# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import numpy as np from .._fiff.constants import FIFF from .._fiff.pick import pick_info from ..baseline import _log_rescale, rescale from ..epochs import Epochs from ..event import make_fixed_length_events from ..evoked import EvokedArray from ..fixes import _safe_svd from ..label import BiHemiLabel, Label from ..parallel import parallel_func from ..source_estimate import _make_stc from ..time_frequency.multitaper import ( _compute_mt_params, _mt_spectra, _psd_from_mt, _psd_from_mt_adaptive, ) from ..time_frequency.tfr import cwt, morlet from ..utils import ProgressBar, _check_option, _pl, _validate_type, logger, verbose from .inverse import ( INVERSE_METHODS, _assemble_kernel, _check_or_prepare, _check_ori, _pick_channels_inverse_operator, _subject_from_inverse, combine_xyz, ) def _restrict_K_to_lbls(labels, K, noise_norm, vertno, pick_ori): """Use labels to choose desired sources in the kernel.""" verts_to_use = [[], []] # create mask for K by compiling original vertices from vertno in labels for ii in range(len(labels)): lab = labels[ii] # handle BiHemi labels; ok so long as no overlap w/ single hemi labels if lab.hemi == "both": l_verts = np.intersect1d(vertno[0], lab.lh.vertices) r_verts = np.intersect1d(vertno[1], lab.rh.vertices) # output sorted verts_to_use[0] += list(l_verts) verts_to_use[1] += list(r_verts) else: hidx = 0 if lab.hemi == "lh" else 1 verts = np.intersect1d(vertno[hidx], lab.vertices) verts_to_use[hidx] += list(verts) # check that we don't have overlapping vertices in our labels for ii in range(2): if len(np.unique(verts_to_use[ii])) != len(verts_to_use[ii]): raise RuntimeError( "Labels cannot have overlapping vertices. " "Please select labels with unique vertices " "and try again." ) # turn original vertex numbers from vertno into indices for K K_mask = np.searchsorted(vertno[0], verts_to_use[0]) r_kmask = np.searchsorted(vertno[1], verts_to_use[1]) + len(vertno[0]) K_mask = np.hstack((K_mask, r_kmask)) # record which original vertices are at each index in out_K hemis = ("lh", "rh") ki_keys = [ (hemis[hi], verts_to_use[hi][ii]) for hi in range(2) for ii in range(len(verts_to_use[hi])) ] ki_vals = list(range(len(K_mask))) k_idxs = dict(zip(ki_keys, ki_vals)) # mask K, handling the orientation issue len_allverts = len(vertno[0]) + len(vertno[1]) if len(K) == len_allverts: assert pick_ori == "normal" out_K = K[K_mask] else: # here, K = [x0, y0, z0, x1, y1, z1 ...] # we need to drop x, y and z of unused vertices assert not pick_ori == "normal", pick_ori assert len(K) == 3 * len_allverts, (len(K), len_allverts) out_len = len(K_mask) * 3 out_K = K[0:out_len] # get the correct-shaped array for di in range(3): K_pick = K[di::3] out_K[di::3] = K_pick[K_mask] # set correct values for out out_vertno = verts_to_use if noise_norm is not None: out_nn = noise_norm[K_mask] else: out_nn = None return out_K, out_nn, out_vertno, k_idxs def _prepare_source_params( inst, inverse_operator, label=None, lambda2=1.0 / 9.0, method="dSPM", nave=1, pca=True, pick_ori="normal", prepared=False, method_params=None, use_cps=True, ): """Prepare inverse operator and params for spectral / TFR analysis.""" inv = _check_or_prepare( inverse_operator, nave, lambda2, method, method_params, prepared ) # # Pick the correct channels from the data # sel = _pick_channels_inverse_operator(inst.ch_names, inv) logger.info("Picked %d channels from the data" % len(sel)) logger.info("Computing inverse...") # # Simple matrix multiplication followed by combination of the # three current components # # This does all the data transformations to compute the weights for the # eigenleads # # K shape: (3 x n_sources, n_channels) or (n_sources, n_channels) # noise_norm