : instance of Raw The raw data to use. Should be from an empty-room recording, and all channels should be good. n_imbalance : int Can be 1 or 3 (default), indicating the number of gradiometer imbalance components. Only used if gradiometers are present. t_window : float Time window to use for surface normal rotation in seconds. Default is 10. %(ext_order_maxwell)s Default is 2, which is lower than the default (3) for :func:`mne.preprocessing.maxwell_filter` because it tends to yield more stable parameter estimates. %(origin_maxwell)s %(cross_talk_maxwell)s calibration : dict | None Dictionary with existing calibration. If provided, the magnetometer imbalances and adjusted normals will be used and only the gradiometer imbalances will be estimated (see step 2 in Notes below). %(verbose)s Returns ------- calibration : dict Fine calibration data. count : int The number of good segments used to compute the magnetometer parameters. See Also -------- mne.preprocessing.maxwell_filter Notes ----- This algorithm proceeds in two steps, both optimizing the fit between the data and a reconstruction of the data based only on an external multipole expansion: 1. Estimate magnetometer normal directions and scale factors. All coils (mag and matching grad) are rotated by the adjusted normal direction. 2. Estimate gradiometer imbalance factors. These add point magnetometers in just the gradiometer difference direction or in all three directions (depending on ``n_imbalance``). Magnetometer normal and coefficient estimation (1) is typically the most time consuming step. Gradiometer imbalance parameters (2) can be iteratively reestimated (for example, first using ``n_imbalance=1`` then subsequently ``n_imbalance=3``) by passing the previous ``calibration`` output to the ``calibration`` input in the second call. MaxFilter processes at most 120 seconds of data, so consider cropping your raw instance prior to processing. It also checks to make sure that there were some minimal usable ``count`` number of segments (default 5) that were included in the estimate. .. versionadded:: 0.21 """ n_imbalance = _ensure_int(n_imbalance, "n_imbalance") _check_option("n_imbalance", n_imbalance, (1, 3)) _validate_type(raw, BaseRaw, "raw") ext_order = _ensure_int(ext_order, "ext_order") origin = _check_origin(origin, raw.info, "meg", disp=True) _check_option("raw.info['bads']", raw.info["bads"], ([],)) picks = pick_types(raw.info, meg=True, ref_meg=False) if raw.info["dev_head_t"] is not None: raise ValueError( 'info["dev_head_t"] is not None, suggesting that the ' "data are not from an empty-room recording" ) info = pick_info(raw.info, picks) # make a copy and pick MEG channels mag_picks = pick_types(info, meg="mag", exclude=()) grad_picks = pick_types(info, meg="grad", exclude=()) # Get cross-talk ctc, _ = _read_cross_talk(cross_talk, info["ch_names"]) # Check fine cal _validate_type(calibration, (dict, None), "calibration") # # 1. Rotate surface normals using magnetometer information (if present) # cals = np.ones(len(info["ch_names"])) time_idxs = raw.time_as_index(np.arange(0.0, raw.times[-1], t_window)) if len(time_idxs) <= 1: time_idxs = np.array([0, len(raw.times)], int) else: time_idxs[-1] = len(raw.times) count = 0 locs = np.array([ch["loc"] for ch in info["chs"]]) zs = locs[mag_picks, -3:].copy() if calibration is not None: _, calibration, _ = _prep_fine_cal(info, calibration) for pi, pick in enumerate(mag_picks): idx = calibration["ch_names"].index(info["ch_names"][pick]) cals[pick] = calibration["imb_cals"][idx].item() zs[pi] = calibration["locs"][idx][-3:] elif len(mag_picks) > 0: cal_list = list() z_list = list() logger.info( f"Adjusting normals for {len(mag_picks)} magnetometers " f"(averaging over {len(time_idxs) - 1} time intervals)" ) for start, stop in zip(time_idxs[:-1], time_idxs[1:]): logger.info( f" Processing interval {start / info['sfreq']:0.3f} - " f"{stop / info['sfreq']:0.3f} s" ) data = raw[picks, start:stop][0] if ctc is not None: data = ctc.dot(data) z, cal, good = _adjust_mag_normals(info, data, origin, ext_order) if good: z_list.append(z) cal_list.append(cal) count = len(cal_list) if count == 0: raise RuntimeError("No usable segments found") cals[:] = np.mean(cal_list, axis=0) zs[:] = np.mean(z_list, axis=0) if len(mag_picks) > 0: for ii, new_z in enumerate(zs): z_loc = locs[mag_picks[ii]] # Find sensors with same NZ and R0 (should be three for VV) idxs = _matched_loc_idx(z_loc, locs) # Rotate the direction vectors to the plane defined by new normal _rotate_locs(locs, idxs, new_z) for ci, loc in enumerate(locs): info["chs"][ci]["loc"][:] = loc del calibration, zs # # 2. Estimate imbalance parameters (always done) # if len(grad_picks) > 0: extra = "X direction" if n_imbalance == 1 else ("XYZ directions") logger.info(f"Computing imbalance for {len(grad_picks)} gradimeters ({extra})") imb_list = list() for start, stop in zip(time_idxs[:-1], time_idxs[1:]): logger.info( f" Processing interval {start / info['sfreq']:0.3f} - " f"{stop / info['sfreq']:0.3f} s" ) data = raw[picks, start:stop][0] if ctc is not None: data = ctc.dot(data) out = _estimate_imbalance(info, data, cals, n_imbalance, origin, ext_order) imb_list.append(out) imb = np.mean(imb_list, axis=0) else: imb = np.zeros((len(info["ch_names"]), n_imbalance)) # # Put in output structure # assert len(np.intersect1d(mag_picks, grad_picks)) == 0 imb_cals = [ cals[ii : ii + 1] if ii in mag_picks else imb[ii] for ii in range(len(info["ch_names"])) ] calibration = dict(ch_names=info["ch_names"], locs=locs, imb_cals=imb_cals) return calibration, count def _matched_loc_idx(mag_loc, all_loc): return np.where( [ np.allclose(mag_loc[-3:], loc[-3:]) and np.allclose(mag_loc[:3], loc[:3]) for loc in all_loc ] )[0] def _rotate_locs(locs, idxs, new_z): new_z = new_z / np.linalg.norm(new_z) old_z = locs[idxs[0]][-3:] old_z = old_z / np.linalg.norm(old_z) rot = _find_vector_rotation(old_z, new_z) for ci in idxs: this_trans = _loc_to_coil_trans(locs[ci]) this_trans[:3, :3] = np.dot(rot, this_trans[:3, :3]) locs[ci][:] = _coil_trans_to_loc(this_trans) np.testing.assert_allclose(locs[ci][-3:], new_z, atol=1e-4) def _vector_angle(x, y): """Get the angle between two vectors in degrees.""" return np.abs( np.arccos( np.clip( (x * y).sum(axis=-1) / (np.linalg.norm(x, axis=-1) * np.linalg.norm(y, axis=-1)), -1, 1.0, ) ) ) def _adjust_mag_normals(info, data, origin, ext_order): """Adjust coil normals using magnetometers and empty-room data.""" # in principle we could allow using just mag or mag+grad, but MF uses # just mag so let's follow suit mag_scale = 100.0 picks_use = pick_types(info, meg="mag", exclude="bads") picks_meg = pick_types(info, meg=True, exclude=()) picks_mag_orig = pick_types(info, meg="mag", exclude="bads") info = pick_info(info, picks_use) # copy data = data[picks_use] cals = np.ones((len(data), 1)) angles = np.zeros(len(cals)) picks_mag = pick_types(info, meg="mag") data[picks_mag] *= mag_scale # Transform variables so we're only dealing with good mags exp = dict(int_order=0, ext_order=ext_order, origin=origin) all_coils = _prep_mf_coils(info, ignore_ref=True) S_tot = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale) first_err = _data_err(data, S_tot, cals) count = 0 # two passes: first do the worst, then do all in order zs = np.array([ch["loc"][-3:] for ch in info["chs"]]) zs /= np.linalg.norm(zs, axis=-1, keepdims=True) orig_zs = zs.copy() match_idx = dict() locs = np.array([ch["loc"] for ch in info["chs"]]) for pick in picks_mag: match_idx[pick] = _matched_loc_idx(locs[pick], locs) counts = defaultdict(lambda: 0) for ki, kind in enumerate(("worst first", "in order")): logger.info(f" Magnetometer normal adjustment ({kind}) ...") S_tot = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale) for pick in picks_mag: err = _data_err(data, S_tot, cals, axis=1) # First pass: do worst; second pass: do all in order (up to 3x/sen) if ki == 0: order = list(np.argsort(err[picks_mag])) cal_idx = 0 while len(order) > 0: cal_idx = picks_mag[order.pop(-1)] if counts[cal_idx] < 3: break if err[cal_idx] < 2.5: break # move on to second loop else: cal_idx = pick counts[cal_idx] += 1 assert cal_idx in picks_mag count += 1 old_z = zs[cal_idx].copy() objective = partial( _cal_sss_target, old_z=old_z, all_coils=all_coils, cal_idx=cal_idx, data=data, cals=cals, match_idx=match_idx, S_tot=S_tot, origin=origin, ext_order=ext_order, ) # Figure out the additive term for z-component zs[cal_idx] = fmin_cobyla( objective, old_z, cons=(), rhobeg=1e-3, rhoend=1e-4, disp=False ) # Do in-place adjustment to all_coils cals[cal_idx] = 1.0 / np.linalg.norm(zs[cal_idx]) zs[cal_idx] *= cals[cal_idx] for idx in match_idx[cal_idx]: _rotate_coil(zs[cal_idx], old_z, all_coils, idx, inplace=True) # Recalculate S_tot, taking into account rotations S_tot = _trans_sss_basis(exp, all_coils) # Reprt results old_err = err[cal_idx] new_err = _data_err(data, S_tot, cals, idx=cal_idx) angles[cal_idx] = np.abs( np.rad2deg(_vector_angle(zs[cal_idx], orig_zs[cal_idx])) ) ch_name = info["ch_names"][cal_idx] logger.debug( f" Optimization step {count:3d} | " f"{ch_name} ({counts[cal_idx]}) | " f"res {old_err:5.2f}→{new_err:5.2f}% | " f"×{cals[cal_idx, 0]:0.3f} | {angles[cal_idx]:0.2f}°" ) last_err = _data_err(data, S_tot, cals) # Chunk is usable if all angles and errors are both small reason = list() max_angle = np.max(angles) if max_angle >= 5.0: reason.append(f"max angle {max_angle:0.2f} >= 5°") each_err = _data_err(data, S_tot, cals, axis=-1)[picks_mag] n_bad = (each_err > 5.0).sum() if n_bad: reason.append(f"{n_bad} residual{_pl(n_bad)} > 5%") reason = ", ".join(reason) if reason: reason = f" ({reason})" good = not bool(reason) assert np.allclose(np.linalg.norm(zs, axis=1), 1.0) logger.info(f" Fit mismatch {first_err:0.2f}→{last_err:0.2f}%") logger.info(f' Data segment {"" if good else "un"}usable{reason}') # Reformat zs and cals to be the n_mags (including bads) assert zs.shape == (len(data), 3) assert cals.shape == (len(data), 1) imb_cals = np.ones(len(picks_meg)) imb_cals[picks_mag_orig] = cals[:, 0] return zs, imb_cals, good def _data_err(data, S_tot, cals, idx=None, axis=None): if idx is None: idx = slice(None) S_tot = S_tot / cals data_model = np.dot(np.dot(S_tot[idx], _col_norm_pinv(S_tot.copy())[0]), data) err = 100 * ( np.linalg.norm(data_model - data[idx], axis=axis) / np.linalg.norm(data[idx], axis=axis) ) return err def _rotate_coil(new_z, old_z, all_coils, idx, inplace=False): """Adjust coils.""" # Turn NX and NY to the plane determined by NZ old_z = old_z / np.linalg.norm(old_z) new_z = new_z / np.linalg.norm(new_z) rot = _find_vector_rotation(old_z, new_z) # additional coil rotation this_sl = all_coils[5][idx] this_rmag = np.dot(rot, all_coils[0][this_sl].T).T this_cosmag = np.dot(rot, all_coils[1][this_sl].T).T if inplace: all_coils[0][this_sl] = this_rmag all_coils[1][this_sl] = this_cosmag subset = ( this_rmag, this_cosmag, np.zeros(this_rmag.shape[0], int), 1, all_coils[4][[idx]], {0: this_sl}, ) return subset def _cal_sss_target( new_z, old_z, all_coils, cal_idx, data, cals, S_tot, origin, ext_order, match_idx ): """Evaluate objective function for SSS-based magnetometer calibration.""" cals[cal_idx] = 1.0 / np.linalg.norm(new_z) exp = dict(int_order=0, ext_order=ext_order, origin=origin) S_tot = S_tot.copy() # Rotate necessary coils properly and adjust correct element in c for idx in match_idx[cal_idx]: this_coil = _rotate_coil(new_z, old_z, all_coils, idx) # Replace correct row of S_tot with new value S_tot[idx] = _trans_sss_basis(exp, this_coil) # Get the GOF return _data_err(data, S_tot, cals, idx=cal_idx) def _estimate_imbalance(info, data, cals, n_imbalance, origin, ext_order): """Estimate gradiometer imbalance parameters.""" mag_scale = 100.0 n_iterations = 3 mag_picks = pick_types(info, meg="mag", exclude=()) grad_picks = pick_types(info, meg="grad", exclude=()) data = data.copy() data[mag_picks, :] *= mag_scale del mag_picks grad_imb = np.zeros((len(grad_picks), n_imbalance)) exp = dict(origin=origin, int_order=0, ext_order=ext_order) all_coils = _prep_mf_coils(info, ignore_ref=True) grad_point_coils = _get_grad_point_coilsets(info, n_imbalance, ignore_ref=True) S_orig = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale) S_orig /= cals[:, np.newaxis] # Compute point gradiometers for each grad channel this_cs = np.array([mag_scale], float) S_pt = np.array( [_trans_sss_basis(exp, coils, None, this_cs) for coils in grad_point_coils] ) for k in range(n_iterations): S_tot = S_orig.copy() # In theory we could zero out the homogeneous components with: # S_tot[grad_picks, :3] = 0 # But in practice it doesn't seem to matter S_recon = S_tot[grad_picks] # Add influence of point magnetometers S_tot[grad_picks, :] += np.einsum("ij,ijk->jk", grad_imb.T, S_pt) # Compute multipolar moments mm = np.dot(_col_norm_pinv(S_tot.copy())[0], data) # Use good channels to recalculate prev_imb = grad_imb.copy() data_recon = np.dot(S_recon, mm) assert S_pt.shape == (n_imbalance, len(grad_picks), S_tot.shape[1]) khi_pts = (S_pt @ mm).transpose(1, 2, 0) assert khi_pts.shape == (len(grad_picks), data.shape[1], n_imbalance) residual = data[grad_picks] - data_recon assert residual.shape == (len(grad_picks), data.shape[1]) d = (residual[:, np.newaxis, :] @ khi_pts)[:, 0] assert d.shape == (len(grad_picks), n_imbalance) dinv, _, _ = _reg_pinv(khi_pts.swapaxes(-1, -2) @ khi_pts, rcond=1e-6) assert dinv.shape == (len(grad_picks), n_imbalance, n_imbalance) grad_imb[:] = (d[:, np.newaxis] @ dinv)[:, 0] # This code is equivalent but hits a np.linalg.pinv bug on old NumPy: # grad_imb[:] = np.sum( # dot product across the time dim # np.linalg.pinv(khi_pts) * residual[:, np.newaxis], axis=-1) deltas = np.linalg.norm(grad_imb - prev_imb) / max( np.linalg.norm(grad_imb), np.linalg.norm(prev_imb) ) logger.debug( f" Iteration {k + 1}/{n_iterations}: " f"max ∆ = {100 * deltas.max():7.3f}%" ) imb = np.zeros((len(data), n_imbalance)) imb[grad_picks] = grad_imb return imb def read_fine_calibration(fname): """Read fine calibration information from a ``.dat`` file. The fine calibration typically includes improved sensor locations, calibration coefficients, and gradiometer imbalance information. Parameters ---------- fname : path-like The filename. Returns ------- calibration : dict Fine calibration information. Key-value pairs are: - ``ch_names`` List of str of the channel names. - ``locs`` Coil location and orientation parameters. - ``imb_cals`` For magnetometers, the calibration coefficients. For gradiometers, one or three imbalance parameters. """ # Read new sensor locations fname = _check_fname(fname, overwrite="read", must_exist=True) check_fname(fname, "cal", (".dat",)) ch_names, locs, imb_cals = list(), list(), list() with open(fname) as fid: for line in fid: if line[0] in "#\n": continue vals = line.strip().split() if len(vals) not in [14, 16]: raise RuntimeError( "Error parsing fine calibration file, " "should have 14 or 16 entries per line " f"but found {len(vals)} on line:\n{line}" ) # `vals` contains channel number ch_name = vals[0] if len(ch_name) in (3, 4): # heuristic for Neuromag fix try: ch_name = int(ch_name) except ValueError: # something other than e.g. 113 or 2642 pass else: ch_name = f"MEG{int(ch_name):04}" # (x, y, z), x-norm 3-vec, y-norm 3-vec, z-norm 3-vec # and 1 or 3 imbalance terms ch_names.append(ch_name) locs.append(np.array(vals[1:13], float)) imb_cals.append(np.array(vals[13:], float)) locs = np.array(locs) return dict(ch_names=ch_names, locs=locs, imb_cals=imb_cals) def write_fine_calibration(fname, calibration): """Write fine calibration information to a ``.dat`` file. Parameters ---------- fname : path-like The filename to write out. calibration : dict Fine calibration information. """ fname = _check_fname(fname, overwrite=True) check_fname(fname, "cal", (".dat",)) keys = ("ch_names", "locs", "imb_cals") with open(fname, "wb") as cal_file: for ch_name, loc, imb_cal in zip(*(calibration[key] for key in keys)): cal_line = np.concatenate([loc, imb_cal]).round(6) cal_line = " ".join(f"{c:0.6f}" for c in cal_line) cal_file.write(f"{ch_name} {cal_line}\n".encode("ASCII"))