shape: (n_sources, 1) # vertno: [lh_verts, rh_verts] k_idxs = None if not isinstance(label, (Label, BiHemiLabel)): whole_K, whole_noise_norm, whole_vertno, _ = _assemble_kernel( inv, None, method, pick_ori, use_cps=use_cps ) if isinstance(label, list): K, noise_norm, vertno, k_idxs = _restrict_K_to_lbls( label, whole_K, whole_noise_norm, whole_vertno, pick_ori ) else: assert not label K, noise_norm, vertno = whole_K, whole_noise_norm, whole_vertno elif isinstance(label, (Label, BiHemiLabel)): K, noise_norm, vertno, _ = _assemble_kernel( inv, label, method, pick_ori, use_cps=use_cps ) if pca: U, s, Vh = _safe_svd(K, full_matrices=False) rank = np.sum(s > 1e-8 * s[0]) K = s[:rank] * U[:, :rank] Vh = Vh[:rank] logger.info("Reducing data rank %d -> %d" % (len(s), rank)) else: Vh = None is_free_ori = inverse_operator["source_ori"] == FIFF.FIFFV_MNE_FREE_ORI return K, sel, Vh, vertno, is_free_ori, noise_norm, k_idxs @verbose def source_band_induced_power( epochs, inverse_operator, bands, label=None, lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5, df=1, use_fft=False, decim=1, baseline=None, baseline_mode="logratio", pca=True, n_jobs=None, prepared=False, method_params=None, use_cps=True, *, verbose=None, ): """Compute source space induced power in given frequency bands. Parameters ---------- epochs : instance of Epochs The epochs. inverse_operator : instance of InverseOperator The inverse operator. bands : dict Example : bands = dict(alpha=[8, 9]). label : Label | list of Label Restricts the source estimates to a given label or list of labels. If labels are provided in a list, power will be averaged over vertices. lambda2 : float The regularization parameter of the minimum norm. method : "MNE" | "dSPM" | "sLORETA" | "eLORETA" Use minimum norm, dSPM (default), sLORETA, or eLORETA. nave : int The number of averages used to scale the noise covariance matrix. n_cycles : float | array of float Number of cycles. Fixed number or one per frequency. df : float Delta frequency within bands. use_fft : bool Do convolutions in time or frequency domain with FFT. decim : int Temporal decimation factor. baseline : None (default) or tuple, shape (2,) The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. baseline_mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio' Perform baseline correction by - subtracting the mean of baseline values ('mean') - dividing by the mean of baseline values ('ratio') - dividing by the mean of baseline values and taking the log ('logratio') - subtracting the mean of baseline values followed by dividing by the mean of baseline values ('percent') - subtracting the mean of baseline values and dividing by the standard deviation of baseline values ('zscore') - dividing by the mean of baseline values, taking the log, and dividing by the standard deviation of log baseline values ('zlogratio') pca : bool If True, the true dimension of data is estimated before running the time-frequency transforms. It reduces the computation times e.g. with a dataset that was maxfiltered (true dim is 64). %(n_jobs)s prepared : bool If True, do not call :func:`prepare_inverse_operator`. method_params : dict | None Additional options for eLORETA. See Notes of :func:`apply_inverse`. .. versionadded:: 0.16 %(use_cps_restricted)s .. versionadded:: 0.20 %(verbose)s Returns ------- stcs : dict of SourceEstimate (or VolSourceEstimate) The estimated source space induced power estimates in shape (n_vertices, n_frequencies, n_samples) if label=None or label=label. For lists of one or more labels, the induced power estimate has shape (n_labels, n_frequencies, n_samples). """ # noqa: E501 _check_option("method", method, INVERSE_METHODS) freqs = np.concatenate( [np.arange(band[0], band[1] + df / 2.0, df) for _, band in bands.items()] ) powers, _, vertno = _source_induced_power( epochs, inverse_operator, freqs, label=label, lambda2=lambda2, method=method, nave=nave, n_cycles=n_cycles, decim=decim, use_fft=use_fft, pca=pca, n_jobs=n_jobs, with_plv=False, prepared=prepared, method_params=method_params, use_cps=use_cps, ) Fs = epochs.info["sfreq"] # sampling in Hz stcs = dict() subject = _subject_from_inverse(inverse_operator) _log_rescale(baseline, baseline_mode) # for early failure for name, band in bands.items(): idx = [k for k, f in enumerate(freqs) if band[0] <= f <= band[1]] # average power in band + mean over epochs power = np.mean(powers[:, idx, :], axis=1) # Run baseline correction power = rescale( power, epochs.times[::decim], baseline, baseline_mode, copy=False, verbose=False, ) tmin = epochs.times[0] tstep = float(decim) / Fs stc = _make_stc( power, vertices=vertno, tmin=tmin, tstep=tstep, subject=subject, src_type=inverse_operator["src"].kind, ) stcs[name] = stc logger.info("[done]") return stcs def _prepare_tfr(data, decim, pick_ori, Ws, K, source_ori): """Prepare TFR source localization.""" n_times = data[:, :, ::decim].shape[2] n_freqs = len(Ws) n_sources = K.shape[0] is_free_ori = False if source_ori == FIFF.FIFFV_MNE_FREE_ORI and pick_ori is None: is_free_ori = True n_sources //= 3 shape = (n_sources, n_freqs, n_times) return shape, is_free_ori @verbose def _compute_pow_plv( data, K, sel, Ws, source_ori, use_fft, Vh, with_power, with_plv, pick_ori, decim, noise_norm=None, verbose=None, ): """Aux function for induced power and PLV.""" shape, is_free_ori = _prepare_tfr(data, decim, pick_ori, Ws, K, source_ori) power = np.zeros(shape, dtype=np.float64) # power or raw TFR # phase lock plv = np.zeros(shape, dtype=np.complex128) if with_plv else None for epoch in data: epoch = epoch[sel] # keep only selected channels if Vh is not None: epoch = np.dot(Vh, epoch) # reducing data rank power_e, plv_e = _single_epoch_tfr( data=epoch, is_free_ori=is_free_ori, K=K, Ws=Ws, use_fft=use_fft, decim=decim, shape=shape, with_plv=with_plv, with_power=with_power, ) power += power_e if with_plv: plv += plv_e if noise_norm is not None: power *= noise_norm[:, :, np.newaxis] ** 2 return power, plv def _single_epoch_tfr( data, is_free_ori, K, Ws, use_fft, decim, shape, with_plv, with_power ): """Compute single trial TFRs, either ITC, power or raw TFR.""" tfr_e = np.zeros(shape, dtype=np.float64) # power or raw TFR # phase lock plv_e = np.zeros(shape, dtype=np.complex128) if with_plv else None n_sources, _, n_times = shape for f, w in enumerate(Ws): tfr_ = cwt(data, [w], use_fft=use_fft, decim=decim) tfr_ = np.asfortranarray(tfr_.reshape(len(data), -1)) # phase lock and power at freq f if with_plv: plv_f = np.zeros((n_sources, n_times), dtype=np.complex128) tfr_f = np.zeros((n_sources, n_times), dtype=np.float64) for k, t in enumerate([np.real(tfr_), np.imag(tfr_)]): sol = np.dot(K, t) sol_pick_normal = sol if is_free_ori: sol_pick_normal = sol[2::3] if with_plv: if k == 0: # real plv_f += sol_pick_normal else: # imag plv_f += 1j * sol_pick_normal if is_free_ori: logger.debug("combining the current components...") sol = combine_xyz(sol, square=with_power) elif with_power: sol *= sol tfr_f += sol del sol tfr_e[:, f, :] += tfr_f del tfr_f if with_plv: plv_f /= np.abs(plv_f) plv_e[:, f, :] += plv_f del plv_f return tfr_e, plv_e def _get_label_power(power, labels, vertno, k_idxs): """Average power across vertices in labels.""" (_, ps1, ps2) = power.shape # construct out array with correct shape out_power = np.zeros(shape=(len(labels), ps1, ps2)) # for each label, compile list of vertices we want for li in np.arange(len(labels)): lab = labels[li] hemis = ("lh", "rh") all_vnums = [[], []] if lab.hemi == "both": all_vnums[0] = np.intersect1d(lab.lh.vertices, vertno[0]) all_vnums[1] = np.intersect1d(lab.rh.vertices, vertno[1]) else: assert lab.hemi == "lh" or lab.hemi == "rh" h_id = 0 if lab.hemi == "lh" else 1 all_vnums[h_id] = np.intersect1d(vertno[h_id], lab.vertices) verts = [(hemis[hi], vn) for hi in range(2) for vn in all_vnums[hi]] # restrict power to relevant vertices in label lab_mask = np.array([False] * len(power)) for vert in verts: lab_mask[k_idxs[vert]] = True # k_idxs[vert] gives power row index lab_power = power[lab_mask] # only pass through rows we want assert lab_power.shape == (len(verts), ps1, ps2) # set correct out values for label out_power[li, :, :] = np.mean(lab_power, axis=0) assert out_power.shape == (len(labels), ps1, ps2) return out_power @verbose def _source_induced_power( epochs, inverse_operator, freqs, label=None, lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5, decim=1, use_fft=False, pca=True, pick_ori="normal", n_jobs=None, with_plv=True, zero_mean=False, prepared=False, method_params=None, use_cps=True, verbose=None, ): """Aux function for source induced power.""" if label: _validate_type( label, types=(Label, BiHemiLabel, list, tuple, None), type_name=("Label or BiHemiLabel", "list of labels", "None"), ) if isinstance(label, (list, tuple)): for item in label: _validate_type( item, types=(Label, BiHemiLabel), type_name=("Label or BiHemiLabel"), ) if len(label) > 1 and with_plv: raise RuntimeError( "Phase-locking value cannot be calculated " "when averaging induced power within " "labels. Please set `with_plv` to False, pass a " "single `label=label`, or set `label=None`." ) epochs_data = epochs.get_data(copy=False) K, sel, Vh, vertno, is_free_ori, noise_norm, k_id = _prepare_source_params( inst=epochs, inverse_operator=inverse_operator, label=label, lambda2=lambda2, method=method, nave=nave, pca=pca, pick_ori=pick_ori, prepared=prepared, method_params=method_params, use_cps=use_cps, ) inv = inverse_operator parallel, my_compute_source_tfrs, n_jobs = parallel_func( _compute_pow_plv, n_jobs, max_jobs=len(epochs_data) ) Fs = epochs.info["sfreq"] # sampling in Hz logger.info("Computing source power ...") Ws = morlet(Fs, freqs, n_cycles=n_cycles, zero_mean=zero_mean) out = parallel( my_compute_source_tfrs( data=data, K=K, sel=sel, Ws=Ws, source_ori=inv["source_ori"], use_fft=use_fft, Vh=Vh, with_plv=with_plv, with_power=True, pick_ori=pick_ori, decim=decim, noise_norm=noise_norm, ) for data in np.array_split(epochs_data, n_jobs) ) power = sum(o[0] for o in out) # power shape: (n_verts, n_freqs, n_samps) power /= len(epochs_data) # average power over epochs if isinstance(label, (Label, BiHemiLabel)): logger.info( f"Outputting power for {len(power)} vertices in label {label.name}." ) elif isinstance(label, list): power = _get_label_power(power, label, vertno, k_id) logger.info( "Averaging induced power across vertices within labels " f"for {len(label)} label{_pl(label)}." ) else: assert not label if with_plv: plv = sum(o[1] for o in out) plv = np.abs(plv) plv /= len(epochs_data) # average power over epochs else: plv = None return power, plv, vertno @verbose def source_induced_power( epochs, inverse_operator, freqs, label=None, lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5, decim=1, use_fft=False, pick_ori=None, baseline=None, baseline_mode="logratio", pca=True, n_jobs=None, *, return_plv=True, zero_mean=False, prepared=False, method_params=None, use_cps=True, verbose=None, ): """Compute induced power and phase lock. Computation can optionally be restricted in a label. Parameters ---------- epochs : instance of Epochs The epochs. inverse_operator : instance of InverseOperator The inverse operator. freqs : array Array of frequencies of interest. label : Label | list of Label Restricts the source estimates to a given label or list of labels. If labels are provided in a list, power will be averaged over vertices within each label. lambda2 : float The regularization parameter of the minimum norm. method : "MNE" | "dSPM" | "sLORETA" | "eLORETA" Use minimum norm, dSPM (default), sLORETA, or eLORETA. nave : int The number of averages used to scale the noise covariance matrix. n_cycles : float | array of float Number of cycles. Fixed number or one per frequency. decim : int Temporal decimation factor. use_fft : bool Do convolutions in time or frequency domain with FFT. pick_ori : None | "normal" If "normal", rather than pooling the orientations by taking the norm, only the radial component is kept. This is only implemented when working with loose orientations. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. baseline_mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio' Perform baseline correction by - subtracting the mean of baseline values ('mean') - dividing by the mean of baseline values ('ratio') - dividing by the mean of baseline values and taking the log ('logratio') - subtracting the mean of baseline values followed by dividing by the mean of baseline values ('percent') - subtracting the mean of baseline values and dividing by the standard deviation of baseline values ('zscore') - dividing by the mean of baseline values, taking the log, and dividing by the standard deviation of log baseline values ('zlogratio') pca : bool If True, the true dimension of data is estimated before running the time-frequency transforms. It reduces the computation times e.g. with a dataset that was maxfiltered (true dim is 64). %(n_jobs)s return_plv : bool If True, return the phase-locking value array. Else, only return power. .. versionadded:: 1.6 zero_mean : bool Make sure the wavelets are zero mean. prepared : bool If True, do not call :func:`prepare_inverse_operator`. method_params : dict | None Additional options for eLORETA. See Notes of :func:`apply_inverse`. %(use_cps_restricted)s .. versionadded:: 0.20 %(verbose)s Returns ------- power : array The induced power array with shape (n_sources, n_freqs, n_samples) if label=None or label=label. For lists of one or more labels, the induced power estimate has shape (n_labels, n_frequencies, n_samples). plv : array The phase-locking value array with shape (n_sources, n_freqs, n_samples). Only returned if ``return_plv=True``. """ # noqa: E501 _check_option("method", method, INVERSE_METHODS) _check_ori(pick_ori, inverse_operator["source_ori"], inverse_operator["src"]) power, plv, vertno = _source_induced_power( epochs, inverse_operator, freqs, label=label, lambda2=lambda2, method=method, nave=nave, n_cycles=n_cycles, decim=decim, use_fft=use_fft, pick_ori=pick_ori, pca=pca, n_jobs=n_jobs, with_plv=return_plv, method_params=method_params, zero_mean=zero_mean, prepared=prepared, use_cps=use_cps, ) # Run baseline correction power = rescale(power, epochs.times[::decim], baseline, baseline_mode, copy=False) outs = (power, plv) if return_plv else power return outs @verbose def compute_source_psd( raw, inverse_operator, lambda2=1.0 / 9.0, method="dSPM", tmin=0.0, tmax=None, fmin=0.0, fmax=200.0, n_fft=2048, overlap=0.5, pick_ori=None, label=None, nave=1, pca=True, prepared=False, method_params=None, inv_split=None, bandwidth="hann", adaptive=False, low_bias=False, n_jobs=None, return_sensor=False, dB=False, *, verbose=None, ): """Compute source power spectral density (PSD). Parameters ---------- raw : instance of Raw The raw data. inverse_operator : instance of InverseOperator The inverse operator. lambda2 : float The regularization parameter. method : "MNE" | "dSPM" | "sLORETA" Use minimum norm, dSPM (default), sLORETA, or eLORETA. tmin : float The beginning of the time interval of interest (in seconds). Use 0. for the beginning of the file. tmax : float | None The end of the time interval of interest (in seconds). If None stop at the end of the file. fmin : float The lower frequency of interest. fmax : float The upper frequency of interest. n_fft : int Window size for the FFT. Should be a power of 2. overlap : float The overlap fraction between windows. Should be between 0 and 1. 0 means no overlap. pick_ori : None | "normal" If "normal", rather than pooling the orientations by taking the norm, only the radial component is kept. This is only implemented when working with loose orientations. label : Label Restricts the source estimates to a given label. nave : int The number of averages used to scale the noise covariance matrix. pca : bool If True, the true dimension of data is estimated before running the time-frequency transforms. It reduces the computation times e.g. with a dataset that was maxfiltered (true dim is 64). prepared : bool If True, do not call :func:`prepare_inverse_operator`. method_params : dict | None Additional options for eLORETA. See Notes of :func:`apply_inverse`. .. versionadded:: 0.16 inv_split : int or None Split inverse operator into inv_split parts in order to save memory. .. versionadded:: 0.17 bandwidth : float | str The bandwidth of the multi taper windowing function in Hz. Can also be a string (e.g., 'hann') to use a single window. For backward compatibility, the default is 'hann'. .. versionadded:: 0.17 adaptive : bool Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation). .. versionadded:: 0.17 low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. .. versionadded:: 0.17 %(n_jobs)s It is only used if adaptive=True. .. versionadded:: 0.17 return_sensor : bool If True, return the sensor PSDs as an EvokedArray. .. versionadded:: 0.17 dB : bool If True (default False), return output it decibels. .. versionadded:: 0.17 %(verbose)s Returns ------- stc_psd : instance of SourceEstimate | VolSourceEstimate The PSD of each of the sources. sensor_psd : instance of EvokedArray The PSD of each sensor. Only returned if ``return_sensor`` is True. See Also -------- compute_source_psd_epochs Notes ----- Each window is multiplied by a window before processing, so using a non-zero overlap is recommended. This function is different from :func:`compute_source_psd_epochs` in that: 1. ``bandwidth='hann'`` by default, skipping multitaper estimation 2. For convenience it wraps :func:`mne.make_fixed_length_events` and :class:`mne.Epochs`. Otherwise the two should produce identical results. """ tmin = 0.0 if tmin is None else float(tmin) overlap = float(overlap) if not 0 <= overlap < 1: raise ValueError(f"Overlap must be at least 0 and less than 1, got {overlap}") n_fft = int(n_fft) duration = ((1.0 - overlap) * n_fft) / raw.info["sfreq"] events = make_fixed_length_events(raw, 1, tmin, tmax, duration) epochs = Epochs(raw, events, 1, 0, (n_fft - 1) / raw.info["sfreq"], baseline=None) out = compute_source_psd_epochs( epochs, inverse_operator, lambda2, method, fmin, fmax, pick_ori, label, nave, pca, inv_split, bandwidth, adaptive, low_bias, True, n_jobs, prepared, method_params, return_sensor=True, ) source_data = 0.0 sensor_data = 0.0 count = 0 for stc, evoked in out: source_data += stc.data sensor_data += evoked.data count += 1 assert count > 0 # should be guaranteed by make_fixed_length_events sensor_data /= count source_data /= count if dB: np.log10(sensor_data, out=sensor_data) sensor_data *= 10.0 np.log10(source_data, out=source_data) source_data *= 10.0 evoked.data = sensor_data evoked.nave = count stc.data = source_data out = stc if return_sensor: out = (out, evoked) return out def _compute_source_psd_epochs( epochs, inverse_operator, lambda2=1.0 / 9.0, method="dSPM", fmin=0.0, fmax=200.0, pick_ori=None, label=None, nave=1, pca=True, inv_split=None, bandwidth=4.0, adaptive=False, low_bias=True, n_jobs=None, prepared=False, method_params=None, return_sensor=False, use_cps=True, ): """Generate compute_source_psd_epochs.""" logger.info(f"Considering frequencies {fmin} ... {fmax} Hz") if label: # TODO: add multi-label support # since `_prepare_source_params` can handle a list of labels now, # multi-label support should be within reach for psd calc as well _validate_type( label, types=(Label, BiHemiLabel, None), type_name=("Label or BiHemiLabel", "None"), ) K, sel, Vh, vertno, is_free_ori, noise_norm, _ = _prepare_source_params( inst=epochs, inverse_operator=inverse_operator, label=label, lambda2=lambda2, method=method, nave=nave, pca=pca, pick_ori=pick_ori, prepared=prepared, method_params=method_params, use_cps=use_cps, ) # Simplify code with a tiny (rel. to other computations) penalty for eye # mult Vh = np.eye(K.shape[1]) if Vh is None else Vh # split the inverse operator if inv_split is not None: K_split = np.array_split(K, inv_split) else: K_split = [K] # compute DPSS windows n_times = len(epochs.times) sfreq = epochs.info["sfreq"] dpss, eigvals, adaptive = _compute_mt_params( n_times, sfreq, bandwidth, low_bias, adaptive, verbose=False ) n_tapers = len(dpss) try: n_epochs = len(epochs) except RuntimeError: n_epochs = len(epochs.events) extra = "on at most %d epochs" % (n_epochs,) else: extra = "on %d epochs" % (n_epochs,) if isinstance(bandwidth, str): bandwidth = f"{bandwidth} windowing" else: bandwidth = f"{n_tapers} tapers with bandwidth {bandwidth:0.1f} Hz" logger.info(f"Using {bandwidth} {extra}") if adaptive: parallel, my_psd_from_mt_adaptive, n_jobs = parallel_func( _psd_from_mt_adaptive, n_jobs ) else: weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis] subject = _subject_from_inverse(inverse_operator) iter_epochs = ProgressBar(epochs, max_value=n_epochs) evoked_info = pick_info(epochs.info, sel, verbose=False) for k, e in enumerate(iter_epochs): data = np.dot(Vh, e[sel]) # reducing data rank # compute tapered spectra in sensor space x_mt, freqs = _mt_spectra(data, dpss, sfreq) if k == 0: freq_mask = (freqs >= fmin) & (freqs <= fmax) fstep = np.mean(np.diff(freqs)) with evoked_info._unlock(): evoked_info["sfreq"] = 1.0 / fstep freqs = freqs[freq_mask] # sensor space PSD x_mt_sensor = np.empty( (len(sel), x_mt.shape[1], x_mt.shape[2]), dtype=x_mt.dtype ) for i in range(n_tapers): x_mt_sensor[:, i, :] = np.dot(Vh.T, x_mt[:, i, :]) if adaptive: out = parallel( my_psd_from_mt_adaptive(x, eigvals, freq_mask) for x in np.array_split(x_mt_sensor, min(n_jobs, len(x_mt_sensor))) ) sensor_psd = np.concatenate(out) else: x_mt_sensor = x_mt_sensor[:, :, freq_mask] sensor_psd = _psd_from_mt(x_mt_sensor, weights) # allocate space for output psd = np.empty((K.shape[0], np.sum(freq_mask))) # Optionally, we split the inverse operator into parts to save memory. # Without splitting the tapered spectra in source space have size # (n_vertices x n_tapers x n_times / 2) pos = 0 for K_part in K_split: # allocate space for tapered spectra in source space x_mt_src = np.empty( (K_part.shape[0], x_mt.shape[1], x_mt.shape[2]), dtype=x_mt.dtype ) # apply inverse to each taper (faster than equiv einsum) for i in range(n_tapers): x_mt_src[:, i, :] = np.dot(K_part, x_mt[:, i, :]) # compute the psd if adaptive: out = parallel( my_psd_from_mt_adaptive(x, eigvals, freq_mask) for x in np.array_split(x_mt_src, min(n_jobs, len(x_mt_src))) ) this_psd = np.concatenate(out) else: x_mt_src = x_mt_src[:, :, freq_mask] this_psd = _psd_from_mt(x_mt_src, weights) psd[pos : pos + K_part.shape[0], :] = this_psd pos += K_part.shape[0] # combine orientations if is_free_ori and pick_ori is None: psd = combine_xyz(psd, square=False) if noise_norm is not None: psd *= noise_norm**2 out = _make_stc( psd, tmin=freqs[0], tstep=fstep, vertices=vertno, subject=subject, src_type=inverse_operator["src"].kind, ) if return_sensor: comment = "Epoch %d PSD" % (k,) out = ( out, EvokedArray(sensor_psd, evoked_info.copy(), freqs[0], comment, nave), ) # we return a generator object for "stream processing" yield out iter_epochs.update(n_epochs) # in case some were skipped @verbose def compute_source_psd_epochs( epochs, inverse_operator, lambda2=1.0 / 9.0, method="dSPM", fmin=0.0, fmax=200.0, pick_ori=None, label=None, nave=1, pca=True, inv_split=None, bandwidth=4.0, adaptive=False, low_bias=True, return_generator=False, n_jobs=None, prepared=False, method_params=None, return_sensor=False, use_cps=True, verbose=None, ): """Compute source power spectral density (PSD) from Epochs. This uses the multi-taper method to compute the PSD for each epoch. Parameters ---------- epochs : instance of Epochs The raw data. inverse_operator : instance of InverseOperator The inverse operator. lambda2 : float The regularization parameter. method : "MNE" | "dSPM" | "sLORETA" | "eLORETA" Use minimum norm, dSPM (default), sLORETA, or eLORETA. fmin : float The lower frequency of interest. fmax : float The upper frequency of interest. pick_ori : None | "normal" If "normal", rather than pooling the orientations by taking the norm, only the radial component is kept. This is only implemented when working with loose orientations. label : Label Restricts the source estimates to a given label. nave : int The number of averages used to scale the noise covariance matrix. pca : bool If True, the true dimension of data is estimated before running the time-frequency transforms. It reduces the computation times e.g. with a dataset that was maxfiltered (true dim is 64). inv_split : int or None Split inverse operator into inv_split parts in order to save memory. bandwidth : float | str The bandwidth of the multi taper windowing function in Hz. Can also be a string (e.g., 'hann') to use a single window. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation). low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. return_generator : bool Return a generator object instead of a list. This allows iterating over the stcs without having to keep them all in memory. %(n_jobs)s It is only used if adaptive=True. prepared : bool If True, do not call :func:`prepare_inverse_operator`. method_params : dict | None Additional options for eLORETA. See Notes of :func:`apply_inverse`. .. versionadded:: 0.16 return_sensor : bool If True, also return the sensor PSD for each epoch as an EvokedArray. .. versionadded:: 0.17 %(use_cps_restricted)s .. versionadded:: 0.20 %(verbose)s Returns ------- out : list (or generator object) A list (or generator) for the source space PSD (and optionally the sensor PSD) for each epoch. See Also -------- compute_source_psd """ # use an auxiliary function so we can either return a generator or a list stcs_gen = _compute_source_psd_epochs( epochs, inverse_operator, lambda2=lambda2, method=method, fmin=fmin, fmax=fmax, pick_ori=pick_ori, label=label, nave=nave, pca=pca, inv_split=inv_split, bandwidth=bandwidth, adaptive=adaptive, low_bias=low_bias, n_jobs=n_jobs, prepared=prepared, method_params=method_params, return_sensor=return_sensor, use_cps=use_cps, ) if return_generator: # return generator object return stcs_gen else: # return a list stcs = list() for stc in stcs_gen: stcs.append(stc) return stcs